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Abstract

The first Android-ready “G1” phone debuted in late October 2008. Since then, the growth of Android
malware has been explosive analogous to the rise in the popularity of Android. The major positive
aspect of Android has been its open-source nature, which empowers app developers to expand their
work. But at the same time, authors with malicious intentions pose grave threats to users. In the
presence of such threats, Android malware detection is the need of an hour. Consequently, researchers
have proposed various techniques involving static, dynamic, and hybrid analysis to address such threats
using numerous features in the last decade. But the feature that most researchers have extensively
used to perform malware analysis and detection in Android security is Android permission. Hence,
to provide a clarified overview of the latest and past work done in Android malware analysis and
detection, we perform a comprehensive literature review using permissions as a central feature or in
combination with other components by collecting and analyzing 200 studies from January 2009 to
February 2023. We extracted information such as the choice opted by researchers between analysis
or detection, techniques used to select or rank the permissions feature set, features used along with
permissions, detection models employed, the malware datasets used by researchers, and lastly, the
limitations and challenges in the field of Android malware detection to propose some future research
directions. Additionally, based on the information extracted, we answer the six research questions
designed considering the above factors.

Keywords: Android Security, Android Malware, Permissions Based Detection, Static Detection, Mobile

Security, Literature Review.

1 Introduction

In the last decade, we have witnessed the exponen-
tial growth of the Android operating system in the
mobile market. According to a recent report, the
Android system constitutes more than 80% of the

whole market of smart phones1. The main reason
behind Android’s success is its free, open-source
code, which empowers smartphone manufactur-
ers to transform their devices with pre-installed
applications and customized user interfaces for
a beautiful customer experience. But Android’s

1www.tenda.com.cn
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open-source nature is a boon and a bane. On the
one hand, where it brings the benefits of tech-
nological broadband and update, it also allows
criminals to use it for ill practices. These days
mobile phones are not only used for communica-
tion purposes, but gradually they have become a
crucial part of our lives containing the smallest to
the most critical and private user data. In such a
situation, robust and effective Android detection
mechanisms are the need of the hour.

Android OS was released in 2008, and just
then, the first Android malware was spotted in
2010, which targeted users by subscribing to pre-
mium SMS services. Since then, malware attacks
have been on the rise, and at the same time,
security attempts have been fighting to keep up
with the ever-increasing and constantly changing
malicious attacks. The total number of Android
malware worldwide have already increased from
22,088 in 2012 to 33,237,653 in Jan 20232. Look-
ing closer at the real-time threat analysis and
statistics of Android malware worldwide, we will
understand how desperately the Android Mar-
ket needs Android security and malware detection
systems.

Researchers and practitioners use various anal-
ysis and detection measures to address the above-
mentioned concerning numbers. Based on the
standard research techniques in the literature,
Android malware detection is usually carried out
using three analysis techniques: static, dynamic,
and hybrid. The static analysis aims to investigate
malware without executing the actual code but
by collecting basic information about the app’s
functionality. In contrast, dynamic analysis per-
forms and monitors an application to track its
nature to find traces of malicious behavior. The
working of hybrid analysis works in a way such
that it combines the advantages of both static and
dynamic analysis. Although static analysis poses
some limitations while dealing with advanced
malicious deformation techniques such as dynamic
code loading, static analysis still proves to be
quite efficient, usable, and scalable in prohibiting
malware before execution. Amongst all the static
features, the most popular and commonly used
static feature is permissions. Google introduced a
permission system for the Android OS, making it

2https://portal.av-atlas.org/malware

mandatory for all developers to define the nec-
essary permissions required for the functionality
of their product. It is up to the user to grant or
deny access to the requested permissions during
the installation. Hence, monitoring the usage of
permissions before installing any application can
prevent the spread of malware. It may seem chal-
lenging to a standard user, but the researchers
have used the meaning, frequency, and combina-
tion of permissions requested over the past 13
years to build robust Android malware detection
models.

Table I shows that this review offers much
more than most previous works in this area. This
review is not based on a general topic like [5],
but instead focuses systematically on applying for
permissions as a feature in Android Malware anal-
ysis/detection. Some surveys and reviews exist
in the literature, such as [13] and [12], to ana-
lyze the work done in Android malware detection
using analysis techniques, features, and machine
learning models. A systematic literature review
focusing on the trend of static analysis and the
usage of machine learning models, respectively,
was covered in the two surveys mentioned above.
However, there has been a gap in the Android mal-
ware detection investigation in recent years. More
specifically, a survey highlighting the popularity
of Android permissions as a feature in Android
malware analysis/detection is missing. Therefore,
it is indispensable to summarize the related work
in the field of Android malware detection using
permissions from the advent of the first proposed
Android malware-related model.

To have a clear view of the usage and pop-
ularity of permissions as a feature in Android
malware analysis and detection over almost 14
years (2009-2023), we conducted this Comprehen-
sive Literature Review (CLR) after analyzing the
related work thoroughly. The main contributions
of this work are highlighted below :

• We perform this CLR using a vast dataset of
200 research papers that aim to use permissions
for Android malware analysis/detection, almost
covering the advent of Android OS [14] and the
first malware in 2009 to the current research
scenario in the second month of 2023 [15].

• Apart from obtaining information about the
usage and permission-based techniques, we
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Table 1: Comparison of recent reviews having similar coverage with this article.
(✓= Having content, x = having no or little content)

Reference Feature

Analy-

sis

Technique

used

Model

used

(ML/DL)

Analysis/

Detection

Methodology

Comparison

Dataset

used

Discussion

on Limita-

tions and

Future

Directions

[1] ✓ x ✓ x x x ✓

[2] ✓ x ✓ x x x x

[3] ✓ x ✓ x x ✓ x

[4] ✓ x ✓ x x ✓ x

[5] x x x x x x x

[6] ✓ x x x x x x

[7] x x ✓ x x x x

[8] ✓ x ✓ x x x ✓

[9] x x ✓ x x ✓ ✓

[10] x x x x x x x

[11] ✓ x x x ✓ x ✓

[12] ✓ ✓ ✓ x x ✓ ✓

This arti-

cle

✓ ✓ ✓ ✓ ✓ ✓ ✓

comprehensively analyzed other features com-
bined with permissions, detection models, and
datasets used.

• According to the results of empirical evidence,
permissions prove to be quite informative and
efficient as a means of detecting malware in
Android smartphones.

• Finally, we make the discussions about the
results, limitations and possible future work
directions using permissions as a feature.

1.1 Review Protocol

In this section, we discuss in detail the main steps
involved in conducting this CLR :

1. Research questions: After reviewing the related
work and locating the different queries that
need to be analyzed in this review, we put for-
ward six research questions and their answers
that further perform the basis of the following
sections. Table 2 presents six research ques-
tions about the usage of permissions in Android
malware detection.

2. Search Strategy: Our first step while building
a comprehensive literature survey is collecting
related work by various authors in Android
security, mainly based on permissions. Our

work revolves around the usage and impact
of permissions in the area of Android mal-
ware detection; hence we chose the related work
that has used permissions alone or combined
with other static/dynamic features to analyze
or detect malware in Android smartphones.
We identified several search sources and search
items to cover the related research between the
period of 2009 to 2023 and, in the end, selected
seven electronic databases, which include main
journals and conferences, namely -

• IEEE Xplore Digital Library
• ScienceDirect
• ACM Digital Library
• Wiley Online Library
• Google Scholar
• SpringerLink
• Web of Science

3. Data extraction and synthesis: The last step
of our survey, which is the data extraction
and synthesis, is directly related to the first
step, i.e., the research questions. According to
the information extracted from various research
papers, we can find the answers to the research

3



Table 2: Research Questions

ID Research Questions Motivation
RQ1 What was the primary underlying purpose of using permissions

defined by the researchers- behavioral analysis or malware detec-
tion?

Assess the goals of
researchers and prac-
titioners.

RQ2 What feature ranking, selection, or other techniques are used to
build an Android malware analysis/detection system considering
permissions?

Identify the com-
monly used method
for selecting and
extracting relevant
features.

RQ3 Which features are primarily used in combination with permissions
for Android malware analysis/detection?

Identify the com-
monly used features
along with permis-
sions.

RQ4 Which ML/DL/other models are used for Android malware anal-
ysis/detection?

Compare the popu-
larity of ML and DL
models.

RQ5 Which datasets are used for malware analysis/detection? Identify the most
famous experimental
datasets.

RQ6 What are the limitations, challenges, and future directions for
permissions-based Android malware analysis or detection?

Assess the limitations
or challenges and
consequently, pro-
pose future research
directions.

questions and queries. We extracted the follow-
ing information from all the research papers
used for this review -

• Purpose of research - Choice between creat-
ing an Android malware detection model or
analyzing benign and malware apps.

• Technique used - As described above, our
focus relies upon permissions; hence we
obtained information on how authors utilized
permissions to build their malware analysis
or detection model.

• Features used - Most common features cho-
sen and utilized by authors while carrying
out their research work in combination with
permissions.

• Type of model used - Choice of model and
classifiers preferred between Machine learn-
ing (ML) and Deep learning (DL) or any
other kind if used for analysis or detection.

• Malware dataset used - What malware
datasets are used by the authors in their
corresponding works?

• Limitations - Limitations of detection/anal-
ysis models mainly associated with permis-
sions as a feature in the field of Android
security?

• Future Directions - Assessing the limitations
and challenges faced by the permissions-
based Android malware analysis/detection
models, we propose some future research
directions.

2 Purpose of Research

In response to RQ1, we present the data sum-
marizing the choice preferred by authors in
Table 3, between only analyzing the permis-
sions in malware/benign apps or detecting
malicious behavior in applications by proposing
full-fledged malware detection using a dataset
comprising of both benign and malware appli-
cations. The analysis process closely observes
the behavioral pattern of features requested
by applications. It could be performed using
both applications classes [16] or even individual
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types too [17]. On the other hand, a research
paper falls under the detection category if the
corresponding authors have performed detec-
tion using a mixed or unlabelled dataset after
completing the analysis or training phase.

Table 3 indicates that over the span of
around 14 years, almost all the researchers
and practitioners aimed to detect malware in
Android smartphones using the datasets avail-
able in the market comprising both normal
and malware applications. But some authors
chose to carry out only the analysis of fea-
ture behavior; for instance, the authors in [18]
analyzed descriptions of apps downloaded from
the Google Play Store to predict the requested
permissions but didn’t use any malware appli-
cations. If we try to come to a conclusion
using the data highlighted by Table 3 to under-
stand the situation better, we can observe
that a little over 93% of the work mentioned
in the table revolved around malware detec-
tion using permissions and not only analyzing
apps’ permissions. Hence, based on the
results presented above, we answer the
first Research Question that the major-
ity of researchers have chosen the path of
building permissions-based Android mal-
ware detection models instead of merely
analyzing the permissions of malware.

3 Techniques used

In response to RQ2, this section aims to present
the various feature selection or ranking or
other similar techniques used by researchers
to exploit permissions while building an anal-
ysis/detection model. Be it feature selection
or feature ranking, researchers aim to select
features highly dependent on the response. Var-
ious feature reduction techniques have been
used in primary studies to determine and
choose significant features in Android malware
detection. But some authors have approached
the detection process in different ways too.
Hence, we divided all the techniques into five
categories: feature ranking, frequent patterns-
based, graph-based approach, feature selection,
and others. Some of the most commonly used
methods are discussed in brief below.

(a) Frequency-based techniques - Frequency-
based techniques generally fall under the

Table 3: Purpose of Research (Analysis or
Detection)

Related works Analysis Malware
Detec-
tion

Normal Malware
Zhang et al. [19] ✓ ✓ ✓

Li et al. [20] ✓ ✓ ✓

Sahin et al. [21] ✓ ✓ ✓

Talha et al. [22] ✓ ✓ ✓

Varma et al. [23] ✓ ✓ ✓

Mahindru et al. [24] ✓ ✓ ✓

Dogru et al. [25] ✓ ✓ ✓

Rathore et al. [26] ✓ ✓ ✓

Shang et al. [27] ✓ ✓ ✓

Tchakounte et al.
[28]

✓ ✓ ✓

Ju et al. [16] ✓ ✓

Ilham et al. [29] ✓ ✓ ✓

Sahin et al. [30] ✓ ✓ ✓

Angelo et al. [31] ✓ ✓ ✓

Xiong et al. [32] ✓ ✓ ✓

Lu et al. [33] ✓ ✓ ✓

Kavitha et al. [34] - - -
E. Amer [35] ✓ ✓ ✓

Chakravarty et al.
[36]

✓ ✓ ✓

Pondugula et al. [37] ✓ ✓ ✓

Sahal et al. [38] ✓ ✓ ✓

Tuan Mat et al. [39] ✓ ✓ ✓

Wang et al. [40] ✓ ✓ ✓

Park et al. [41] ✓ ✓ ✓

Liang et al. [42] ✓ ✓ ✓

Enck et al. [14] ✓ - -
Enck et al. [17] ✓ - -
Wang et al. [43] ✓ ✓ -
Peng et al. [44] ✓ ✓ -
Pandita et al. [45] ✓ - -
Samra et al. [46] ✓ - -
Yerima et al. [47] ✓ ✓ ✓

Aung et al. [48] ✓ ✓ ✓

Yerima et al. [49] ✓ ✓ ✓

Sanz et al. [50] ✓ ✓ ✓

Moonsamy et al. [51] ✓ ✓ ✓

Backes et al. [52] ✓ - -
Wu et al. [53] ✓ ✓ ✓

Kato et al. [54] ✓ ✓ ✓

Arora et al. [55] ✓ ✓ ✓

Alsoghyer et al. [56] ✓ ✓ ✓

Saleem et al. [57] ✓ ✓ -
Ghasempour et al.
[58]

✓ ✓ ✓

Shrivastava et al.
[59]

✓ ✓ ✓

Upadhayay et al. [60] ✓ ✓ ✓

Lee et al. [61]
Surendran et al. [62] ✓ ✓ ✓

A. T. Kabakus [63] ✓ ✓ ✓

Wang et al. [64] ✓ ✓ ✓

Akbar et al. [65] ✓ ✓ ✓

Zhu et al. [66] ✓ ✓ ✓

Wang et al. [67] ✓ ✓ ✓

N. McLauglin [68] ✓ ✓ ✓

Wang et al. [69] ✓ ✓ ✓

Grace et al. [70] ✓ ✓ ✓

Liu et al. [71] ✓ ✓ ✓

Bayazit et al. [72] ✓ ✓ ✓

Lee et al. [73] ✓ ✓ ✓

Zhu et al. [74] ✓ ✓ ✓
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Related works Analysis Malware
Detec-
tion

Normal Malware
Almahmoud et al.
[75]

✓ ✓ ✓

Feng et al. [76] ✓ ✓ ✓

Kandukuru et al.
[77]

✓ ✓ ✓

Arora et al. [78] ✓ ✓ ✓

Ding et al. [79] ✓ ✓ ✓

Sahin et al. [80] ✓ ✓ ✓

Idrees et al. [81] ✓ ✓ ✓

Khariwal et al. [82] ✓ ✓ ✓

Idrees et al. [83] ✓ ✓ ✓

Zhu et al. [15] ✓ ✓ ✓

Bai et al. [84] ✓ ✓ ✓

Taheri et al. [85] ✓ ✓ ✓

Alazab et al. [86] ✓ ✓ ✓

Mathur et al. [87] ✓ ✓ ✓

Imtiaz et al. [88] ✓ ✓ ✓

Liu et al. [89] ✓ ✓ ✓

Chen et al. [90] ✓ ✓ ✓

Guan et al. [91] ✓ ✓ ✓

Mohamed et al. [92] ✓ ✓ ✓

Varma et al. [93] ✓ ✓ ✓

Gyunka et al.[94] ✓ ✓ ✓

Taha et al. [95] ✓ ✓ ✓

Peng et al. [96] ✓ ✓ ✓

Ashwini et al. [97] ✓ ✓ ✓

Jiang et al. [98] ✓ ✓ ✓

Wang et al. [99] ✓ ✓ ✓

Rana et al. [100] ✓ ✓ ✓

Lu et al. [101] ✓ ✓ ✓

Millar et al. [102] ✓ ✓ ✓

Barrera et al. [103] ✓ - -
Shabtai et al. [104] ✓ - -
Felt et al. [105] ✓ - -
Erickson et al. [106] ✓ - -
Sarma et al. [107] ✓ ✓ ✓

Frank et al. [108] ✓ - -
Jhu et al. [109] ✓ ✓ ✓

Peiravian et al. [110] ✓ ✓ ✓

Sanz et al. [111] ✓ ✓ ✓

Feldman et al. [112] ✓ ✓ ✓

Pehlivan et al. [113] ✓ ✓ ✓

Rahman et al. [114] ✓ ✓ ✓

Rovelli et al. [115] ✓ ✓ ✓

Arp et al. [116] ✓ ✓ ✓

Yerima et al. [117] ✓ ✓ ✓

Kang et al. [118] ✓ ✓ ✓

Zhao et al. [119] ✓ ✓ ✓

Qiao et al. [120] ✓ ✓ ✓

Chen et al. [121] ✓ ✓ ✓

Demertzis et al. [122] ✓ ✓ ✓

Verma et al. [123] ✓ ✓ ✓

Wang et al. [124] ✓ ✓ ✓

Tangil et al. [125] ✓ ✓ ✓

Wang et al. [126] ✓ ✓ ✓

Li et al. [127] ✓ ✓ ✓

Bhattacharya et al.
[128]

✓ ✓ ✓

Xie et al. [129] ✓ ✓ ✓

Xie et al. [130] ✓ ✓ ✓

Ren et al. [131] ✓ ✓ ✓

Tao et al. [132] ✓ ✓ ✓

Namrud et al. [133] ✓ ✓ ✓

Alswaina et al. [134] ✓ ✓ ✓

Qiu et al. [135] ✓ ✓ ✓

Zhu et al. [136] ✓ ✓ ✓

Feng et al. [137] ✓ - -

Related works Analysis Malware
Detec-
tion

Normal Malware
Aonzo et al. [138] ✓ ✓ ✓

Urooj et al. [139] ✓ ✓ ✓

Wang et al. [140] ✓ - -
Wang et al. [141] ✓ ✓ ✓

Zhang et al. [142] ✓ - -
Kesswani et al. [143] ✓ - -
Ibrahim et al. [144] ✓ ✓ ✓

Arshad et al. [145] ✓ ✓ ✓

Yuan et al. [146] ✓ ✓ ✓

Zhou et al. [147] ✓ ✓ ✓

Cilleruelo et al. [148] ✓ ✓ ✓

Firdaus et al. [149] ✓ ✓ ✓

Wang et al. [150] ✓ ✓ ✓

Singh et al. [151] ✓ ✓ ✓

Rafiq et al. [152] ✓ ✓ ✓

Mahdavifar et al.
[153]

✓ ✓ ✓

Seraj et al. [154] ✓ ✓ ✓

Mahindru et al. [155] ✓ ✓ ✓

Sahin et al. [21] ✓ ✓ ✓

Anupama et al. [156] ✓ ✓ ✓

Chen et al. [157] ✓ ✓ ✓

Mahindru et al. [158] ✓ ✓ ✓

Tchakounté et al.
[159]

✓ ✓ ✓

Nissim et al. [160] ✓ ✓ ✓

Peynirci et al. [161] ✓ ✓ ✓

Nauman et al. [162] ✓ ✓ ✓

Bhattacharya et al.
[163]

✓ ✓ ✓

Bao et al.[164] ✓ - -
Medrano et al. [165] ✓ - -
Mat et al. [165] ✓ ✓ ✓

Shatnawi et al. [166] ✓ ✓ ✓

Smmarwar et al.
[167]

✓ ✓ ✓

Arif et al. [168] ✓ ✓ ✓

Manzanares et al.
[169]

✓ ✓ -

Bhat et al. [170] ✓ ✓ ✓

Elayan et al.[171] ✓ ✓ ✓

Syrris et al. [172] ✓ ✓ ✓

Idrees et al. [173] ✓ ✓ ✓

Rehman et al. [174] ✓ ✓ ✓

Martin et al. [175] ✓ ✓ ✓

Navarro et al. [176] ✓ ✓ ✓

Milosevic et al. [177] ✓ ✓ ✓

Alzaylaee et al. [178] ✓ ✓ ✓

Cai et al. [179] ✓ ✓ ✓

Badhani et al. [180] ✓ ✓ ✓

Hijawi et al. [181] ✓ ✓ ✓

Sheen et al. [182] ✓ ✓ ✓

Nisha et al. [183] ✓ ✓ ✓

Song et al. [184] ✓ ✓ ✓

Zhang et al. [185] ✓ ✓ ✓

Yang et al. [186] ✓ -
Thiyagarajan et al.
[187]

✓ ✓ ✓

Qaisar et al. [188] ✓ ✓ ✓

Appice et al. [189] ✓ ✓ ✓

Zhu et al. [190] ✓ ✓ ✓

A. Altaher [191] ✓ ✓ ✓

Su et al. [192] ✓ ✓ ✓

Mahindru et al. [193] ✓ ✓ ✓

Dehkordy et al. [194] ✓ ✓ ✓

Nguyen et al. [195] ✓ ✓ ✓

Taheri et al. [196] ✓ ✓ ✓
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Related works Analysis Malware
Detec-
tion

Normal Malware
Mahesh et al. [197] ✓ ✓ ✓

Firdaus et al. [198] ✓ ✓ ✓

Shrivastava et al.
[199]

✓ ✓ ✓

Varsha et al. [200] ✓ ✓ ✓

M. Deypir [201] ✓ ✓ ✓

Mahindru et al. [202] ✓ ✓ ✓

Keyvanpour et al.
[203]

✓ ✓ ✓

Razak et al. [204] ✓ ✓ ✓

Xie et al. [205] ✓ ✓

Mahindru et al. [206] ✓ ✓ ✓

Alecakir et al. [18] ✓ - -
Ali et al. [207] ✓ - -
Sun et al. [208] ✓ ✓ ✓

AlJarrah et al. [209] ✓ ✓ ✓

Gharib et al. [210] ✓ ✓ ✓

Sun et al. [211] ✓ ✓ ✓

category of feature ranking techniques; how-
ever, they can sometimes be used as a
feature selection technique too. The main
underlying concepts that these techniques
tend to exploit are -
• Some features are frequently requested by
only one class of dataset, either benign
or malware, and as the goal is gener-
ally to differentiate between normal and
malicious applications, the features that
are frequently requested only by the mal-
ware applications are considered danger-
ous, and the ones having a high frequency
in the case of normal applications are
considered to have low-risk factor [58].

• Some features are commonly used by
both the classes, benign and malware,
and hence they can be excluded to
choose only the more informative fea-
tures. For instance, permissions such as
“INTERNET” are frequently requested
by both malware and benign apps; hence
the authors in [20] chose to eliminate
such permissions as they might intro-
duce ambiguity in the malware detection
process. Moreover, they ranked the fea-
tures based on their frequency of usage in
malicious and benign apps.

• Apart from the two approaches mentioned
above, the authors also focus on how often
one permission or feature is repeated in
the whole dataset or has a low support
value. In such cases also, the frequency is

used as a parameter to rank and further
select only the relevant features.

(b) Information Gain (Information Gain) -
Information Gain can be defined as a mea-
sure of reduction in entropy. One can under-
stand it as a measure of reduction in the
amount of information upon splitting a
dataset according to a certain value of a ran-
dom variable. Information Gain is inversely
proportional to entropy, i.e., the higher the
information gain, the lower the entropy of
that particular group, as the element of sur-
prise would be less. Mathematically, Infor-
mation Gain is calculated by comparing the
entropy of the dataset before and after a
transformation. Common usage of Informa-
tion Gain includes forming decision trees
from a training dataset. Information Gain is
calculated for each variable in the first step,
followed by selecting the variable with the
maximum Information Gain value and thus
minimizing the entropy and obtaining the
best splits of the dataset for efficient classi-
fication.
As feature ranking is a subset of feature
selection, Information Gain can be used as
both techniques, i.e., to reduce the dataset
and simultaneously choose only the most
informative features. This is done by cal-
culating the gain of each variable in the
context of the target variable. Information
Gain value for each independent attribute
is calculated and further ranked from top
to bottom, the top being the most relevant
with the highest Information Gain score.
After this, a threshold could be decided to
filter out only the features with Information
Gain values above the threshold, which can
be further included in the machine or deep
learning classifiers.

(c) Principal Component Analysis (PCA) -
Another commonly used feature selection
technique in Android malware detection is
Principal Component Analysis, which works
on reducing the number of variables while
preserving as much information as pos-
sible. PCA identifies the correlations to
calculate the eigenvectors and eigenvalues,
which identifies the principal components in
return. After that, one can choose which

7



principal components to keep and which
ones to discard by creating a feature vector.

(d) Chi-square - Chi-square is generally used in
statistics to test the independence of two
events, but quite often, it has also been
used as a feature selection technique in
Android malware detection to reduce the
size of the feature set. Mathematically, Chi-
square measures how expected count E and
observed count O deviate from each other.
The Chi-square formula [212] is defined in
the below equation.

χc
2 =

∑ (Oi − Ei)
2

Ei

where:
c=Degrees of freedom,
O=Observed value(s), and
E=Expected value(s)

While aiming for feature selection, the
features having higher chi-square values are
selected for model building as a higher chi-
square value depicts higher dependence over
the target variable or the response.

(e) Clustering - Clustering is another technique
that has been extensively used in Android
malware detection first to understand a
dataset and further club the similar and less
informative features. In terms of machine
learning, unlabelled grouping examples are
called clustering.
In response to RQ2, we conclude by the

information depicted in Table 4 that the
most commonly used techniques involving the
use of permissions are Information Gain and
frequency-based, e.g., [58] and [20]. Apart from
these, most researchers based their approach
around utilizing either ML or DL classifiers
by tuning the hyperparameters, e.g., [196] and
[171]. Figure 1 gives a better and closer under-
standing of Table 4. As we can see, close to
48% of the total research works used in this
review based their approach on either ML
or DL classifiers/techniques [110]-[115]. Either
they fed the extracted features directly to the
machine learning classifiers to be dealt with
or used techniques like gain ratio, correlation
coefficient [29], mutual information, relief [36]

Fig. 1: Statistics depicting the most commonly
used techniques to build an Android malware

analysis/detection system considering permissions

etc., to compute the feature score. The second
most common approach used by researchers
and practitioners to reduce or choose the best
set of features is utilizing the statistical tests
(13.04%) such as Chi-square [119], PCA [34],
Mann–Whitney test [132], variance threshold
[26], ANOVA [120] and many more. Around
11% of the total work account for approaches
based upon features’ frequency [19]-[20] and
clustering-based frequent patterns [46] each.
5.98% papers utilised some sort of similar-
ity score [22] or rule based techniques [17]
to analyse or detect Android malware. Lastly,
6.52% and 3.26% of the comprehensive stud-
ies used graph-based [185], [186], and some
other techniques, respectively. For instance, in
[31], the authors mapped the permissions on
the x-y plane using their corresponding pro-
tection level, whereas in [45], they utilized app
descriptions to deduce the permissions required
by an application. Hence, based on the
results presented above, we answer the
second Research Question that popular
techniques to handle the extracted per-
missions and other features are the ML
and DL classifiers as their hyper parame-
ters can be easily tuned to reduce, rank,
or select the unlabelled or unbalanced
feature set.
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Table 4: Technique used
Related
works

Feature Ranking Frequent Pat-
terns

Feature Selection Graph
based

Others

Zhang et al.
[19]

Monitored the
permission usage
within the appli-
cation and with
the system

Li et al. [20] Ranking based on
the frequency of
permissions being
requested.

Sahin et al.
[21]

Linear Regression

Talha et al.
[22]

Combined Risk score calcu-
lated for each app

Varma et al.
[23]

Used permissions as fea-
tures to study the perfor-
mance of ML algorithms

Mahindru et
al. [24]

Discarded the ones not
installed or starting at
launching stage

Dogru et al.
[25]

Permission groups score
calculated, to sum up an
app’s Risk Score

Rathore et al.
[26]

Variance threshold,
autoencoders, and PCA

Shang et al.
[27]

Reduced the permission
set with Pearson’s Corre-
lation Coefficient

Tchakounte et
al. [28]

Similarity score
based on sequence
alignment

Ju et al. [16] Manual pattern
recognition to
existing malware
permissions pat-
terns

Ilham et al.
[29]

Gain Ratio, Information
Gain, Correlation Coeffi-
cient, CFS subset Evalu-
ator

Sahin et al.
[30]

Relevance Frequency

Angelo et al.
[31]

Mapped the permissions
on the x-y plane using
their corresponding protec-
tion level

Xiong et al.
[32]

Used unique and
common permis-
sions patterns
from both datasets
as weak Classifier

Lu et al. [33] Improved RF algorithms
along with introducing
fuzzy sets of samples

Kavitha et al.
[34]

PCA and Sequential
Forward selection, Lim-
iting the permissions
by accepting or deny-
ing each permission
separately according to
Dangerous level

E. Amer [35] Developed an ensemble
comprising multiple classi-
fiers

Chakravarty
et al. [36]

Information Gain, Relief,
Gain Ratio

Pondugula et
al. [37]

Deep Neural Network
model
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Sahal et al.
[38]

Ranking based on
permissions class fre-
quency

Tuan Mat et
al. [39]

Used Bayes classifier
after optimising features
using Chi-Square Test

Wang et al.
[40]

Association rule Mining,
PCA , Deep Cross Net-
work

Park et al. [41] Reduced features by
removing built-in, cus-
tom, dangerous, and
permissions that are
used at least once

Liang et al.
[42]

Generated k maps
for permission
combinations
based on their
usage

Enck et al. [14] Presented analysis of the
newly launched Android
OS in 2009

Enck et al. [17] Defined rules
based upon dan-
gerous level and
possible negative
impact

Wang et al.
[43]

Calculated the risk
score of each app
using Baye’s rule
based upon fre-
quency of permis-
sions and risk lev-
els

Peng et al. [44] Calculated the risk scores
of applications using prob-
abilistic methods like
Näıve Bayes and its modi-
fications

Pandita et al.
[45]

Introduced a framework
based upon natural lan-
guage processing called
“WHYPER” which used
application descriptions to
describe which permissions
are needed and why

Samra et al.
[46]

Permissions are
used as features
to make clusters
using K-means
cluster algorithm

Yerima et al.
[47]

Permissions are used
as features along
with others to be fed
into the Bayesian
Classifier

Aung et al.
[48]

K best features selected
using Information Gain

Yerima et al.
[49]

Permissions are used
as features along
with others to be fed
into the Bayesian
Classifier

Sanz et al. [50] Work based upon permis-
sion frequency

Moonsamy et
al. [51]

Biclustering method to
visualize for rare, unique
as well as frequent pat-
terns, followed by reduc-
ing permissions based
on their support differ-
ence between normal and
malicious datasets
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Backes et al.
[52]

Appguard, a powerful sys-
tem capable of modifying
user-defined security poli-
cies on untrusted applica-
tions and converting them
into new trusted ones

Wu et al. [53] Used permissions,
and other infor-
mation to form a
feature set, further
applied K-means
and EM algorithm
to form clusters
for malware detec-
tion

Kato et al. [54] Calculated similarity score
between malware and nor-
mal permission pairs after
dividing them into differ-
ent categories

Arora et al.
[55]

Used permission
pairs to con-
struct graphs
for normal and
malware apps

Alsoghyer et
al. [56]

Malware detection model
based on the frequency of
permissions occurrences
followed by using machine
learning algorithm to
assess the model

Saleem et al.
[57]

Calculated the first four
moments for permission’s
binary data after using
Kernel Density Estimation
and used the varying values
as a means to distinguish
between applications

Ghasempour
et al. [58]

Permissions ranked
by using frequency-
based weighting
method

PCA followed by using a
statistical method based
upon eigenvalues and
eigenvectors

Shrivastava et
al. [59]

Risk score was calculated
based on permissions fre-
quency for each permission
which in turn was used
to classify applications as
high risk, medium risk, and
low risk

Upadhayay et
al. [60]

Ranked the permis-
sions based on the
frequency of their
occurrence in the
datasets and com-
bined them with the
best network traffic
features

Lee et al. [61] Classified normal and mali-
cious apps through ML-
based detection techniques
based on the frequency of
permission of Android apps

Surendran et
al. [62]

Fed into the Logistic
Regression (LR) classifier
first followed by applying
the näıve bayes classifier
to find interdependency
between features

A. T. Kabakus
[63]

Fed into the Convolutional
Neural network (CNN)
model as one-dimensional
input to form a training
model
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Wang et al.
[64]

Decision Tree, Extra
trees, Chi-square test,
Genetic algorithm, SVM
based on recursive fea-
ture elimination, MI

Akbar et al.
[65]

Employed Random For-
est to generate the
feature importance
and combined it with
Google’s dangerous per-
missions and the features
used in [66] to select the
best set of permissions

Zhu et al. [66] Used TF-IDF and Cosine
similarity to choose the
best features

Wang et al.
[67]

Fed the permissions data
combined with the API
sequence data into the
LR model

N. McLauglin
[68]

Used permissions as fea-
tures in PerceiverIO blocks
to be combined with the
opcode PerceiverIO blocks

Wang et al.
[69]

Ranked using
Mutual Information
(MI), correlation
coefficient and T-
test

Grace et al.
[70]

Risk level on an
unknown applica-
tion is decided by
checking for dan-
gerous permission
requests

Liu et al. [71] Sensitive permis-
sion patterns are
extracted

Filtered out using
improved FP growth,
removing clusters having
same support and low
JARO distance followed
by performing hierarchi-
cal clustering

Bayazit et al.
[72]

Fed as input into the
Recurrent neural Networks
(RNN)-based classifiers

Lee et al. [73] Information Gain and
genetic algorithm

Zhu et al. [74] Fed into deep learning
hybrid methods such as
unsupervised method
Merged Sparse Auto-
Encoder (MSAE) and
supervised method Stacked
Denoising Auto-encoders
(SDAE) and fed the
extracted results to SVM
and KNN

Almahmoud
et al. [75]

Ranked on the basis
of cosine similarity

Feng et al. [76] Chi-square test and
extremely randomized
tree method

Kandukuru et
al. [77]

Computed the permission’s
score using Jaccard-bitwise
similarity technique to
compare an app’s risk
score with the threshold

12



Arora et al.
[78]

Combined the
permissions and
network traffic
feature values and
generated the fre-
quent patterns
using FP- Growth
algorithm

Ding et al. [79] Chi-square test, analysis
of variance (ANOVA) F-
value, and MI

Sahin et al.
[80]

Fed into linear regression
based classifiers

Idrees et al.
[81]

Distinguishing fre-
quency pattern
ranges

Khariwal et al.
[82]

Information Gain

Idrees et al.
[83]

Constructed a
detection matrix

Zhu et al. [15] Fed into Multi-Head
Squeeze-and-Excitation
Residual block (MSer),
and stacked it to construct
a deep network MSerNet

Bai et al. [84] Fast Correlation-Based
Filter by [213]

Taheri et al.
[85]

Random Forest Algo-
rithm

Alazab et al.
[86]

Information Gain

Mathur et al.
[87]

Frequency counting,
backward elimination
and collinearity check

Imtiaz et al.
[88]

Fed into a deep learn-
ing artificial neural net-
work classifier

Liu et al. [89] Fed into RBM com-
bined with subspace
methods to reduce the
feature dimensionality
after choosing the best
subspaces by clustering
techniques

Chen et al.
[90]

PCA

Guan et al.
[91]

k-means clustering algo-
rithm

Fed the results to Synthetic
Minority Over-Sampling
Technique (SMOTE)

Mohamed et
al. [92]

Chose the most common
features

Varma et al.
[93]

Bat Optimization,
Cuckoo Search, and
Grey Wolf Optimization
wrapper feature selec-
tion techniques

Gyunka et
al.[94]

PCA

Taha et al.
[95]

Clustering similar
Permissions

Peng et al. [96] Adaptive shrinkage CNN
Ashwini et al.
[97]

Fed the features to
machine learning classifiers

Jiang et al.
[98]

The dangerous fea-
tures backtracked
from sensitive API
calls are ranked in
order of Information
Gain score

13



Wang et al.
[99]

Fed to various classifiers
to create an ensemble clas-
sifier based upon selec-
tive Ensemble method and
genetic algorithm

Rana et al.
[100]

Selected only the most
useful feature word by
creating a dictionary

Lu et al. [101] Fed the permissions to
DBN classifier

Millar et al.
[102]

Fed the permissions to a
CNN classifier

Barrera et al.
[103]

Found permissions
usage pattern

Fed to the SOM to analyze
permissions usage pattern

Shabtai et al.
[104]

Information Gain,
Fisher Score and
Chi-Square

Felt et al.
[105]

Compared permissions
required to invoke API
methods and actually
requested permissions to
check for over privilege
issues

Erickson et al.
[106]

Mapped permissions
required to invoke API
methods to check for pri-
vacy leaks

Sarma et al.
[107]

Considered the
permission pat-
terns from their
malware dataset
and some critical
most requested
permissions to
generate risk sig-
nals for the users

Frank et al.
[108]

To extract statis-
tically significant
permission request
patterns

Jhu et al. [109] To compare the permis-
sions required by an appli-
cation by analyzing the
description given by the
developer with its actual
requested permissions

Peiravian et
al. [110]

Fed to various machine
learning classifiers

Sanz et al.
[111]

Fed to various machine
learning classifiers

Feldman et al.
[112]

Fed to various machine
learning classifiers

Pehlivan et al.
[113]

Gain Ratio Attribute
Evaluator, Relief
Attribute Evaluator,
Cfs Subset Evaluator,
Consistency Subset
Evaluator

Rahman et al.
[114]

Fed to various machine
learning classifiers

Rovelli et al.
[115]

Fed to various machine
learning classifiers on the
server side component

Arp et al.
[116]

Mapped to a
joint vector space,
where patterns
were analyzed geo-
metrically

Yerima et al.
[117]

Fed to various machine
learning classifiers
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Kang et al.
[118]

Calculated the
likelihood ratio
under the given
distribution of
permissions and
further used
the Needleman-
Wunsch algorithm
to calculate simi-
larity score

Zhao et al.
[119]

Chi-square and Informa-
tion Gain

Qiao et al.
[120]

ANOVA and
SVM—Recursive Fea-
ture Elimination

Chen et al.
[121]

Fed to various machine
learning classifiers

Demertzis et
al. [122]

Fed to ELM classifier and
eSNN along with various
hardware components

Verma et al.
[123]

Extracted the functional
call graph of the applica-
tions, used a procedure
inspired by the neighbor-
hood hash graph kernel
(NHGK) and create a
graph classification prob-
lem

Wang et al.
[124]

Absolute permission
rate difference

Feature vector was created
composed of permissions,
receiver actions, and hard-
ware components

Tangil et al.
[125]

Extra Tree algo-
rithm and rank them
by mean decrease
impurity

Wang et al.
[126]

FrequenSel [119] and Infor-
mation Gain

Li et al. [127] PCA Method based on
singular value decompo-
sition (SVD)

Bhattacharya
et al. [128]

Information Gain

Xie et al. [129] Fed the results of syntax
and semantic features to
the machine learning clas-
sifiers

Xie et al. [130] Feature vectors were
reshaped to matrices by
embedding to feed to CNN
classifier

Ren et al.
[131]

Fed the features to vari-
ous machine learning and
ensemble classifiers

Tao et al. [132] Mann–Whitney test
to analyze statistical
significance of permis-
sion usage in both the
datasets

Namrud et al.
[133]

Analysed the per-
missions usage
pattern w.r.t dif-
ferent categories
by using a com-
bination of SOM
and K-means

Alswaina et al.
[134]

Extremely Randomized
Trees
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Qiu et al. [135] Created a Feature vec-
tor table with the help of
TF-IDF technique to form
binary type vectors with
security/privacy-related
capabilities as annotations

Zhu et al.
[136]

Fed the extracted features
to an ensemble classifier of
MLP and SVM as fusion
classifier

Feng et al.
[137]

App descriptions pre-
processed by NLP methods
are fed into the Neural
network model to produce
binary probability distri-
bution for each permission

Aonzo et al.
[138]

Fed the features to their
own proposed linear and
nonlinear classifiers

Urooj et al.
[139]

Fed the features to vari-
ous machine learning and
ensemble-based classifiers

Wang et al.
[140]

Processed the user reviews
by using permissions docs,
API docs, and app descrip-
tions to infer the permis-
sions required by an appli-
cation

Wang et al.
[141]

Fed the extracted features
to various machine learning
classifiers

Zhang et al.
[142]

Utilised Whole call graphs
(WCG) and parsed the
mapping list to locate
sensitive operations, form
User-aware Call Graph,
and perform static analysis

Kesswani et
al. [143]

Divided the per-
missions under
generic and
privacy-invasive
categories to fur-
ther calculate
the percentage
of generic and
privacy-invasive
permissions of an
unknown applica-
tion

Ibrahim et al.
[144]

Fed to the deep learning
classifier, in particular to
embedding layers, followed
by clustering and flatten-
ing layers to make their
shape appropriate

Arshad et al.
[145]

Fed the static and dynamic
features to a machine
learning classifier

Yuan et al.
[146]

Fed the static and dynamic
features to a deep learning
classifier

Zhou et al.
[147]

Fed the extracted features
to deep learning based clas-
sifier

Cilleruelo et
al. [148]

Reduce the multiple per-
missions that are the
same but present differ-
ences based on the appli-
cation package
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Firdaus et al.
[149]

Generic Search

Wang et al.
[150]

Support-based
permission can-
didate method
to mine unique
required or used
permission pat-
terns

Singh et al.
[151]

BI-Normal Separation
(BNS), MI, Relevancy
Score (RS), and the
Kullback-Leibler (KL)

Rafiq et al.
[152]

Fed the extracted features
to machine learning classi-
fiers tuned by using NIAs

Mahdavifar et
al. [153]

Fed the extracted features
to a deep learning classifier

Seraj et al.
[154]

Fed the extracted permis-
sions to a MLP neural net-
work classifier

Mahindru et
al. [155]

Chi-Square, Gain Ratio,
Filtered Subset selection,
Information Gain fea-
ture, LR analysis, PCA

Sahin et al.
[21]

Relevance frequency fea-
ture selection (RFFS),
Document frequency
thresholding (DF),
Information Gain, Chi-
square, Odds ratio (OR),
IDF and other filter-
based methods

Anupama et
al. [156]

Fischer Score

Chen et al.
[157]

Fed the extracted permis-
sions after removing the
useless ones to RF machine
learning classifier

Mahindru et
al. [158]

Chi-squared test,
Information Gain
feature evaluation,
LR analysis, Infor-
mation Gain, oneR
feature evaluation,
PCA

T-test, Pearson’s corre-
lation Coefficient, Rough
set analysis (RSA), Con-
sistency subset evalua-
tion approach, Filtered
subset evaluation

Tchakounté et
al. [159]

Permissions and other fea-
tures are utilized to form
fuzzy-hashed signatures of
known malware to find
similarity score between
them and unknown appli-
cations

Nissim et al.
[160]

Fed the extracted features
to SVM and a couple of
proposed active learning
methods for detection after
processing

Peynirci et al.
[161]

Delta IDF based upon
differential inverse doc-
ument frequency (IDF)
values

Nauman et al.
[162]

Fed the extracted features
to various Deep learning
and machine learning clas-
sifiers

Bhattacharya
et al. [163]

Improvised Particle
Swarm optimization
(PSO) algorithm for a
rough set with a new
random key encoding
method
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Bao et al.[164] Traced the API
- permission pat-
terns to predict
the permissions for
an app by using
API

Fed into the naive Bayes
multinomial classification
model for text classifica-
tion and predicting permis-
sions for an application

Medrano et al.
[165]

Taint tracking to
analyze and find
mappings between
Android Class
Function (ACFs)
and the Permis-
sions

Mat et al.
[165]

Information Gain and
chi-square

Shatnawi et
al. [166]

LR model Recursive Feature Elimi-
nation (RFE)

Smmarwar et
al. [167]

Binary Grey Wolf Opti-
mization (BGWO)

Arif et al.
[168]

Information Gain

Manzanares et
al. [169]

Extracted permissions and
other static and dynamic
features to prepare a com-
prehensive dataset

Bhat et al.
[170]

Information Gain Deleted the features that
are too infrequent and
the ones that are present
in almost the same num-
ber in both the datasets

Elayan et
al.[171]

Fed the extracted results to
various machine classifiers

Syrris et al.
[172]

Removed the features
having low variance

Idrees et al.
[173]

Information Gain Found the correlation
between permissions and
intents using Pearson cor-
relation coefficient

Rehman et al.
[174]

Fed the results to various
machine learning classifiers
to find the cosine similarity
between features

Martin et al.
[175]

Extracted to create a
comprehensive and com-
plete dataset, then fed the
results to various machine
learning classifiers for
detection

Navarro et al.
[176]

RF feature impor-
tance

Eliminated the linearly
dependent vectors while
performing the Bag of
Graphs (BoG) technique

Formed
Ontology-
based
graphs
to find
the rela-
tionship
between
permis-
sions
defined,
used,
interfaces
protected
by per-
missions
and the
resources
access
through
them
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Milosevic et
al. [177]

Fed into various
machine learning and
ensemble classifiers for
classification and clus-
tering

Alzaylaee et
al. [178]

Information Gain

Cai et al. [179] Information Gain
Badhani et al.
[180]

Removed features having
constant value or zero
variance

Fed the features to
various machine learn-
ing and ensemble clas-
sifiers. Further applied
k-mode algorithm for
clustering of features

Hijawi et al.
[181]

Fed the features
to various machine
learning classifiers
to rank them on the
basis of their impor-
tance

Sheen et al.
[182]

Chi-Square, Relief,
Information Gain

Nisha et al.
[183]

PSO, Social Spider Algo-
rithm (SSA), and Grav-
itational Search Algo-
rithm (GSA)

Represented
permissions
in the form
of ontology
graphs to
understand
the relation-
ship between
permissions,
packages
and interface
classes

Song et al.
[184]

Dangerous permis-
sions are matched
with the permis-
sions requested by
an unknown appli-
cation to generate
a detection report
and submit it to
users

Zhang et al.
[185]

Identified
explicit and
implicit per-
mission use
points to fur-
ther create
permission
use graphs to
analyze the
permissions
behavioral
pattern

Yang et al.
[186]

Constructed
State Transi-
tion Graphs
(STG) from
permissions
to implement
breadth-
first search
(BFS) in
the dynamic
exploration
phase to
analyze the
permission
behavior
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Thiyagarajan
et al. [187]

Pruning on the basis
of frequency

Chi-square, Support
based, association-based,
PCA

Qaisar et al.
[188]

PCA, Co-relation
attribute evaluation
(CAE)

Constructed clusters using
k-means algorithm to
match up with the newly
added features in the case
base

Appice et al.
[189]

Clustering based k- means
++ algorithm to form sep-
arate clusters for each view
which were combined later
using stacking-based fusion
method to learn the con-
sensus malware detection
pattern

Zhu et al.
[190]

Fed the results to RF-
based machine learning
classifier

A. Altaher
[191]

Information Gain
ratio

Fed the extracted permis-
sions to an evolving fuzzy
neuro inference classifier
involving clustering meth-
ods

Su et al. [192] Fed the results to
a DBN learning
model to obtain
unique behavioral
characteristics

Mahindru et
al. [193]

Chi-squared test,
Information Gain
feature evaluation,
logistic regression
analysis, Informa-
tion Gain, oneR
feature evaluation,
PCA

T-test, Pearson’s cor-
relation Coefficient,
RSA, Consistency subset
evaluation approach, Fil-
tered subset evaluation

Dehkordy et
al. [194]

Ranked features
on the basis of
frequency in both
the datasets and
removed the com-
mon or rarely used
or irrelevant features

Balanced the dataset using
SMOTE, Random under-
sampling, and Hybrid

Nguyen et al.
[195]

ANOVA DNN, SVM

Taheri et al.
[196]

Random Forest
Regressor algorithm

Fed the results to a C4N
and Robust-NN classifier

Mahesh et al.
[197]

Minmax technique Fed the preprocessed
results to CNN-ARFO
proposed classifier

Firdaus et al.
[198]

Information Gain,
frequency-based top
range selected

Fed the results bio-inspired
versions of ANN

Shrivastava et
al. [199]

Defined frequency based
rules defined over per-
missions and intents to
predict malicious risk
level of an application

Varsha et al.
[200]

NB, weight calcula-
tion

Entropy based Cate-
gory Coverage Difference
(ECCD) and Weighted
Mutual Information
(WI)

M. Deypir
[201]

Ranked the permis-
sion based on the
entropy and Infor-
mation Gain score
calculated by the
proposed method

Entropy-based method to
calculate information gain
score for permission and
correspondingly risk score
for an application
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Mahindru et
al. [202]

Chi-squared test,
Information Gain
feature evaluation,
logistic regression
analysis, Informa-
tion Gain, oneR
feature evaluation,
PCA

T-test, Pearson’s cor-
relation Coefficient,
RSA, Consistency subset
evaluation approach, Fil-
tered subset evaluation

Keyvanpour
et al. [203]

Eliminated features
having frequency count
and RF weigh below
the standard deviation,
frequency counts over
groups of features

Razak et al.
[204]

Particle Swarm opti-
mization (PSO),
evolutionary computa-
tion, Information Gain

Xie et al. [205] Frequency based Fisher score Fingerprinted Android
malware families based on
top permission behavioral
patterns

Mahindru et
al. [206]

T-test, multivariate lin-
ear regression stepwise
forward selection and
cross-correlation

Fed the extracted features
to various machine learning
and ensemble classifiers

Alecakir et al.
[18]

App descriptions are fed
into neural network classi-
fiers to learn and analyze
the sentences and predict
the permissions requested

Ali et al. [207] Fed the permissions and
other information to the
SVM classifier to learn and
predict preferred applica-
tion permissions to its user

Sun et al. [208] Took keywords from
permissions, API calls,
intents, etc as parameters
and found the Keywords
Correlation Distance
(KCD) between them to
choose the most relevant
features and fed the results
to SVM classifier

AlJarrah et al.
[209]

Information Gain

Gharib et al.
[210]

Fed the features to Deep
Auto Encoder (DAE) neu-
ral network classifier

Sun et al. [211] Criteria based on the
ratio between the num-
ber of apps in both
datasets, PCA

Fed the extracted features
to a Positive and Unla-
belled (PU) learning classi-
fier

Fig. 2: Snapshot of permissions requested by WhatsApp Messenger app

4 Features used

In response to RQ3, this section aims to present
the results obtained after analyzing the types

and number of features used for Android mal-
ware detection in combination with permis-
sions. We divide the features used into two
categories: Static and Dynamic.
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4.1 Static features

The static analysis investigates malware with-
out the real code or instructions being exe-
cuted. It provides basic information about
app functionality and collect technical indica-
tors from the AndroidManifest.xml and other
resource files. In other words, it can be defined
as a source code review of an Android applica-
tion file. Several reverse engineering tools like
Apktool3 or AAPT2 4 can be used to decom-
pile an apk and extract the features required.
The features that can perform static analysis
of applications are called static features. Some
of the commonly used examples of static fea-
tures are explained in brief below with Android
permission being the most popular one -

(a) Permissions - The presence of App permis-
sions helps the user in two ways mainly-
• By protecting access to the Restricted
data, such as user’s personal information.

• By protecting access to the Restricted
actions, actions such as recording audio.

Because of the above two reasons, it has
been made mandatory by the Android OS
and the Android permission check system
for all application developers to declare the
list of permissions their application needs for
its functionality or invoke the Android API
successfully. Hence, the manifest file contains
the list of all Android permissions required
to run the application efficiently. Permission
is declared using the <uses-permission>tag
within the manifest file. For example, as
shown in Figure 2, which is the snapshot
of the AndroidManifest.xml file of “The
WhatsApp Messenger” app, requires per-
missions such as “READ PHONE STATE”,
“READ PHONE NUMBERS”,
“RECEIVE SMS”, “VIBRATE” and
“AUTHENTICATE ACCOUNTS” to execute
on Android smartphones. Some permissions
fall under the category of install-time per-
missions, i.e., they are automatically granted
upon the installation of the app, whereas some
permissions are known as runtime permissions,
which are further requested at runtime. Install-
time permissions permit the app limited access

3https://apktool.en.lo4d.com/windows
4https://developer.Android.com/studio/command-

line/aapt2

to restricted data or actions that can affect
the user to a minimal amount. Install-time
permissions can be further divided into the
following types -

• Normal permissions - These permissions
present minimal risk to the user’s privacy
and the functionality of other apps.

• Signature permissions - These permissions
are granted by the permission check system
only when the requesting app is signed by
the same certificate as the one that declared
the permission.

Runtime permissions, often addressed as dan-
gerous permissions, are requested at runtime
by the application to ask for access to view
restricted data or perform any prohibited
action by presenting a runtime permission
request prompt.

4. API calls- Application Programming Interfaces
(APIs) act as the medium for one program
to interact with another, and an API call or
request can be defined as a message sent to a
server asking an API to provide a service or
information. After traveling from a client to an
API endpoint and being received by the server,
it is processed, and the request is executed in
return for a response.

5. Intent: An Intent is a messaging object a devel-
oper can use to request an action from another
app component. Three main fundamental use
cases of intents are starting an activity, starting
a service, and delivering a broadcast.

6. Opcode sequence: Opcodes can reflect the
behavior pattern of an application to a cer-
tain extent using the underlying machine code,
so they are often used as static features. They
are extracted by decompiling the APK file and
are generally obtained to facilitate the input
detection model.

4.2 Dynamic features

Dynamic analysis opts for a different approach
than static analysis. Instead of examining the
code, it relies upon monitoring an application’s
behavior while it is running over any virtual or
real CPU. As the name suggests, dynamic analy-
sis is performed by analyzing the runtime behavior
of applications, and the features analyzed during
this process are called dynamic features, such as -
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1. Network traffic - In simple words, network traf-
fic is the amount of data that moves across a
network during any time interval.

2. System calls - A system call provides an inter-
face between a process and the OS. They enable
the operating system’s services via API for
the user programs to use. Some important sys-
tem calls commonly used in the OS are wait(),
fork(), exec(), kill():, exit(): etc.

Other commonly used features include
hardware components, description of applica-
tions, network addresses, code-related patterns,
etc.

Fig. 3: Statistics depicting the usage of features
in combination with permissions

Table 5 summarizes the information regard-
ing the usage of permissions as a feature in
combination with other features. Based on the
information depicted by Table 5, we can con-
clude that in combination with permissions, API
calls and intents are the most used features by
researchers for Android malware analysis/detec-
tion. Figure 3 presents a statistical summary of
Table 5. As already discussed above and high-
lighted by the figure too, API calls [125]-[136]
and intents [96]-[100] account for 65.38% and
41.53% usage respectively, i.e., out of the total
research papers used in this review, majority of
them utilized API calls or intents in combination
with permissions. The third most commonly used
feature is another static feature called hardware
components [194]-[195], and it accounts for 16.15%
of the total. Some dynamic features such as net-
work traffic [76]-[79] and systems calls [47]-[49] are
also seldom used by researchers and practitioners

in combination with permissions and their shares
are 11.53% and 8.46% respectively. Apart from the
static features mentioned above, many other com-
ponents present in the manifest file of an apk prove
to be a popular partner of permissions while build-
ing an analysis/detection model, as they account
for a surprising 36.92% of the total. We note that
intent and hardware components are also a part
of the manifest file only, but since the researchers
have extensively used them in combination with
permissions, we display their usage separately
instead of combining them with other rarely used
Manifest file components. These features include
App descriptions [109], version numbers [112],
app components [116], meta information [126] and
many more. Other features commonly used in
combination with permissions are small file size
[65], dex file [96], URLs [90], code-related infor-
mation [130] etc., and they form 20.76% of the
share. Hence, based on the results presented
above, we answer the third Research Ques-
tion that the researchers have preferred
using API calls and intents the most in
combination with permissions for Android
malware analysis and detection.

5 Model used

In response to RQ4, this section describes the var-
ious ML and DL models [214] used by researchers
and practitioners to conduct their research over
the chosen range of reviews.

5.1 Machine Learning

Machine learning is a subset of artificial intelli-
gence and a popular technology enabling machines
to learn from past data and perform a given task
automatically. Machine learning can be broadly
divided into two types -

1. Supervised Machine learning
2. Unsupervised Machine learning

5.1.1 Supervised Machine learning

Just like a student who learns a concept under the
supervision of a teacher, the machines are used
to predict an output correctly with the help of
the training data working as a supervisor that
teaches the machines. The type of machine learn-
ing in which the devices are trained using well
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Table 5: Features Used
Related works Permissions API calls Hardware

Components
Intents Others

Zhang et al. [19] ✓ ✓

Enck et al. [14] ✓ ✓

Yerima et al. [47] ✓ ✓ System calls
Yerima et al. [49] ✓ ✓ System calls
Wu et al. [53] ✓ ✓ ✓

Shrivastava et al. [59] ✓ ✓

Upadhayay et al. [60] ✓ Network traffic
Surendran et al. [62] ✓ ✓ System calls
A. T. Kabakus [63] ✓ ✓ ✓

Wang et al. [64] ✓ ✓ Opcode sequences
Akbar et al. [65] ✓ Permission rate, smali file size
Zhu et al. [66] ✓ ✓ Permission rate, system events.
Wang et al. [67] ✓ ✓

N. McLauglin [68] ✓ Opcode sequences
Grace et al. [70] ✓ Log file for app activities.
Liu et al. [71] ✓ ✓

Bayazit et al. [72] ✓ ✓

Lee et al. [73] ✓

Zhu et al. [74] ✓ ✓

Almahmoud et al. [75] ✓ ✓ Permission rates, system calls
Feng et al. [76] ✓ ✓ Network traffic
Kandukuru et al. [77] ✓ Network traffic
Arora et al. [78] ✓ Network traffic
Ding et al. [79] ✓ ✓ Network traffic
Idrees et al. [81] ✓ ✓

Khariwal et al. [82] ✓ ✓

Idrees et al. [83] ✓ ✓

Zhu et al. [15] ✓ ✓ ✓

Bai et al. [84] ✓ Opcode sequences
Taheri et al. [85] ✓ ✓ ✓

Alazab et al. [86] ✓ ✓

Imtiaz et al. [88] ✓ ✓ ✓ Network traffic
Liu et al. [89] ✓ ✓ ✓ System commands, opcodes, Pack-

age and FlowDroid’s features [175],
Network traffic

Chen et al. [90] ✓ ✓ URL’s, data flow features
Guan et al. [91] ✓ ✓

Mohamed et al. [92] ✓ ✓

Peng et al. [96] ✓ ✓ Dex file headers, power spectrum
density information of dex file
structure entropy

Ashwini et al. [97] ✓ ✓ ✓ ✓

Jiang et al. [98] ✓ ✓

Wang et al. [99] ✓ ✓ ✓

Rana et al. [100] ✓ ✓ ✓

Lu et al. [101] ✓ ✓ Resource, semantic and dynamic
features

Millar et al. [102] ✓ ✓ Opcode sequences
Shabtai et al. [104] ✓ Dex features, Xml features and apk

features
Felt et al. [105] ✓ ✓

Erickson et al. [106] ✓ ✓

Jhu et al. [109] ✓ App Descriptions
Peiravian et al. [110] ✓ ✓

Sanz et al. [111] ✓ ✓

Feldman et al. [112] ✓ ✓ Low version numbers, network traf-
fic

Arp et al. [116] ✓ ✓ ✓ ✓ App components, Network
addresses

Yerima et al. [117] ✓ ✓ Linux/Android commands
Kang et al. [118] ✓ ✓ ✓ File hash, serial number, System

commands
Zhao et al. [119] ✓ ✓ Action features and IP, URL fea-

tures
Qiao et al. [120] ✓ ✓

Chen et al. [121] ✓ ✓ Network traffic, newly defined fea-
ture Sequence based upon API calls

Demertzis et al. [122] ✓ Battery, Memory, CPU, Network
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Verma et al. [123] ✓ ✓ ✓ ✓ App components, network
addresses

Wang et al. [124] ✓ ✓ Receiver actions
Tangil et al. [125] ✓ ✓ ✓ Meta information, new features

from app’s resource files
Wang et al. [126] ✓ ✓ ✓ ✓ Components, protected strings, IP

addresses, and URL, commands
Li et al. [127] ✓ ✓ ✓ App components
Xie et al. [129] ✓ ✓

Xie et al. [130] ✓ ✓ ✓ ✓ Code related patterns
Ren et al. [131] ✓ ✓ Opcode sequence, hardware compo-

nents
Tao et al. [132] ✓ ✓

Qiu et al. [135] ✓ ✓ ✓ ✓ Network addresses
Zhu et al. [136] ✓ ✓ Permission rate, monitoring system

events, data flows
Feng et al. [137] ✓ App description
Aonzo et al. [138] ✓ ✓

Urooj et al. [139] ✓ ✓ ✓ App components, Packages,
Receivers, services

Wang et al. [140] ✓ API docs, user reviews, app
descriptions

Wang et al. [141] ✓ ✓ ✓ ✓ Code patterns, functional call
graphs

Ibrahim et al. [144] ✓ ✓ Opcode sequences, application size,
services, receivers, fuzzy hash

Arshad et al. [145] ✓ ✓ ✓ ✓ Application components, system
call logs, network addresses

Yuan et al. [146] ✓ ✓ Dynamic App actions
Zhou et al. [147] ✓ ✓ Network addresses
Cilleruelo et al. [148] ✓ ✓ Information published on the

Google Play Store
Firdaus et al. [149] ✓ ✓ Code based features, system com-

mands, directory path features
Wang et al. [150] ✓

Singh et al. [151] ✓ ✓

Rafiq et al. [152] ✓ ✓ ✓

Mahdavifar et al. [153] ✓ ✓ ✓ Packages, receivers, system calls,
basic binders, composite behavior

Mahindru et al. [155] ✓ ✓ User rating, number of user down-
load apps

Anupama et al. [156] ✓ System calls
Chen et al. [157] ✓ ✓

Mahindru et al. [158] ✓ ✓

Tchakounté et al. [159] ✓ Resource names, .dex codes, source
codes, package name certificate

Nissim et al. [160] ✓ Metadataa, number of activities,
services, receivers, permissions,
providers

Peynirci et al. [161] ✓ ✓ Strings
Bao et al.[164] ✓ ✓ App description
Shatnawi et al. [166] ✓ ✓

Smmarwar et al. [167] ✓ ✓ ✓

Manzanares et al. [169] ✓ ✓ System calls, hardware-software
features etc.

Bhat et al. [170] ✓ ✓ ✓ ✓ Network addresses
Elayan et al.[171] ✓ ✓

Syrris et al. [172] ✓ ✓ ✓ Actions, services, Broadcast, cate-
gories

Idrees et al. [173] ✓ ✓

Rehman et al. [174] ✓ ✓ Process name
Martin et al. [175] ✓ ✓ ✓ Opcode sequences, system com-

mands, Network data etc.
Navarro et al. [176] ✓ App components
Milosevic et al. [177] ✓ Source code
Alzaylaee et al. [178] ✓ ✓ ✓

Cai et al. [179] ✓ ✓ ✓ App components, shell commands
Badhani et al. [180] ✓ ✓

Hijawi et al. [181] ✓ ✓ Software components, URL, broad-
cast receivers features
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Sheen et al. [182] ✓ ✓

Nisha et al. [183] ✓ Components and interfaces
Song et al. [184] ✓ MD5 blacklist database, permission

intention
Zhang et al. [185] ✓ ✓ ✓

Yang et al. [186] ✓ ✓

Qaisar et al. [188] ✓ ✓ Services provider, new APK
attributes

Appice et al. [189] ✓ ✓ ✓ Network addresses
Zhu et al. [190] ✓ ✓ Permission rate, system events
Su et al. [192] ✓ ✓ ✓ ✓ Strings, certificate-payload info,

code pattern
Mahindru et al. [193] ✓ ✓ Number of user download an app,

rating of an app
Dehkordy et al. [194] ✓ ✓ ✓ ✓ URLs, activity, service receiver,

provider
Nguyen et al. [195] ✓ ✓ ✓ ✓ Provider, activity, service, URLs
Taheri et al. [196] ✓ ✓

Mahesh et al. [197] ✓ ✓

Firdaus et al. [198] ✓ Directory path, telephony
Shrivastava et al. [199] ✓ ✓

Varsha et al. [200] ✓ ✓ ✓ Opcodes, strings, app components
Mahindru et al. [202] ✓ ✓ Number of user download an app,

rating of an app
Keyvanpour et al. [203] ✓ ✓ ✓ ✓

Razak et al. [204] ✓

Xie et al. [205] ✓ ✓ ✓

Mahindru et al. [206] ✓ ✓ Number of user download an app,
rating of an app

Alecakir et al. [18] ✓ App description
Ali et al. [207] ✓ Rating, comments and number of

downloads related to an app
Sun et al. [208] ✓ ✓ ✓ Package Name
AlJarrah et al. [209] ✓ ✓ Contextual information
Gharib et al. [210] ✓ ✓ Logos, strings of notification mes-

sages, system call sequences
Sun et al. [211] ✓ ✓ IP address, requested URLs

“labeled” training data, i.e., some input data is
already tagged with the correct output, to find a
mapping function between the input variable with
the output variable is called supervised machine
learning. Practical usage of supervised machine
learning includes Risk Assessment, Image clas-
sification, Fraud Detection, and spam filtering.
Supervised learning can be divided into two types
-

1. Classification
2. Regression

Classification - This type of learning is used
when the output variable is categorical, i.e., Yes-
No, Male-Female, etc. type. Some commonly used
classification algorithms are discussed in detail
below -

1. Decision Tree (DT) Algorithm - Generally con-
sidered a classification problem; however, a
Decision tree (DT) is a supervised learning
technique that can be used both for classifica-
tion and regression problems. As the name sug-
gests, it is a tree-structured classifier utilizing

the Classification and Regression Tree (CART)
algorithm, where internal nodes represent the
features of a dataset, branches represent the
decision rules, and each leaf node represents
the outcome. The main step while implement-
ing a decision tree is to select the best attribute
for the root and sub-nodes, and for that, the
DT algorithm tries to maximize the informa-
tion gain value, and iteratively the node having
the highest information gain is chosen first. DT
algorithm is further divided into three types -

• ID3 DT (Iterative Dichotomiser 3)
• C4.5 DT
• J48 DT

2. Random Forest (RF) Algorithm - This type
of supervised learning algorithm works on the
ensemble learning concept, which includes com-
bining multiple classifiers or decision trees to
solve a complex problem and avoid the problem
of overfitting. RF works in two parts; the first
part revolves around creating the random for-
est by combining n number of DTs, whereas, in
the second, the prediction for each tree is made.
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RF and Bagging classifier (BC) come under the
category of Bagging algorithms that work on
the criteria of combining the results of multiple
models.

3. Logistic Regression (LR) algorithm - LR pre-
dicts the output of a categorical dependent
variable, but instead of giving the exact value
as 0 and 1, it produces the probabilistic val-
ues between 0 and 1. In the case of LR, instead
of fitting a regression line, a logistic function,
also known as the sigmoid function, maps the
predicted values to probabilities.

4. K-Nearest Neighbor(KNN) Algorithm - KNN
works on the hypothesis that a similarity exists
between the new and available cases. After ana-
lyzing the data, it puts the new case into the
category that is most similar to the available
ones, and this whole process takes place by cal-
culating the Euclidean distance of K number of
neighbors.

5. Support Vector Machine (SVM) - The major
aim of the SVM algorithm is to build the best
line or decision boundary or hyperplane capa-
ble of segregating the n-dimensional space into
classes so that the new data point can be eas-
ily fitted in the correct category for future
cases. SVM uses extreme points, also known as
support vectors, to help create a hyperplane;
hence the algorithm is called Support Vec-
tor Machine. Sequential Minimal Optimization
(SMO) is an algorithm for solving the quadratic
programming (QP) problem that arises during
the training of support vector machines (SVM).
SVMs use the Kernel Trick and various kernel
methods to transform linearly inseparable data
into linearly separable data, thus finding an
optimal boundary for possible outputs. Some
of them are given below -

• Linear kernel
• Polynomial kernel (Poly)
• Radial Basis Function (RBF)
• Kernel change detection algorithm (KCD)

6. Näıve Bayes (NB) Algorithm - It is one of the
fastest machine learning models based upon the
Bayes theorem or Bayes’ Rule, often used to
determine the probability of a hypothesis with
prior knowledge depending upon the condi-
tional probability. The NB algorithm is mainly
used in text classification problems with a high-
dimensional training dataset. Three types of

Naive Bayes model are commonly used in the
literature -

• Gaussian
• Multinomial
• Bernoulli

7. Bayesian networks (Bayesnet) - These are prob-
abilistic graphical models that utilize Bayesian
inference for probability computations. It is a
directed acyclic graph in which each edge cor-
responds to a conditional dependency, and each
node corresponds to a unique random variable.

Regression This type of learning is used when
a relationship exists between the input and the
output variable and the prediction is of contin-
uous variables. Some commonly used regression
algorithms are linear regression, regression trees,
nonlinear regression, Bayesian linear regression,
polynomial regression [214] etc.

1. Linear Regression - With the concept of per-
forming predictive analysis and the assumption
of variables having a linear relationship, linear
regression finds how the value of the depen-
dent variable changes according to the value
of the independent variable. Mathematically,
linear regression finds the best-fit line with
the least error, which means that the Mean
Squared Error (MSE) between the predicted
and actual values should be minimized.

5.1.2 Unsupervised Machine Learning

In the absence of labeled data, the models are
trained using the unlabelled data set and are
allowed to act without supervision, and the cor-
rect corresponding technique is called unsuper-
vised machine learning. Unlike supervised learn-
ing, unsupervised learning cannot be used directly
for a regression or classification problem because
the related output data doesn’t exist. The main
aim of unsupervised learning is to analyze and
locate the underlying structure of data, categorize
that data according to similarities, and present
that data in a compact format. Unsupervised
learning is more suited for real-world problems as
we often do not have input data with the corre-
sponding output data. Unsupervised learning can
be further divided into two types -

1. Clustering
2. Association
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Clustering In this type of unsupervised
learning, the data points are grouped into clusters
of similar data points, and this is done by finding
the presence or absence of similar patterns in the
unlabelled data set. Commonly used for statistical
data analysis, this technique provides each clus-
ter with a cluster ID which is further utilized by
machine learning algorithms to simplify the pro-
cessing of huge and complex problems. One of the
most commonly used clustering algorithms is the
K- Means algorithm, capable of efficiently divid-
ing the samples into different clusters of equal
variances with the linear complexity of O(n).
Other clustering methods used by researchers
over the years include Agglomerative Hierarchical
Clustering (AHC) [51] Farthest First (FF) clus-
tering, Filtered clustering (FC), Density-Based
clustering (DB) [202], Hidden Markov Model
(HMM), Google Distance (GD) Clustering [208]
etc.

Association Rule Learning Association
rule learning aims to find relations or associa-
tions among data variables using the concept of
If and Else statements. Association learning relies
upon support, confidence, and lift to compute the
associations between thousands of items. Some
of the commonly used association rule learning
algorithms are discussed in brief below -

1. Apriori algorithm - The algorithm relies upon
breadth-first search and Hash Tree to efficiently
compute and find the itemset associations after
performing iterations on the large dataset.

2. F-P Growth algorithm - Frequent Pattern
Growth (F-P) Algorithm revolves around find-
ing frequent patterns without candidate gen-
eration. Unlike Apriori’s functioning, which
includes the generate and test strategy, it con-
structs an FP Tree to fragment the items’ paths
and generate frequent patterns.

5.1.3 Boosting in Machine learning

Combining various weak classifiers to build strong
classifiers is known as the boosting technique in
machine learning, and it is one of the most popular
learning ensemble modeling techniques. Iterations
to combine old ones and build new models are per-
formed until training data capable of producing
optimum predictions is prepared. Adaptive boost-
ing (AdaBoost) was the first algorithm to combine

various weak classifiers into a single strong clas-
sifier in the history of machine learning. Some of
the other major boosting algorithms used in the
literature are as follows -

• Gradient Boosting Machine (GBM)
• Extreme Gradient Boosting Machine (XGBM)
• Light GBM
• CatBoost

5.2 Deep Learning

Deep learning can be defined as a subset of
machine learning as it has similar working but dif-
ferent capabilities and approaches. Deep learning,
also known as Deep Neural Networks (DNN), is
inspired by the functioning of the human brain
cells/ neurons and leads to the concept of arti-
ficial neural networks capable of learning and
discovering insights from data. Some popular deep
learning models used by researchers over the years
are discussed in brief below -

1. Convolutional Neural Network (CNN) - These
networks take images as input, then assign
importance, i.e., learnable weights and biases,
to parts of the input to differentiate from one
another. Through the help of relevant filters,
a CNN successfully captures the Spatial and
Temporal dependencies in an image.

2. Recurrent Neural Network (RNN) - Often used
in NLP or language translation, these networks
use sequential or time series data as inputs.
Unlike other neural networks, the output of
RNN depends on the prior elements within
the sequence as it takes information from prior
inputs too. Some popular variants of RNN
often used in the literature are given below -

• Long short-term memory (LSTM) - LSTM
was proposed to solve the vanishing gradi-
ent and short-term memory problems. LSTM
has ”cells” type structures in the hidden lay-
ers of the neural network, which have three
gates–an input gate, an output gate, and a
forget gate capable of controlling the flow of
information.

• Gated recurrent units (GRUs) - Similar to
LSTM, even GRUs are capable of deal-
ing with the short-term memory problem of
RNN models, but unlike LSTM, GRUs use
hidden states and have two gates: a reset and
an update gate.
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3. Artificial Neural Network (ANN) - The work-
ing of ANN is similar to the working of nerve
cells in the human brain. An artificial neu-
ral network has three or more layers that are
interconnected. The first layer consists of input
neurons. Those neurons send data to the deeper
layers and then transfer the final output data to
the last output layer. A fully connected multi-
layer neural network is called a Multi-layer
Perceptron (MLP).

4. Deep Belief Neural (DBN) Networks - These
are the classifiers that use layers of stochastic
latent variables, which make up the network.
The top couple of layers in the DBN have
no direction, but the layers above them have
direct links to lower layers. DBNs have an edge
over traditional neural networks as they can be
generative and discriminative models.

5. Deep Autoencoders (DAE) - The working of
autoencoders is a bit different as they func-
tion as a special type of feedforward neural
network in which the input is the same as
the output. They tend to convert the informa-
tion into a lower dimensional code, also known
as latent-space representation, which is further
used to reconstruct the result. The structure
of an autoencoder comprises three parts: an
encoding method, a decoding method, and a
loss function.

6. Self-Organising Map (SOM) - As depicted by
the name, the map organizes itself without
any supervision from anyone or anything. The
training of SOM is done through a fierce neu-
ral network, a single-layer feedforward network
that resembles the brain’s functioning. Apart
from being used as a classifier, it can also be
used as a non-linear dimensionality reduction
technique.

Table 6 summarizes researchers’ choice
between ML, DL, or any other algorithm. In
response to RQ4, we conclude by the information
in Table 6 that most researchers and practi-
tioners opted for traditional supervised machine
learning algorithms like DT, SVM, RF, and NB
due to their convenient and simple working. But
nowadays, researchers have realized that machine
learning has some limitations too. It relies too
much on human intervention, so it might not
work well with complex feature engineering prob-
lems like Natural Language Processing (NLP),

Fig. 4: Statistics depicting the usage of various
detection models

Image recognition, etc. Hence, as seen in Table
6, researchers have explored a new area of Deep
Neural networks and models like CNN, ANN,
DAE, etc., for the past few years.

Figure 4 gives us a closer understanding of
Table 6. We classify the majorly used detection
models from Table 6 into five categories: Decision
Trees, Bayesian Learning, Ensemble Learning,
Neural Networks, and Miscellaneous to analyze
the usage of different classifiers. For instance,
Figure 4 highlights that five, 25, and seven papers
out of the 200 related work reviewed in our work
involved the usage of CART, J48, and C4.5 Deci-
sion trees, respectively. However, note that 46.5%
of the total work utilized the DT classifier with-
out mentioning the particular type. With the help
of the information highlighted by the figure, we
can conclude that the five most used detection
models include SVM [64]-[66], DT [110]-[115], RF
[124]-[131] from Ensemble learning, NB [165]-[167]
from Bayesian Learning and KNN [73]-[75] with
98 (49%), 93 (46.5%), 80 (40%), 77 (38.5%) and
53 (26.5%) corresponding number (percentage)
of studies that involved the classifiers mentioned
respectively. It is worth noting that due to the
growing popularity of deep learning, researchers
have extensively started using neural network clas-
sifiers in their work. Neural networks [72]-[76] have
been involved in more than 35% of the studies
mentioned in our review. Apart from the ML/DL
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Table 6: Model used
Related works Machine Learning

(ML)
Deep Learning (DL) Others

Zhang et al. [19] Permission behavioural pattern moni-
toring model

Li et al. [20] SVM, Rotation Forest,
PART, FT, Random
Committee, RF.

Sahin et al. [21] NB, SMO, RF, C4.5 DT,
LR, KNN

MLP

Talha et al. [22] Detection algorithm based upon per-
mission score.

Varma et al. [23] NB, J48 DT, RF MLP, Multi-class classi-
fier

Mahindru et al. [24] NB, J48 DT, RF, Simple
Logistic (SL), kstar

Dogru et al. [25] Detection algorithm based upon per-
mission score

Rathore et al. [26]
Shang et al. [27] Improved NB classifica-

tion algorithm
Tchakounte et al. [28] Algorithm based upon permission pat-

terns
Ju et al. [16] Manual pattern recognition to existing

malware permissions patterns
Ilham et al. [29] RF, SVM, J48 DT
Sahin et al. [30] NB, KNN
Angelo et al. [31] J48 DT, NB MLP
Xiong et al. [32] Developed a classifier name

ENCLAMALD based upon permission
patterns

Lu at el. [33] RF, DT, Apriori algo-
rithm

Kavitha et al. [34]
E. Amer [35] RF, AdaBoost, SVM,

DT
MLP

Chakravarty et al. [36] J48 DT, Random Com-
mittee, SMO, Randomiz-
able filtered classifiers

MLP

Pondugula et al. [37] DNN
Sahal et al. [38] J48 DT, NB, SVM, KNN
Tuan Mat et al. [39] NB
Wang et al. [40] SVM, DT, RF DCN

Park et al. [41] RF
Liang et al. [42] Developed their own rule-based algo-

rithm
Enck et al. [14] Analysis of the newly produced Android

OS in 2009
Enck et al. [17] Defined a new Application working

upon its own Syntax Language
Wang et al. [43] Algorithm based upon calculating the

risk score of each app
Peng et al. [44] NB and its modifications
Pandita et al. [45] NLP techniques to read application

descriptions
Samra et al. [46] k-means
Yerima et al. [47] Bayesian Classifier

Aung et al. [48] K-means clustering, J48
DT, RF, CART

Yerima et al. [49] Bayesian Classifier

Sanz et al. [50] SL, NB, Bayesnet, SMO,
IBK, J48 DT, Ran-
domTree

Moonsamy et al. [51] AHC
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Backes et al. [52] Algorithm to assess and rewrite appli-
cation policies

Wu et al. [53] NB, KNN
Kato et al. [54] Stacking Ensemble

Learning (SEL), RF
Arora et al. [55] Algorithm to form graphs based upon

permission patterns and frequency
Alsoghyer et al. [56] RF, J48 DT, SMO, NB
Saleem et al. [57]
Ghasempour et al. [58] DT, SVM
Shrivastava et al. [59] Algorithm to calculate the risk score of

an application using the feature’s fre-
quency

Upadhayay et al. [60] RF, SVM , NB
Lee et al. [61] KNN, SVM, AdaBoost,

Extra Tree, RF
Surendran et al. [62] Tree augmented NB
A. T. Kabakus [63] CNN
Wang et al. [64] SVM, GBDT, XGBM,

LightGBM, CatBoost,
LR

Akbar et al. [65] SVM, Rotation Forest,
RF, NB

Zhu et al. [66] SVM, An ensemble tak-
ing DT as a base and
involving PCA to form
Rotation Forest

Wang et al. [67] Graph convolutional net-
work

N. McLauglin [68] CNN
Wang et al. [69] SVM, RF, DT
Grace et al. [70] Risk level based detection of own algo-

rithm
Liu et al. [71] Multi-layered gradient

boosting DT algorithm,
SVM, DT, RF, XGBM

Bayazit et al. [72] RNN-based LSTM, BiL-
STM, GRU

Lee et al. [73] J48 DT, RF, Deci-
sion Table, NB, SMO,
SVM, LR, IBK, KNN,
AdaBoost

MLP

Zhu et al. [74] SVM, KNN Merged Sparse Auto-
Encoder (MSAE),
Stacked Denoising Auto-
encoders (SDAE).

Almahmoud et al. [75] SVM, KNN, NB, RF, DT RNN
Feng et al. [76] CNN
Kandukuru et al. [77] DT
Arora et al. [78] Apriori and FP-Growth

algorithms
Ding et al. [79] KNN, multinomial NB,

DT, RF, SVC, NuSVC,
LinearSVC, LR, GBDT,
XGBM

Combination of a resid-
ual network (ResNet)
and LSTM

Sahin et al. [80] KNN, NB, SVM, DT,
Bagging-DT algorithms

Linear regression-based and bagging
method ensemble algorithms

Idrees et al. [81] Algorithm based on the identification of
distinct usage patterns of permissions
and intents

Khariwal et al. [82] RF, SVM, NB
Idrees et al. [83] NB, Kstar, Prism
Zhu et al. [15] CNN based Multi-Head

Squeeze-and-Excitation
Residual block

Bai et al. [84] CatBoost
Taheri et al. [85] Modified versions of

KNN
Alazab et al. [86] RF, J48, RT, KNN and

NB
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Mathur et al. [87] KNN, SVM, LR, RF,
ET, XGBM, AdaBoost,
BG

Imtiaz et al. [88] DT, SMO, NB MLP, ANN
Liu et al. [89] AdaBoost, Bagging,

ExtraTrees, GBM, RF,
Voting

Subspace based Restricted Boltzmann
Machines (SBRBM)

Chen et al. [90] LightGBM SVM, GBM,
AdaBoost, Extra-
TreesClassifier, RF,
KNN, LR

Neural Networks

Guan et al. [91] RF, KNN, NB, SVM Class Imbalanced Learning (CIL),
Synthetic Minority Over-Sampling
Technique (SMOTE), Random under-
sampling (RUS), Balance Cascade

Mohamed et al. [92] KNN, NB, SVM, DT
Varma et al. [93] RF, SVM, KNN, DT,

Nearest Centroid (NC)
Bat Optimization Algorithm for
Wrapper-based Feature Selection
(BOAWFS)

Gyunka et al. [94] NB, SL, RF, Partial DT,
KNN, SVM

Taha et al. [95] LightGBM, SVM, KNN,
LR, NB, DT.

Peng et al. [96] MLP, CNN
Ashwini et al. [97] Ridge Classifier, XGBM,

RF, SVC
Jiang et al. [98] J48, KNN, NB, SVM
Wang et al. [99] LR, DT, SVM DBN
Rana et al. [100] DT, RF, Extremely ran-

domized trees (ERT),
GB Tree, SVM, LR

Lu et al. [101] DBN, GRU
Millar et al. [102] CNN
Barrera et al. [103] SOM
Shabtai et al. [104] DT, NB, BN, BBN,

BDT, PART, RF
Felt et al. [105] Own approach Stowaway to compare

permissions required to invoke API
methods and actually requested permis-
sions

Erickson et al. [106]
Sarma et al. [107] SVM
Frank et al. [108]
Jhu et al. [109] Naive Bayes with Multi-

nomial Event Model
Peiravian et al. [110] SVM, DT, Bagging pre-

dictor
Sanz et al. [111] KNN, DT, Bayesnet,

SVM
Feldman et al. [112] NB, SVM, KNN, C4.5

DT
Pehlivan et al. [113] Bayesian Classification,

CART, DT, RF, SMO
Rahman et al. [114] NB, KNN, DT, RF, Deci-

sion Forest
Rovelli et al. [115] C4.5 DT, kstar Lazy

Learning, Repeated
Incremental Pruning to
Produce Error Reduc-
tion (RIPPER), NB,
AdaBoost

Arp et al. [116] SVM
Yerima et al. [117] RF, NB, DT, random

trees, SL
Kang et al. [118] NB
Zhao et al. [119] SVM, KNN, J48, NB
Qiao et al. [120] SVM, RF ANN
Chen et al. [121] SVM, C4.5 DT, NB,

KNN, Bagging predictor
MLP

Demertzis et al. [122] Evolving Spiking Neural
Network (eSNN), MLP,
Radial Basis functions,
GMDH PNN, eSNN

Extreme learning machine (ELM)
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Verma et al. [123] SVM, Minimal complex-
ity machine

Wang et al. [124] NB, LR, DT, Bayesnet,
RF, SVM

Tangil et al. [125] Extra Trees, SVM, RF,
XGBoost

Wang et al. [126] KNN, J48 DT, RF
Li et al. [127] NB, DT, LR, SVM, RF
Bhattacharya et al.
[128]

Bayesnet, DT, IBK, J48
DT, JRip, Kstar, LR,
RF, SMO, NB, etc.

MLP

Xie et al. [129] DT, RF, SVM, KNN, NB
Xie et al. [130] SVM, LR, RF CNN
Ren et al. [131] SVM, KNN, AdaBoost ,

RF, GBM
Tao et al. [132] RF, SVM, DT
Namrud et al. [133] SVM, K means, SOM
Alswaina et al. [134] Extremely Randomized

Trees (ET), SVM, ID3
DT, RF, BC, KNN

NN

Qiu et al. [135] SVM, DT DNN
Zhu et al. [136] SVM, KNN, DT, LR,

RF, ET, Adaboost,
GBDT

MLP

Feng et al. [137] LR, NB-SVM GRU , CNN
Aonzo et al. [138] Proposed their own linear and non lin-

ear classifiers
Urooj et al. [139] AdaBoost, SVM, RF,

KNN, NB, RBF, DT,
SVM

Wang et al. [140] Evaluated their own text semantic-
based approach

Wang et al. [141] SVM, KNN, RF
Zhang et al. [142] Own algorithm to detect bugs and

Implicitly Malicious Behavior
Kesswani et al. [143] NB
Ibrahim et al. [144] Stochastic Gradient

Descent (SGD), DT, RF,
SVC, KNN, XGBoost,
GaussianNB

GRU

Arshad et al. [145] SVM, RF, NB, DT
Yuan et al. [146] NB, C4.5 DT, LR, SVM DBN, CNN, MLP
Zhou et al. [147] RF, KNN, SVM GRU
Cilleruelo et al. [148] SVM, Stochastic gradi-

ent descent(SGD), RF,
XGBM

Firdaus et al. [149] NB, FT, J48 DT, RF MLP
Wang et al. [150] KNN, SVM, NB, J48 DT
Singh et al. [151] SVM(Linear)
Rafiq et al. [152] SVM, LR, DT, XGBM,

RF, KNN
Mahdavifar et al. [153] RF, SVM, KNN Pseudo-Label Stacked

Auto-Encoder (PLSAE),
Pseudo-Label Deep Neu-
ral Network (PLDNN),
Label Programming
(LP)

Seraj et al. [154] RF, Gaussian NB, SVC,
KNN

MLP

Mahindru et al. [155] DT, LR, NB, SVM with
linear kernel, polynomial
kernel, and RBF kernel

SOM, NN

Sahin et al. [21] KNN, NB, RF, C4.5 DT,
LR

SMO, MLP

Anupama et al. [156] LR, CART, RF, SVM DNN, CNN
Chen et al. [157] RF CNN
Mahindru et al. [158] LSSVM with distinct

kernel functions (polyno-
mial, RBF and linear),
LR, NB, DT

NN

Tchakounté et al. [159] Algorithm based on fuzzy hash pro-
cessed static features and computed
similarity score
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Nissim et al. [160] SVM Active Learning methods
Peynirci et al. [161] ID3, CART, J48 DT,

RF, NB, RBF, SLo-
gReg, Prism, MODLEM,
OneR, NNGE, SVM

MLP

Nauman et al. [162] Bayesian Statistical
Inference

Neural networks, DAE ,
DBN, CNN , LSTM

Bhattacharya et al.
[163]

Bayesnet, NB, Decision
Table, Random Tree,
RF, J48 DT

SMO, MLP Quick Reduct algorithm

Bao et al.[164] NB, Multinomial classifi-
cation

Algorithms based upon predicting per-
missions from API and text classifica-
tion

Medrano et al. [165] - -
Mat et al. [165] NB
Shatnawi et al. [166] LR, SVM, KNN, NB,

GaussianNB
Smmarwar et al. [167] OEL, fine tree, NB, cubic

SVM, Weighted KNN,
Bagging, Adaboost, Gen-
tleBoost

Arif et al. [168] Information Gain
Manzanares et al. [169] Extracted applications to form a com-

prehensive dataset
Bhat et al. [170] DT, LR, SVM, NB, RF
Elayan et al.[171] SVM, KNN, NB, DT, RF GRU
Syrris et al. [172] NB, RF, SVM ANN
Idrees et al. [173] NB, DT, Decision Table,

RF
SMO, MLP

Rehman et al. [174] SVM, KNN, DT, Linear
Discriminant Analysis

Martin et al. [175] AdaBoost, Bagging
(with RF estimators),
ExtraTrees, GBM, RF,
Voting classifier combin-
ing an RF, KNN, DT

Navarro et al. [176] RF, CART, Bagging
Milosevic et al. [177] C4.5 DT, NB, SVM

with SMO, RF, JRIP,
LR, AdaBoost, Far-
thest First, Simple
K-means and Expecta-
tion maximization (EM)
algorithms

Alzaylaee et al. [178] SVM Linear and RBF,
NB, SL, DT, PART, J48
DT

MLP

Cai et al. [179] SVM, LR, RF, KNN,
Gaussian NB, multino-
mial NB, LDA, QDA, RF

MLP

Badhani et al. [180] DT, ELM, LR, RIPPER,
SVM-linear

Hijawi et al. [181] RF, J48 DT, NB, SVM,
KNN

MLP

Sheen et al. [182] Adaboost, IBK and J48
DT, Decision Stump,
Random tree, NB, SVM

Nisha et al. [183] KNN, SVM, RF, GBT CNN
Song et al. [184] Dangerous permissions matching model

to compute a threat degree threshold
Zhang et al. [185] Algorithm to identify explicit and

implicit permission use points to further
create permission use graphs to analyze
the permissions behavioral pattern

Yang et al. [186] Algorithm to construct State Transition
Graphs (STG) from permissions to ana-
lyze permission-related behavior only
under the combinations of the relevant
permissions

Thiyagarajan et al.
[187]

DT
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Qaisar et al. [188] SVM, DT Case-based learning approach to store
and learn permissions like features

Appice et al. [189] RF, SVM, stacking,
ensemble

Deep-Net Algorithm involving clustering-based
sampling with the specific multi-view
learning approach

Zhu et al. [190] RF, SVM
A. Altaher [191] Neuro-fuzzy inference

system
Su et al. [192] DBN, SVM
Mahindru et al. [193] SVM, NB, RF, LR, K-

Means, FF, FC, DB,
Bayesnet, Adaboost,
DT, KNN, J48 DT

MLP, DNN, SOM, Y-
J48, Y-SMO, Y-MLP,
best training ensem-
ble approach (BTE),
majority voting ensem-
ble approach (MVE) and
nonlinear ensemble deci-
sion tree forest approach
(NDTF)

Dehkordy et al. [194] SVM, KNN, ID3 DT
Nguyen et al. [195] SVM DNN
Taheri et al. [196] SVM Robust NN, C4N CNN
Mahesh et al. [197] CNN, ANN , DBN,

Method level behav-
ioral semantic approach
(MLBS) DE-CNN

CNN-Adaptive Red Fox Optimization
(CNN-ARFO)

Firdaus et al. [198] RF, Bayesnet, SVM MLP, Voted perceptron
(VP), Radial basis func-
tion network (RBFN)
ANN

Shrivastava et al. [199] Frequency-based rules defined over per-
missions and intents to predict mali-
cious risk level of an application

Varsha et al. [200] RF, Rotation forest,
SVM

M. Deypir [201] Entropy-based method to calculate
information gain score for a permission
and correspondingly risk score for an
application

Mahindru et al. [202] K-mean, SVM( linear,
poly, RBF), DT, LR, NB

NN, SOM, FF, FC and
DB

Keyvanpour et al. [203] KNN, SL, NB, J48 DT,
RT, RF

Razak et al. [204] RF, J48 DT, KNN,
AdaBoost

MLP

Xie et al. [205] SVM
Mahindru et al. [206] LOGR, SVM, NB, DT Radial Basis Function

Neural Network RBFM-
KCM, RBFN-FCM,
RBFN-RAN, ANN, with
three different ensem-
ble methods (i.e., BTE,
MVE, and NDTF

Alecakir et al. [18] RNN GRU, MLP
Ali et al. [207] SVM ( Linear, RBF,

Poly), LR
Sun et al. [208] HMM, GD, SVM ( Lin-

ear, RBF, Poly, KCD)
AlJarrah et al. [209] RF, SVM, LR, NB,

KNN, DT
Gharib et al. [210] SVM, RF, NB, AdaBoost DNN, DAE
Sun et al. [211] RF, DT, SVM Positive and Unlabeled learning

classifiers mentioned in Figure 4, researchers have
developed their algorithm, too, instead of using
the traditional classifiers. For instance, in [55],
Arora et al. proposed their algorithm to form
graphs based on permission patterns and fre-
quency as weights.Hence, based on the results
of the empirical evidence, we answer the
fourth Research Question that the most

commonly used ML models are Support
Vector Machines, Decision Trees, and Ran-
dom Forest due to their convenient and
simple working but at the same time, due
to the limitations of traditional supervised
learning methods, one can assume that the
popularity of neural network models will
surely rise.
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6 Datasets used

Researchers and practitioners have adopted
numerous malicious datasets in the past decade to
carry out their research on Android malware. The
datasets can be broadly divided into two types
based on their data source: in-the-lab datasets and
in-the-wild datasets. Traditional datasets such as
Drebin5 and Genome6 are considered as base-
lines in the field of Android malware detection
and fall under the category of in-the-lab datasets.
On the other hand, datasets such as Virustotal7,
Virusshare8, Contagio9, AMD [215], McAfee10

and Androzoo11 are called in-the-wild datasets
due to their continuously updating nature, and
that is the reason why it’s obvious that the per-
formance of in-the-wild datasets is found to be
more credible than that of in-the-lab datasets and
in addition to the datasets mentioned above some
researchers also utilized kaggle12 and Anzhi13 type
datastores too. Apart from the datasets mentioned
above, the datasets provided by the Canadian
Institute of Cybersecurity14 such as the CICIn-
vesAndMal2019, CICAndMal2017, and CIC2020
have also been utilized by the researchers.

Fig. 5: Statistics depicting the most commonly
used malware datasets

In response to RQ5, we present Table 7 as
it summarizes the malware datasets used by
researchers and practitioners to form their anal-
ysis/detection model. As seen from the table,
most researchers have used traditional malware

5http://www.sec.cs.tu-bs.de/ danarp/Drebin/
6http://www.malgenomeproject.org/
7https://www.virustotal.com
8https://virusshare.com/
9http://contagiominidump.blogspot.hk/
10https://home.mcafee.com/Default.aspx?rfhs=1
11https://androzoo.uni.lu/
12https://www.kaggle.com
13http://www.anzhi.com/
14https://www.unb.ca/cic/datasets/index.html

Table 7: Dataset used
Related works Malware datasets used
Zhang et al. [19] Genome
Li et al. [20] Anzhi Store
Sahin et al. [21] [216]
Talha et al. [22] Contagio, Drebin, Genome
Varma et al. [23] [217]
Mahindru et al. [24] [218], [219], Genome, and AndroMal-

Share15

Dogru et al. [25] Drebin
Rathore et al. [26] Drebin
Shang et al. [27] -
Tchakounte et al.
[28]

CIC-AndMal2017

Ju et al. [16] -
Ilham et al. [29] AMD
Sahin et al. [30] Kaggle

Angelo et al. [31] Unisa malware dataset (UMD)16

Xiong et al. [32] [217]

Lu at el. [33] Baidu application market17, Genome,
Virusshare

Kavitha et al. [34] -
E. Amer [35] Drebin, Genome
Chakravarty et al.
[36]

AMD

Pondugula et al. [37] For training data from IEEE DataPort,
and sites like droidbench

Sahal et al. [38] Contagio, Genome
Tuan Mat et al. [39] Androzoo and Drebin
Wang et al. [40] Virusshare, Genome
Park et al. [41] AndroZoo
Liang et al. [42] Genome
Enck et al. [14] -
Enck et al. [17] Android Market
Wang et al. [43] Genome
Peng et al. [44] Genome
Pandita et al. [45] -
Samra et al. [46] -
Yerima et al. [47] Genome
Aung et al. [48] -
Yerima et al. [49] Genome
Sanz et al. [50] VirusTotal
Moonsamy et al. [51] Genome
Backes et al. [52] -
Wu et al. [53] Contagio
Kato et al. [54] Drebin, Androzoo, VirusShare
Arora et al. [55] Genome, Drebin, Koodous
Alsoghyer et al. [56] HelDroid [220], RansomProber

project[212], VirusTotal, Koodous
Saleem et al. [57] Drebin
Ghasempour et al.
[58]

Androzoo

Shrivastava et al.
[59]

Drebin

Upadhayay et al. [60] Genome, Drebin, Koodous
Lee et al. [61] CICAndMal 2017
Surendran et al. [62] Drebin, AMD, AndroZoo, external repos-

itories

A. T. Kabakus [63] Drebin ,KuafuDet18 ,AndroZoo,
VirusShare

Wang et al. [64] Huawei application market19, Xiaomi
application market20, 360 application
market21, Wandoujia application mar-
ket22

Akbar et al. [65] VirusShare
Zhu et al. [66] VirusShare
Wang et al. [67] Andro dumpsys
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Related works Malware datasets used
N. McLauglin
[68]

McAfee, vendor’s internal dataset

Wang et al. [69] Mal com1, Mal com2 and Mal Zhou [220]
Grace et al. [70] Github
Liu et al. [71] VirusShare
Bayazit et al.
[72]

CICInvesAndMal2019

Lee et al. [73] Andro-AutoPsy Dataset [221]
Zhu et al. [74] MUDFLOW [222], VirusShare
Almahmoud et
al. [75]

CIC-AndMal2017, CIC-
InvesAndMal2019, CIC-MalDroid2020

Feng et al. [76] CICAndMal2017
Kandu et al.[77] Genome
Arora et al. [78] Genome
Ding et al. [79] CICInvesAndMal2019
Sahin et al. [80] M0Droid[223], AMD, Kaggle, [224]
Idrees et al. [81] Contagio, Drebin, Genome, Virus Total,

theZoo, MalShare, VirusShare
Khariwal et
al.[82]

Genome, Drebin, Koodous

Idrees et al. [83] Contagio, VirusTotal, appsapk, Android-
mob

Zhu et al. [15] VirusShare
Bai et al. [84] Drebin
Taheri et al. [85] Drebin, Contagio, Genome
Alazab et al. [86] AndroZoo, Contagio, MalShare,

VirusShare, VirusTotal
Mathur et al.
[87]

Androzoo, AMD

Imtiaz et al. [88] CICInves AndMal2019
Liu et al. [89] OmniDroid, CIC2019, CIC2020
Chen et al. [90] VirusShare
Guan et al. [91] VirusShare
Mohamed et al.
[92]

Genome, Maldroid

Varma et al. [93] CICInvesAnd Mal2019
Gyunka et
al.[94]

Genome, Contagio

Taha et al. [95] Drebin
Peng et al. [96] CICMalDroid 2020, CIC-InvesAndMal

2019, Drebin
Ashwini et al.
[97]

Drebin

Jiang et al. [98] Genome, Andro MalShare
Wang et al. [99] Information Security Lab of Peking Uni-

versity
Rana et al. [100] Drebin
Lu et al. [101] VirusShare, Genome, Contagio
Millar et al.
[102]

Genome, Drebin, vendor’s internal repos-
itory, AMD

Barrera et al.
[103]

No malware

Shabtai et al.
[104]

No malware

Felt et al. [105] No malware
Erickson et al.
[106]

No malware

Sarma et al.
[107]

Contagio

Frank et al. [108] No malware

Jhu et al. [109] Steamy Window23

Peiravian et al.
[110]

[217]

Sanz et al. [111] VirusTotal
Feldman et al.
[112]

Contagio

Pehlivan et al.
[113]

COMODO Security Solutions, Inc., a pri-
vate security company24

Rahman et al.
[114]

Kharon Malware Dataset25, CICIn-
vesAndMal2019, MalwareBazaar26,
Github, other platforms

Related works Malware datasets used
Rovelli et al. [115] Genome, Contagio

Arp et al. [116] Genome,FakeInstaller, GoldDream27,
GingerMaster28, DroidKungFu29

Yerima et al. [117] McAfee
Kang et al. [118] VirusShare, Contagio, Malware.lu
Zhao et al. [119] Drebin
Qiao et al. [120] Genome

Chen et al. [121] 360 APKs30, MobiSec Lab Website31,
[217]

Demertzis et al. [122] Magnum- Research32

Verma et al. [123] Contagio, malware forums , security
blogs, Genome

Wang et al. [124] VirusTotal
Tang et al. [125] Genome, Drebin
Wang et al. [126] Drebin, Genome
Li et al. [127] Drebin
Bhattacharya et al.
[128]

Contagio

Xie et al. [129] Genome, VirusShare, Drebin
Xie et al. [130] Genome, VirusShare, Drebin, antivirus

companies
Ren et al. [131] Anzhi, AndroTotal, Drebin
Tao et al. [132] VirusShare, Contagio
Namrud et al. [133] AndroZoo
Alswaina et al. [134] -
Qiu et al. [135] -
Zhu et al. [136] ViruShare
Feng et al. [137] No Malware
Aonzo et al. [138] AndroZoo

Urooj et al. [139] MalDroid [225], DefenseDroid33 and a
small own generated dataset

Wang et al. [140] No malware
Wang et al. [141] FakeInst, Opfake, FakeInstaller, Droid-

KungFu, GinMaster, Plankton
Zhang et al. [142] No malware
Kesswani et al. [143] No malware
Ibrahim et al. [144] CICMalDroid 2020
Arshad et al. [145] Drebin
Yuan et al. [146] Genome, Contagio
Zhou et al. [147] Genome
Cilleruelo et al. [148] Malware selected on the basis of lifespan

criteria from Google Play Store
Firdaus et al. [149] Drebin
Wang et al. [150] [217]
Singh et al. [151] Drebin, polymorphic and metamorphic

malware dataset
Rafiq et al. [152] Drebin, AMD, Androzoo
Mahdavifar et al.
[153]

VirusTotal, Contagio, AMD, CICMal-
Droid202

Seraj et al. [154] Applications classified as harmful via
VirusTotal and downloaded from Google
Play Store

Mahindru et al. [155] Didn’t mention properly
Sahin et al. [21] VirusShare
Anupama et al. [156] Drebin
Chen et al. [157] AndroZoo
Mahindru et al. [158] Genome, [218]
Tchakounté et al.
[159]

AMD

Nissim et al. [160] Contagio, Genome, third party applica-
tion stores based in Russia, China, and
Europe

Peynirci et al. [161] Genome, Drebin, AndroZoo
Nauman et al. [162] Drebin, VirusShare

Bhattacharya et al.
[163]

Wang’s repository dataset34, Contagio,
KEEL/UCI repository

Bao et al.[164] No malware
Medrano et al. [165] No malware
Mat et al. [165] AndroZoo, Drebin
Shatnawi et al. [166] CIC InvesAndMal2019
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Related works Malware datasets used
Smmarwar et al.
[167]

CICInvesAndMal2019

Arif et al. [168] AndroZoo, Drebin
Manzanares et al.
[169]

Drebin, AMD, VirusTotal,
VirusShare

Bhat et al. [170] Virustotal, VirusShare, Drebin
Elayan et al.[171] CICAndMal2017
Syrris et al. [172] Drebin
Idrees et al. [173] Contagiodump, Genome, Virus

Total, theZoo, MalShare,
VirusShare

Rehman et al. [174] M0DROID
Martin et al. [175] Koodous, AndroZoo
Navarro et al. [176] AndroZoo, [217] , VirusShare,

AndroMalShare
Milosevic et al. [177] M0Droid
Alzaylaee et al. [178] McAfee
Cai et al. [179] AMD, Drebin
Badhani et al. [180] Andro- DumpSys, AndroZoo,

Contagio , AndroMalShare ,
AMD, VirusTotal

Hijawi et al. [181] [218]
Sheen et al. [182] Genome
Nisha et al. [183] AndroZoo, VirusShare, Andro-

MalShare, PRAGuard[226]
Song et al. [184] Not mentioned
Zhang et al. [185] Genome
Yang et al. [186] No malware
Thiyagarajan et al.
[187]

AndroZoo

Qaisar et al. [188] Android PRAGuard, Drebin,
Open-source apps, Kharon,
Androzoo, CICAAGM

Appice et al. [189] Alternative Chinese and Rus-
sian Markets, Android websites,
malware forums, security blogs,
Genome

Zhu et al. [190] VirusShare
A. Altaher [191] Genome
Su et al. [192] Drebin, Genome, Contagio
Mahindru et al. [193] Genome , AndroMalShare, [218]
Dehkordy et al. [194] Drebin, AMD
Nguyen et al. [195] AMD, Drebin
Taheri et al. [196] Drebin, Contagio, Genome
Mahesh et al. [197] Private companies
Firdaus et al. [198] Drebin, Genome
Shrivastava et al.
[199]

Third-party applications

Varsha et al. [200] Drebin
M. Deypir [201] [217], Security expert and World

Wide Web
Mahindru et al. [202] Genome, AndroMalShare, [218]
Keyvanpour et al.
[203]

Drebin

Razak et al. [204] Drebin
Xie et al. [205] Anzhi
Mahindru et al. [206] [218], [219], Sanddroid
Alecakir et al. [18] No malware
Ali et al. [207] No malware
Sun et al. [208] Contagio
AlJarrah et al. [209] CICMalDroid2020

Gharib et al. [210] R-PackDroid35, HellDroid[220],
Contagio, Koodous

Sun et al. [211] Drebin

datasets in their studies, such as Genome and
Drebin, whereas some have shifted their focus
to other alternatives from the in-the-wild dataset
category, namely Contagio. Figure 5 gives us a
better understanding of Table 7 by plotting the
top seven malware datasets in terms of usage in
%, i.e., the percentage of studies that have uti-
lized the corresponding malware dataset from the
total lot of research papers used in our review.
The statistics depict the preference of researchers
towards the traditional datasets as Drebin [95]-
[97] stands at the top with 26% usage, followed by
Genome [103]-[104] at 22.5%. In-the-wild datasets
such as Virusshare [90]-[91], Contagio [94] and
Androzoo [86]-[87] stand at third, fourth and sixth
rank with 14%, 12.5% and 10.5% share respec-
tively. As discussed above, the popularity of the
datasets provided by the Canadian Institute of
Cybersecurity [166]-[167] due to the concise pat-
tern of information in datasets, and they take
up almost 11.5% of the comprehensive studies
taken up in this review. Hence, based on the
results presented above, we answer the
fifth Research Question that the In-the-

lab datasets such as Drebin and Genome
occupy the largest proportion of the most
preferred malware dataset by researchers.

7 Challenges and Limitations

We answer our sixth Research Question in
this and the subsequent section, wherein we
describe a few limitations of proposed mod-
els mainly associated with permissions as
a feature in the field of Android security
followed by proposing some future research
directions.

7.1 Drawbacks of using permissions

as a feature

Static techniques are generally inexpensive in
terms of complexity compared to dynamic
approaches, as static features can be more eas-
ily extracted than dynamic ones. However, static
methods have a few disadvantages, and con-
sequently, models built over Android permis-
sions are generally found incapable of recognizing
the stealthier behavior of code obfuscation and
dynamic code loading. As a result, some mali-
cious apps may incorporate stealthy behavior and
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evade permissions-based detection. Additionally,
the inability of many detection models to track
behaviors that do not cause permission checks
is another limitation of using permissions as a
feature [19], [185].

7.2 Faulty Research dataset

The training and validation dataset is the founda-
tion for any Android malware analysis/detection
model. Faulty research datasets, biased to one
class, i.e., either benign or malware, outdated,
or insufficient in size or distribution, can pro-
duce inaccurate results in terms of meaning and
poor detection accuracy. It has been noticed that
app developers often make careless spelling mis-
takes. Applications are found with no permission
requests or faulty formatting of manifest files.
These reasons surely cause hindrances to research.
Results with insufficient data are less efficient and
accurate because of the lack of training data. Even
if the detector performs well in the experimen-
tal tests, it might still prove to be inefficient in
real life. Hence, building a good and informative
dataset of Android applications that request the
actual and essentially needed permissions or fea-
tures is an important pre-requisite step for any
model. One of the main reasons for accumulating
faulty applications in one’s dataset is the open-
source nature of the Android operating system
itself. Users are given the freedom to download
applications not only from the mainstream market
but also from informal third-party markets and
unknown malicious websites, which might result
in the mixing of benign and malware application
sets.

7.3 Feature Extraction and

Processing

Gathering the right application samples is impor-
tant; however, knowing how and which features
to extract is itself a very extensive research topic.
As described in the previous section, despite the
numerous advantages of using static features,
static analysis and consequently permission-based
techniques are also found to have some disad-
vantages At the same time, there are also many
challenges to feature extraction with dynamic
analysis. For example, how to ensure that all mali-
cious behaviors can be triggered during dynamic

analysis and which emulator to use to produce
real-time usage patterns of a user are issues that
need to be solved.
The summary and statistics presented in section
V indicate that most of the research is still based
on traditional analysis features, such as permis-
sions, because of their strong training effect, vast
size, and prominent relationship with class labels
and behavior.

7.4 Application of Machine Learning

Machine learning methods are used in the field
of Android malware detection to improve the
effectiveness and efficiency of detection. However,
because of the phenomena such as concept drift,
the performance of traditionally trained classi-
fiers has started to decline. Concept drift, which
is a problem that arises with the continuous
development and evolution of Android malware,
has caused researchers and practitioners to shift
their focus toward neural network-based detection
methods. For example, Bayazit et al. [72] chose
static analysis to build their various RNN-based
classifiers. The features that they used were per-
missions and intents. In the end, they compared
the detection results of their various RNN-based
algorithms to determine that the Bidirectional
Long Short-Term Memory (BiLSTM) model out-
performs all. Moreover, neural networks can be
applied to bridge the gap between the seman-
tic representation of APKs and Android malware
detection. Hence, we conclude that neural net-
works have potential in the field of Android
malware detection using static analysis. The pref-
erence of researchers and practitioners is starting
to tilt more towards deep learning classifiers while
building their analysis/detection models because
of the added advantages compared with the tra-
ditional machine learning classifiers. However,
deep learning algorithms can be computationally
expensive and may require many resources to be
successfully trained. This can be seen as a major
barrier, especially for people who want access to
high-performance computing services but lack the
necessary resources.
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7.5 Unreasonable reliability over

users

The majority of the proposed models in the field of
Android malware detection lie under the category
of Off-Device models, i.e., they rely upon the user
to provide the application data and then return
the malware report of the corresponding appli-
cations after performing their proposed approach
which is, in fact, a tedious and long method.
Instead, On-Device models are the need of the
hour, capable of performing malware analysis/de-
tection using the user’s smartphone to generate
instant malware reports.

7.6 Application Collusion

Application collusion is an emerging threat to
Android-based devices that seem almost immune
to permissions-based detection systems. In app
collusion, two or more Android apps somehow
collude to perform a malicious action that they
cannot accomplish independently [55]. In this way,
they perform malicious tasks without showing
malware behavior.

7.7 Zero day malware

Zero-day malware is the kind of threat for which
no patch exists yet and therefore seems immune
to traditional signature-based analysis that iden-
tifies the dangerous permissions usage patterns. In
simple words, permission-based malware detection
strategies are based on knowledge of the vulnera-
bility, exploit in question, or analyzing behavioral
patterns of application classes, which obviously
is not available for zero-day threats. As a result,
certain methods for mitigating these threats are
ineffective.

8 Future Directions

In this section, we provide some directions for
future work in the Android malware analysis/de-
tection field using Android permissions based on
our investigation and review.

1. The Android OS has more than 150 pre-defined
permissions. Moreover, as applications become
more complex with time, this number is bound
to grow only. Permissions are one of the key

components present within any Android appli-
cation’s manifest file and have been widely used
in the literature for Android malware detec-
tion. However, the usage pattern of permissions
between normal and malware applications is
generally quite similar. For instance, we have
collected 77,000 normal apps and an equal
number of malware apps from Androzoo. Fur-
thermore, we have extracted permissions from
the manifest files of corresponding applications.
Table 8 shows that 13 of the top 20 permissions
are common in normal and malware datasets.
If all these permissions are considered features
while building an analysis or detection model,
poor detection accuracy results are inevitable.
Table 9 helps us to further prove our point by
summarizing the detection results considering
all features, i.e., the total lot of 129 permissions,
for detection without performing any feature
selection/ ranking/ other technique. As seen
from the Table, the highest detection accuracy
achieved by using the BC classifier is merely
78.64%, which is too low in Android security
for any malware detection model. Hence, pri-
ority should be given to feature selection or
ranking to filter out only the most relevant and
influential set of features in the future.

2. Combining multiple static analysis techniques
or features can always be beneficial when it
comes to comparison with using just a single
feature set. Permissions are known to be man-
ually designed and generally are coarse-grained
in nature. Intents possess similar character-
istics like permissions, whereas opcode-based
methods are found to be capable of capturing
contextual semantics of applications but they
both fail to produce structural semantics. Func-
tional call graphs do the needful by extracting
structural semantics. Hence, we can say that
using two or more types of static features in
combination might further improve the exper-
imental results and thus a model’s detection
accuracy.

3. Since stealthier malware may evade
permissions-based static detection, several
works in the literature aim to use dynamic fea-
tures such as network traffic and system calls
to detect such stealthier malware. However,
analyzing dynamic features is complex and
time-consuming; therefore, hybrid detection
models serve the purpose as they combine both
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Table 8: Top 20 most frequently requested permissions from both normal and malware datasets with
their corresponding frequency.

PERMISSIONS Normal
Fre-
quency

PERMISSIONS Malware
Frequency

INTERNET 55063 INTERNET 55684

ACCESS NETWORK STATE 52391 ACCESS NETWORK STATE 55252

WRITE EXTERNAL STORAGE 38934 WRITE EXTERNAL STORAGE 54759

WAKE LOCK 32527 ACCESS WIFI STATE 53886

ACCESS WIFI STATE 28554 READ PHONE STATE 53586

RECEIVE 23875 READ EXTERNAL STORAGE 46646

READ EXTERNAL STORAGE 22516 WAKE LOCK 44003

VIBRATE 20472 GET TASKS 43399

ACCESS FINE LOCATION 16968 CHANGE WIFI STATE 43165

ACCESS COARSE LOCATION 16650 ACCESS COARSE LOCATION 42425

RECEIVE BOOT COMPLETED 16519 VIBRATE 42325

CAMERA 14993
MOUNT UNMOUNT
FILESYSTEMS

41324

READ PHONE STATE 14176 ACCESS FINE LOCATION 40720

C2D MESSAGE 12342 WRITE SETTINGS 39497

BIND GET INSTALL REFERRER
SERVICE

10593 SYSTEM ALERT WINDOW 38594

BILLING 9905 CAMERA 36115

FOREGROUND SERVICE 9587 CHANGE NETWORK STATE 30874

GET ACCOUNTS 7806 RECEIVE BOOT COMPLETED 29441

WRITE SETTINGS 7258 READ LOGS 29112

BLUETOOTH 5820 RECORD AUDIO 27010

Table 9: Detection results considering all
features for detection without performing any
feature selection/ ranking/ other technique

FEATURES
used

Detection accuracy using various
machine learning and deep learning
classifiers (in %)
DT RF ANN BC NB LR

All Permis-
sions (129)

74.64 74.64 69.55 78.64 69.60 69.60

static and dynamic elements. Because of static
features like permissions in hybrid models,
some malware samples can be easily detected.
And dynamic features can help detect stealth-
ier samples. Hence, hybrid models may be
better for effective Android malware detection.

4. Moreover, as discussed in [143], the malware
authors tend to request more permissions than
their application requires for its functioning to
cover up or hide their malicious intent. Due to
the absence of any robust permission check sys-
tem that provides an in-depth comparison of

the permissions requested and required, mal-
ware authors exploit it as much as possible.
Hence, more research is required on this to
fulfill the absence of such a permission check
system by the OS shortly to reduce the malware
attacks at the initial level only.

5. Currently, repositories like Androzoo and CIC
provide standardized application dataset sam-
ples and libraries with comprehensive back-
ground information and essential filters that
solve the faulty dataset issue up to some extent.

9 Conclusion

This paper summarizes the state-of-the-art studies
and comprehensively reviews the research trend
in Android malware analysis/detection using per-
missions as a key feature. Concretely, this Com-
prehensive Literature Review (CLR) is conducted
with the close observation and study of 200
research papers ranging from the advent of
Android in 2009 to the current research scenario in
2023, covering almost 14 years of research history.
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Based on the six research questions put forward by
us to understand the relevance of permissions as
a means to analyze/detect Android malware, this
CLR investigates the purpose of research (analysis
or analysis combined with detection), the tech-
nique used to select or utilize or rank the extracted
features, most commonly used features alongside
with permissions, the malware datasets utilized by
the researchers/ practitioners and lastly, the limi-
tations, challenges in the field of Android malware
analysis/detection in order to propose some future
research directions.

According to this CLR, we answered the six
research questions mentioned above and conclude
that 1) Majority of researchers and practitioners
have chosen the path of building Android mal-
ware detection models instead of merely analysing
the malware; 2) The most popular techniques to
handle the extracted features are the ML/DL clas-
sifiers as their hyper parameters can be easily
tuned to reduce, rank, select even the unlabelled
or unbalanced feature set, followed by statistical
test such as Chi-square, Mann-Whitney test and
many more; 3) Researchers have preferred using
API calls and intents the most in combination
with permissions while forming their Android mal-
ware analysis/detection models; 4) Based on the
results of empirical evidence, we conclude that the
most commonly used ML models are SVM, DT
and RF due to their convenient and simple work-
ing but at the same time, due to the limitations
of traditional supervised learning methods, one
can assume that the popularity of neural network
models will surely rise; 5) In-the-lab datasets such
as Drebin and Genome occupy the largest pro-
portion of the most preferred malware dataset by
researchers.
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ing and detection of android malware based
on permissions. In: 2018 3rd International
Conference on Computer Science and Engi-
neering (UBMK), pp. 264–268 (2018). IEEE

[39] Mat, S.R.T., Ab Razak, M.F., Kahar,
M.N.M., Arif, J.M., Zabidi, A.: Apply-
ing bayesian probability for android mal-
ware detection using permission features.
In: 2021 International Conference on Soft-
ware Engineering & Computer Systems and
4th International Conference on Computa-
tional Science and Information Management
(ICSECS-ICOCSIM), pp. 574–579 (2021).
IEEE

[40] Wang, Z., Li, K., Hu, Y., Fukuda, A.,
Kong, W.: Multilevel permission extraction
in android applications for malware detec-
tion. In: 2019 International Conference on
Computer, Information and Telecommuni-
cation Systems (CITS), pp. 1–5 (2019).
IEEE

[41] Park, J., Kang, M., Cho, S.-j., Han, H.,
Suh, K.: Analysis of permission selection
techniques in machine learning-based mali-
cious app detection. In: 2020 IEEE Third
International Conference on Artificial Intel-
ligence and Knowledge Engineering (AIKE),

44



pp. 92–99 (2020). IEEE

[42] Liang, S., Du, X.: Permission-combination-
based scheme for android mobile mal-
ware detection. In: 2014 IEEE International
Conference on Communications (ICC), pp.
2301–2306 (2014). IEEE

[43] Wang, Y., Zheng, J., Sun, C., Mukkamala,
S.: Quantitative security risk assessment of
android permissions and applications. In:
Data and Applications Security and Privacy
XXVII: 27th Annual IFIP WG 11.3 Confer-
ence, DBSec 2013, Newark, NJ, USA, July
15-17, 2013. Proceedings 27, pp. 226–241
(2013). Springer

[44] Peng, H., Gates, C., Sarma, B., Li, N., Qi,
Y., Potharaju, R., Nita-Rotaru, C., Mol-
loy, I.: Using probabilistic generative models
for ranking risks of android apps. In: Pro-
ceedings of the 2012 ACM Conference on
Computer and Communications Security,
pp. 241–252 (2012)

[45] Pandita, R., Xiao, X., Yang, W., Enck, W.,
Xie, T.: {WHYPER}: Towards automat-
ing risk assessment of mobile applications.
In: 22nd USENIX Security Symposium
(USENIX Security 13), pp. 527–542 (2013)

[46] Samra, A.A.A., Yim, K., Ghanem, O.A.:
Analysis of clustering technique in android
malware detection. In: 2013 Seventh Inter-
national Conference on Innovative Mobile
and Internet Services in Ubiquitous Com-
puting, pp. 729–733 (2013). IEEE

[47] Yerima, S.Y., Sezer, S., McWilliams, G.,
Muttik, I.: A new android malware detection
approach using bayesian classification. In:
2013 IEEE 27th International Conference
on Advanced Information Networking and
Applications (AINA), pp. 121–128 (2013).
IEEE

[48] Zarni Aung, W.Z.: Permission-based
android malware detection. International
Journal of Scientific & Technology Research
2(3), 228–234 (2013)

[49] Yerima, S.Y., Sezer, S., McWilliams, G.:

Analysis of bayesian classification-based
approaches for android malware detec-
tion. IET Information Security 8(1), 25–36
(2014)

[50] Sanz, B., Santos, I., Laorden, C., Ugarte-
Pedrero, X., Bringas, P.G., Álvarez, G.:
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[159] Tchakounté, F., Ngassi, R.C.N., Kamla,
V.C., Udagepola, K.P.: Limondroid: a sys-
tem coupling three signature-based schemes
for profiling android malware. Iran Journal
of Computer Science 4, 95–114 (2021)

[160] Nissim, N., Moskovitch, R., BarAd, O.,
Rokach, L., Elovici, Y.: Aldroid: efficient
update of android anti-virus software using
designated active learning methods. Knowl-
edge and Information Systems 49, 795–833
(2016)

[161] Peynirci, G., Eminağaoğlu, M., Karabulut,
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