
Vol.:(0123456789)

Machine Learning (2024) 113:5151–5181
https://doi.org/10.1007/s10994-023-06413-x

1 3

GVFs in the real world: making predictions online for water
treatment

Muhammad Kamran Janjua1 · Haseeb Shah1 · Martha White1,2 · Erfan Miahi1 ·
Marlos C. Machado1,2 · Adam White1,2

Received: 3 April 2023 / Revised: 2 August 2023 / Accepted: 3 October 2023 /
Published online: 8 November 2023
© The Author(s) 2023

Abstract
In this paper we investigate the use of reinforcement-learning based prediction approaches
for a real drinking-water treatment plant. Developing such a prediction system is a critical
step on the path to optimizing and automating water treatment. Before that, there are many
questions to answer about the predictability of the data, suitable neural network architec-
tures, how to overcome partial observability and more. We first describe this dataset, and
highlight challenges with seasonality, nonstationarity, partial observability, and heterogene-
ity across sensors and operation modes of the plant. We then describe General Value Func-
tion (GVF) predictions—discounted cumulative sums of observations–and highlight why
they might be preferable to classical n-step predictions common in time series prediction.
We discuss how to use offline data to appropriately pre-train our temporal difference learn-
ing (TD) agents that learn these GVF predictions, including how to select hyperparameters
for online fine-tuning in deployment. We find that the TD-prediction agent obtains an over-
all lower normalized mean-squared error than the n-step prediction agent. Finally, we show
the importance of learning in deployment, by comparing a TD agent trained purely offline
with no online updating to a TD agent that learns online. This final result is one of the first
to motivate the importance of adapting predictions in real-time, for non-stationary high-
volume systems in the real world.

Keywords  Reinforcement learning · Water treatment · Time series prediction

Editors: Yuxi Li, Alborz Geramifard, Lihong Li, Csaba Szepesvari, and Tao Wang.

 *	 Muhammad Kamran Janjua
	 mjanjua@ualberta.ca

 *	 Adam White
	 amw8@ualberta.ca

1	 Department of Computing Science, Alberta Machine Intelligence Institute (AMII), University
of Alberta, Edmonton, AB, Canada

2	 Canada CIFAR AI Chair, University of Alberta, Toronto, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06413-x&domain=pdf

5152	 Machine Learning (2024) 113:5151–5181

1 3

1  Introduction

Learning in deployment is critical for partially observable decision-making tasks (Sutton
et al., 2007). If the evolution of state transitions is driven by both the agent’s actions and
state variables that the agent cannot observe, then the process will appear non-stationary
to the agent. For example, an agent controlling chemical dosing in a water treatment plant
may correctly learn the relationship between increasing chemicals to reduce turbidity in
the water. However, inclement weather events can also impact water turbidity causing the
agent’s prediction of future turbidity—and thus choices of chemical dosing—to be subop-
timal. One approach to mitigate this problem is to allow the agent to continually update its
predictions and decision-making policies online in deployment.

Effective multi-step prediction forms the basis for decision-making in almost any rein-
forcement learning system. Classical value-based methods, such as Q-learning (Watkins
and Dayan, 1992), construct a prediction of future discounted rewards in order to decide
on what actions to take. Policy gradient methods such as PPO (Schulman et al., 2017) and
SAC (Haarnoja et al., 2018) typically define the agent’s policy through an estimate of the
value function. Thus in applications, a reasonable first step is to build a prediction learn-
ing system that can predict reward and sensor values far into the future. This is not only
an important step to assess the feasibility of adaptive control but is also a useful first step
because the tasks of feature engineering, network architecture design, optimization, and
tuning of various hyperparameters will be shared and beneficial to both a prediction learn-
ing system and a full reinforcement learning control system.

There has been growing interest in moving RL techniques out of video games and into
the real world. In many applications, such as chip design (Mirhoseini et al., 2021), matrix
multiplication (Fawzi et al., 2022), and even video compression (Mandhane et al., 2022),
the problem setting of interest is simulation. Another approach is to design and train an
agent in simulation and then deploy a fixed controller, sometimes even in the real world.
This approach has been used for example in navigating stratospheric balloons (Bellemare
et al., 2020), controlling plasma configurations inside a fusion reactor (Degrave et al.,
2022), and robotic curling (Won et al., 2020).

In this paper, we study the application of machine learning techniques, specifically pre-
diction methods from reinforcement learning, on a real drinking-water treatment plant. In
our setting, we do not have access to a high-fidelity simulator of the plant, nor the resources
to commission one. This work explores the feasibility of adaptive learning systems in the
real world. Instead of relying on access to a simulator our approach extensively leverages
offline data for iterating design choices or pre-training the agent.

Closer to our work, recent work on automating HVAC control used an approach where
the agent is first tuned on off-line data and then a learning controller is deployed that is
updated once a day (Luo et al., 2022). In this work the authors explicitly avoided offline
training on operator data, citing the well-known issues of insufficient action coverage. Nev-
ertheless, batch or off-line RL methods (Ernst et al., 2005; Riedmiller, 2005; Lange et al.,
2012; Levine et al., 2020) have been successfully used in settings where a fixed policy or
value function is extracted from a data-set, with several practical applications (Pietquin
et al., 2011; Shortreed et al., 2011; Swaminathan et al., 2017; Levine et al., 2018).

Drinking-water treatment is basically a two-stage process, as depicted in Fig. 1. First,
water is pumped into a large mixing tank where chemicals are added to cause dissolved
solids to clump together. The next step is to pull the pretreated water through a filter
membrane where only clean water molecules can pass through the filter membrane and

5153Machine Learning (2024) 113:5151–5181	

1 3

the solids and other continents remain. Periodically, the primary filter is cleaned by sim-
ply running the process backwards blasting the filter membrane clean: a process called
backwashing. In Canada, the operation of a water-treatment plant can represent up to
30% of a town’s municipal budget (Copeland and Carter, 2017).

Drinking-water treatment is uniquely challenging compared to other applications due
to two key characteristics. The data produced by a water-treatment plant, like many real-
world systems, is high-dimensional, noisy, partially observable, and often incomplete,
making online, continual prediction extremely challenging. In water treatment, the plant
can operate in different modes, such as production and backwashing. The mode has a
profound impact on data produced by the system and even changes the range of valid
sensor readings. Second, the different components of the plant operate at different time-
scales and decisions have delayed consequences. For example, the chemical dosing rate
is typically not changed more often than once a day, backwashing happens multiple
times a day, and the pretreatment-tank mixing-rate can be adjusted continuously. Each
one of these choices can result in changes in sensor readings over minutes—chemical
dosing changes the water pressure on the filter within 30 min—to months—too much
chemical dosing can degrade filter efficiency over the long run.

In this paper, we investigate multi-variate, multi-step prediction in deployment on a
real system. We provide a detailed case study on water treatment, first demonstrating
the inherent nonstationarity of the problem and the benefits of learning continuously
in deployment. We show that using a simple trace-based memory to overcome partial
observability, we can learn accurate multi-step predictions, called general value func-
tions (GVFs) (Sutton et al., 2011; Modayil et al., 2014), using temporal difference (TD)
learning. Because GVFs can be learned with standard reinforcement learning algorithms
like TD, they can easily be updated online, on every step. We show that updating online
can significantly improve performance over only training from an offline log of data.
The online prediction agent also benefits from this offline data, to pre-train the predic-
tions and to set the hyperparameters for updating online in deployment. Our approach
allows us to have a fully specified online prediction agent—with hyperparameters auto-
matically selected using a simple modification on the standard validation procedure—
that continues to adapt and improve in deployment.

Finally, we also contrast these GVF multi-step predictions to the more classical
predictions considered in time series prediction: n-step predictions. The primary goal
of this comparison is to provide intuition: n-step predictions are a more common and
widely understood approach to multi-step prediction, as compared to GVFs. Our goal

Fig. 1   An illustration of the drinking-water treatment plant. The entire plant is divided into two main
stages: pretreatment and filtration. The pretreatment stage is concerned with adding chemicals to the raw
water, followed by the filtration stage where the water is pumped through filters for further purification
(Color figure online)

5154	 Machine Learning (2024) 113:5151–5181

1 3

is to introduce GVF predictions to a wider audience, and hopefully motivate this addi-
tional modelling tool. Beyond this, we highlight that GVFs can have benefits over n-step
predictions. The target for a GVF is typically smoother because it is an exponential
weighting of future observations, rather than an observation at exactly n steps in the
future. Consequently, we also expect this target to be lower variance and potentially
simpler to learn. We find that GVF predictions have higher accuracy than the n-step
predictions on our data, controlling for the same state encoding and network size, in
terms of the normalized mean-squared error. Taken together, our work provides several
practical insights on designing neural-network learning systems capable of learning in
deployment.

2 � The data of water treatment

Like any industrial control process, a water treatment plant has the potential to generate
an immense amount of data. Our system is instrumented with a large number of sensors
reporting both (1) water chemistry throughout the treatment pipeline, and (2) properties
of the mechanical components of the plant. Taken together these sensor readings form a
long and wide time series with several interesting properties that make long-term predic-
tion difficult. In this section we highlight these properties with examples from a real plant,
explaining how each makes long-term prediction challenging.

2.1 � Wide, long, and fast data

Our system reports 480 distinct sensor values at a rate of one reading per second produc-
ing a large time series. One year of data consists of over 31 million observations of the
plant. In contrast, the recent M5 time-series forecasting competition used a dataset with
42,840-dimensional observations and 1969 time-steps; over 84 million samples (Makrida-
kis et al., 2022). Using multiple years of water treatment data puts us on the same scale as
state-of-the-art forecasting grande challenge problems. We summarize some of the sensors
in Table 1, and provide more detail in Table 2.

Our data exhibits a coherent structure over the year, month, day and minute. In Fig. 2
we plot incoming water temperature at three temporal resolutions. Mechanical systems like

Table 1   A brief summary of
different measurements each of
the sensor type is responsible for
working out

Sensor type Measures

Pressure Pressure on the membrane
Flowmeter Flow rate of the fluid
pH Acidity and alkalinity of the solution
Temperature Temperature of the water
Turbidity Turbidity of the water
Total organic carbon (TOC) Organic carbon in the water
Conductivity Ability to pass an electric current

5155Machine Learning (2024) 113:5151–5181	

1 3

ours often support sampling at rates of 1 Hz or greater, whereas data sets commonly used
in time-series forecasting are wide and short; typically sampled once a day.1 In water treat-
ment, high-temporal resolutions are relevant because the data can be noisy (as highlighted
in Fig. 3) and averaging is lossy. In addition, if one were to change process set-points (the
ultimate end-goal of prediction), this may require rapid adjustment (for example, adjusting
PID control parameters during a backwashing operation).

2.2 � Sudden, unpredictable events

Our data exhibit substantial distribution shifts, largely due to unpredictable events. For
example, Fig. 3 shows the impact of cleaning different sensors. Most of these sensors get
physically dirty over time due to a variety of factors. Sometimes water gets accumulated in
the sensor enclosure, or moisture develops on the physical sensors, causing the readings to
become noisy and unreliable. The plant operators manually clean the sensors to make sure
they are as noise-free as possible and are reliably operating. Often times the sensor patterns
indicate that they have recently undergone cleaning. This change in pattern manifests itself
as the sensor signal stabilizes over time post-cleaning.

A water treatment plant operates in different modes which dramatically impacts
the data generated. The main modes of operation are production and backwash. In

0 5 10 15 20
Hours

0.05

0.10

0.15

0.20

0.25

0.30

Se
ns
or

Va
lu
e

0 10 20 30 40 50 60
Minutes

0.05

0.10

0.15

0.20

0.25

0.30
Variation in Influent Temperature Sensor

0 10 20 30 40 50 60
Seconds

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 2   The many timescales of water treatment. Each subplot shows the incoming water temperature from
the river at different temporal resolutions. Viewing left to right, if we look at temperature over the entire
day (sub-sampled) we see a single outlier and an otherwise fluctuating baseline. In the middle subplot,
looking at a single hour of data, we see the spike has more structure. Finally, the rightmost subplot shows
one minute of data sampled at the fastest possible timescale of the system (no sub-sampling), which shows
how in a short timescale measurements can even appear constant (Color figure online)

24 26 28 30 01
Days

0

200

400

Se
ns
or

Va
lu
e

Post-Flocculation Conductivity

24 26 28 30 01
Days

7.2

7.4

7.6

7.8

Permeate pH

24 26 28 30 01
Days

0

10

20

30

Feed Turbidity

Fig. 3   Raw values of some of the sensors before and after the cleaning. The black dotted line indicates
when the sensors were manually cleaned by the plant operators. Note that the data is sub-sampled to avoid
congestion in the plot (Color figure online)

1  Taking an extreme example, the well-known Sunspots dataset is unidimensional and contains 3240 data
points.

5156	 Machine Learning (2024) 113:5151–5181

1 3

production, the water is drawn through the filter to remove containments and it is
moved to storage. In backwashing—the process of cleaning the filters—water moves
backward through the system from storage, through the filters and eventually into the
waste (reject) drain. In Fig. 4 we can see the impact of these two modes across several
sensors.

In our plant, mode change is driven either by a fixed schedule or human interven-
tion. Maintenance, for example, occurs every day at 4:30 am, triggering the Membrane
Integration Test (MIT) mode, whereas backwashing occurs on a strict schedule. Sensor
changes due to these mode changes should be predictable from the time series itself,
however, more ad hoc operator interventions are better represented as unpredictable
external events; for example, when the plant is shut down. In addition, unscheduled
maintenance occurs periodically—it is conceivable that such maintenance could be pre-
dicted based on the state of the plant, but there are other constraints like staffing con-
straints that can drive mode change. Later we discuss how we encoded plant modes,
which was key for successful prediction.

2.3 � Sensor drift and seasonal change

Water treatment is predominately driven by the conditions of incoming river water
which changes throughout the year. These changes are driven by seasonal weather pat-
terns. In the dead of Winter, the river is frozen and cool, clean, low turbidity water flows
under the ice into the intake valves. During the Spring thaw—called the freshet—snow
and ice all along the watershed of the river melt, increasing volume, flow, turbidity, and
organic compounds in the river. Early Summer is dominated by a mixture of melted
snow and ice higher up in the mountains and heavy rains that cause second and third
freshets. Over the Summer, precipitation reduces, causing the late Summer and Fall to
exhibit similar patterns as the Winter. All of these patterns are clearly visible in Fig. 5.

Change also happens within a single day. In Fig. 6 we see how two different sensors
evolve over a single day, on different days. As we can see in the plot of Feed Turbidity,
some days are similar, but others, such as May 31, 2022, exhibit dramatically different
dynamics. In some applications like HVAC control (Luo et al., 2022), it is sufficient to
perform learning on a batch of data once a day. In water treatment, the sensor dynamics
provide the opportunity to observe sensor changes throughout the day.

Fig. 4   Variation across modes of different sensors. For brevity, we only produce two important modes,
namely production (PROD), and backwashing (BW). The top row corresponds to the production mode,
while the bottom row corresponds to the backwashing mode. The x-axis of the backwash data (second row)
is plotted over a much shorter time scale because backwash only lasts for a couple of minutes, whereas pro-
duction durations are much longer (Color figure online)

5157Machine Learning (2024) 113:5151–5181	

1 3

2.4 � The state of a water‑treatment plant?

What information would we need to predict water treatment data many steps into the
future, with high accuracy? The plots above paint a clear picture of a partially observable
complex dynamical system. Consider the Spring freshet. The volume and flow of the river
will be driven by weather patterns and by the snow accumulation all along the watershed

Freshet

Freshet

Freshet

New
membrane

New
membrane

New
membrane

Cleaning #1

Cleaning #1

Cleaning #1

Cleaning #2

Cleaning #2

Cleaning #2

Influent
Temperature

Membrane
Pressure

Influent
Turbidity

Winter

Winter

Winter

Spring Summer Fall

Spring

Spring

Summer

Summer

Fall

Fall

Fig. 5   A year’s worth of data for three different sensors. These three sensors are representative of the
impacts that seasonal variations, or changes in the physical state of plant’s components, have on the under-
lying telemetric stream of data. Note that the data is sub-sampled to avoid congestion in the plot. There are
gaps in the data because the plant was down for maintenance (Color figure online)

0 6 12 18 24
Hour

10

20

30

Feed Turbidity
May 28
May 29
May 30
May 31

0 6 12 18 24
Hour

6.4

6.6

6.8

Drain Reject pH
June 08
June 09

Fig. 6   Feed Turbidity and Drain Reject pH sensors, respectively. An example of data drift in sensor values
over hours. Each line represents a sensor plotted over a different day. We see variation in sensor readings
both within a day and over multiple consecutive days (Color figure online)

5158	 Machine Learning (2024) 113:5151–5181

1 3

throughout the Winter. Digging deeper, the turbidity and other metrics are also driven by
erosion and composition of the riverbed, which changes all the time. The chemical makeup
of the water could spike if there is a change in farming practices in the area—water runoff
from fields along the river. Even everyday things like a fire in the town can add huge pres-
sure demands on the plant—many plants have dedicated pumps just for fires.

In all the examples above, it would be impractical to sensorize these events so they
could be detected in the plant. In fact, we would need to predict these events in advance of
their occurrence (including the weather) in order to accurately predict our data in advance.
Perhaps, we could simply make predictions based on the entire history of the time-series.
The history would still only approximate the state, because we do not know the starting
conditions: data from five and ten years ago. In addition, such an approach is not scalable
if the end goal is to build a continual learning system that runs for years generating tens of
millions of samples a year.

In the end, capturing the true underlying state is likely impossible and we must be con-
tent using learning methods that continue to learn in deployment in order to achieve accu-
rate prediction. Such methods track the changing underlying state of the plant. The idea
is to use computation and extra processing of the recent data to overcome the limitations
of the agent’s state representation (Sutton et al., 2007; Tao et al., 2023), similar to how an
approximate model of the world can be used to deal with non-stationary tasks in reinforce-
ment learning. In the next section, we will discuss different algorithms for learning and
tracking in deployment and later show their advantages on water-treatment data.

3 � Multi‑step prediction

In this paper we are interested in scalar predictions of multi-dimensional time-series,
many steps into the future. On each discrete time-step, t = 1, 2, ... , the learning algorithm
observes a new observation vector, ot ∈ ℝ

d , which form a sequence of vectors from the
beginning of time.

We do not assume knowledge of the underlying process that generates the series. That is,
the next generation of observation vector may depend not just on o0∶t , but also on other
quantities not observable to the learning system. For example, the future turbidity of
the river water is impacted by future weather which is not observable and generally not
predictable.

The goal is to estimate some scalar function of the future values of the time-series on
time-step t, given o0∶t . In this paper, we focus on classical n-step predictions from time-
series forecasting and exponentially weighted infinite horizon predictions commonly used
in reinforcement learning, which we discuss in the following sections.

3.1 � Classical time‑series forecasting

The first prediction problem we consider is simply predicting a component of the time-
series on the next time-step, o[i]

t+1
 . We denote the i-th component of xt as x[i]t  . This scalar

one-step prediction v̂t at time t can be approximated as a function of a finite history of the
time-series:

o0∶t ≐ o0, o1, o2, ..., ot.

5159Machine Learning (2024) 113:5151–5181	

1 3

where wt ∈ ℝ
k is the learned weights and � is the number of previous observation vectors

used to construct the prediction. For a classical autoregressive model, fTS is a linear func-
tion of this history o[i]t−�∶t . More generally, fTS can be any nonlinear function, such as one
learned by a neural network.

In order to predict more than one step into the future we can iterate a one-step prediction
model. The naive approach is to simply feed the model’s prediction of the next observation
into itself as input to predict the next step, now 2 steps into the future, and so on. For example
a three-step prediction:

Notice how two components of the history of the time series have been replaced by esti-
mates. As we iterate the model beyond � steps into the future all the inputs to fTS will
become model estimates.

Another approach is to directly learn a k-step prediction and avoid iterating altogether. One-
step models are convenient because they can be updated at every timestep. Unfortunately, if
the one-step model is inaccurate the model produces worse and worse predictions as you iter-
ate it further. A direct method estimates a k prediction as a function of the history of the series:

In many applications, we are interested in multi-dimensional data and in predicting many
steps in the future. We can go beyond auto-regressive approaches by simply considering
these time series prediction problems as supervised learning problems. For example, we
can learn a neural network fDE that inputs the last k multi-dimensional observation vec-
tors ot−k∶t and predicts o[i]

t+1+k
 , trained by constructing a dataset of pairs (ot−k∶t, o

[i]

t+1+k
) . We

can also go beyond finite k-length histories, and use recurrent neural networks, which is
becoming a more common practice in time series prediction (see Hewamalage et al. (2021,
Sect. 2.3.1)). When we start using this supervised learning framing, we lose some of the
classical strategies for dealing with correlation in the data, but in general, evidence is
mounting that we can obtain improved performance (Crone et al., 2011; Hewamalage et al.,
2021).

3.2 � GVFs and temporal difference learning

In reinforcement learning, multi-step predictions are formalized as value functions. Here
the objective is to estimate the discounted sum of all the future values of some observable
signal, with discount � ∈ [0, 1) ∶

(1)v̂t ≐ fTS(o
[i]
t−𝜏∶t

,wt) ≈ o
[i]

t+1
,

(2)v̂t+2 ≐ fTS([o
[i]

t−𝜏∶t−1
, v̂t+1, v̂t],wt) ≈ o

[i]

t+3
.

(3)v̂t ≐ fDE(o
[i]
t−𝜏∶t

,wt) ≈ o
[i]

t+1+k
.

(4)Gt ≐

∞
∑

j=0

� jo
[i]

t+1+j
.

5160	 Machine Learning (2024) 113:5151–5181

1 3

Technically Gt summarizes the infinite future of the time-series, but values of o[i] closer to
time t contribute most to the sum.2 These exponentially weighted summaries of the future
automatically smooth the underlying data o[i]—potentially making estimation easier—and
provide a continuous notion of anticipation of the future as discussed in Fig. 7. For this
reason, they have been called “Nexting" predictions (Modayil and Sutton, 2014), but more
generally were introduced as general value functions (GVFs) (Sutton et al., 2011), where
they generalize the notion of a value by allowing any cumulant to be predicted beyond a
reward.

GVF predictions can be learned using temporal difference learning. As before, the
prediction is approximated with a parameterized function, fTD(st,w) ≈ Gt , where st is a
summary of the entire series, o0∶t , up to time t. For example, we could use an RNN to
summarize this history; we opt for an even simpler approach—memory traces—which we
describe in Sect. 4.1. The prediction on time-step t is updated using the temporal-difference
error

where � ∈ (0, 1] and ct ≐ o
[i]
t .

4 � Methods

In this paper, we investigate methods that can be pre-trained from offline logged data and
perform fine-tuning in deployment. The algorithms we investigate can be used offline,
online, or a combination of the two. Offline algorithms can randomly sub-sample and
update from the offline data as much as needed (i.e. until the training loss converges).
Online data, generated in the deployment phase can only be resampled from a replay buffer
once it has been observed. Using the online data is restricted: the algorithms cannot look
ahead into the future of the time-series, they must wait for each data point to become

(5)wt ← wt + �(ct + �fTD(st,w) − fTD(st−1,w))∇fTD(st−1,w),

0 1000 2000 3000 4000 5000
Seconds

55

60

65

70

75

R
et
ur
n

Cleaning Tank Level

0.50

0.55

0.60

0.65

0.70

0.75

Cu
m
ul
an
t

Fig. 7   A sample time-series of tank level from a real water-treatment plant and an idealized prediction
(labelled return). The x-axis is the time-step, corresponding to one second. The prediction is ideal in the
sense that we can simply compute the exponentially weighted sum in Eq. (4) given a dataset—the idealized
prediction is not the output of some estimation procedure. Later we will show learned predictions and how
they match the ideal. Notice how the idealized prediction increases well before the time-series reaches its
maximum value, and falls well before the time-series does. In this way, the idealized prediction at any point
in time provides an anticipatory measure of the rise or fall of the data in the future. This is discussed exten-
sively in prior work (Modayil and Sutton, 2014), so we do not belabour the point here (Color figure online)

2  Note that we do not explicitly give the (partially observable) Markov decision process formalism because
we do not need that precise notation to explain the concepts. Further, the predictions we consider are all on-
policy predictions, so we do not need to know the explicit decision-making policy in order to do the update.
For this reason, we avoid introducing all the notation around actions and policies, since they will not be used.

5161Machine Learning (2024) 113:5151–5181	

1 3

available step-by-step. After a sample is observed it can be resampled over and over via a
replay buffer. In this section, we outline the algorithms, and how they can combine offline
and online learning.

4.1 � Constructing agent‑state

These algorithms can be used in real-time, making and updating predictions live as the
plant is operating. For simplicity in our experiments, we only simulate that setting here
using a static offline dataset. The agent can iterate, in order, on the batch of offline data
and it is equivalent to having made predictions live on the plant. The offline batch of data
is Doffline = {(ot, ct+1, ot+1)}

N
t=1

 , where N is the total number of transitions, ot ∈ ℝ
d is the

observation vector, ct+1 ∈ ℝ is the signal to predict or cumulant, ot+1 is the next observa-
tion vector.

The data, however, is partially observable and the agent should construct an approxi-
mate state. A typical approach used in machine learning is to use RNNs, to summarize
history (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Hausknecht and Stone, 2015;
Vinyals et al., 2019). However, we found for our sensor-rich problem setting, that a sim-
pler trace-based memory approach was just as effective and much easier to train. The gen-
eral idea is to use an exponentially weighted moving average of the observations; such an
exponential memory trace has previously been shown to be effective (c.f. Mozer 1989; Tao
et al. 2023; Rafiee et al. 2023). We include more explicit details on how we created our
approximate state observation vector in Appendix A.

Once we have constructed this approximate state vector, which we denote ŝt ∈ ℝ
d+k , we

then apply the algorithms directly on this ŝt without further considering history or state esti-
mation. In other words, we construct an augmented dataset Daugmented = {(ŝt, ct+1, ŝt+1)

N
t=1

}
and apply our algorithms as if we have access to the environment state—namely as if we
are in the fully observable setting. All the algorithms we consider use a neural network f
to compute the prediction fwt

(ŝt) , where wt are the parameters of the neural network. The
predictions may either be GVF predictions or n-step time series predictions, with the algo-
rithms described in the next two sections.

4.2 � Algorithms for GVFs

The goal for GVF predictions it to estimate the expected discounted sum of future cumu-
lants, as described in Sect. 3.2. The simplest approach is to simply use the textbook 1-step
temporal difference (TD) learning (Sutton and Barto, 1998). Data is processed as a stream,
one sample at a time. The approach is summarized in Algorithm 1.

We can also adapt this update to an offline dataset. We can use TD offline, making mul-
tiple passes over the data set, and updating the network weights via mini-batches. Here we
follow the standard approach used in offline RL for the fully observable setting. In other
words, we can treat each tuple (ŝt, ct+1, ŝt+1) separately, without having to keep the data in
order. In contrast, if we were using a recurrent neural network, we would need to maintain
the dataset order more carefully. In each epoch, we shuffle the dataset Daugmented and update
the neural network using a mini-batch TD update. Algorithm 2 summarizes the approach.

We use the Adam optimizer (Kingma and Ba, 2015) to update with the mini-batch
TD updates. We set all but the stepsize � to the typical default values: momentum
parameter to 0.9, exponential average parameter to 0.99, and the small constant in the
normalization to 10−4 . The algorithm returns the state of the optimizer—such as the

5162	 Machine Learning (2024) 113:5151–5181

1 3

exponential averages of squared gradients and momentum—because our online variants
continue optimizing online starting with this optimizer state.

5163Machine Learning (2024) 113:5151–5181	

1 3

We expect purely offline methods to perform poorly in our non-stationary (partially
observable) setting compared with those that also update in deployment. The offline data
may not perfectly reflect what the agent will see in deployment, and, in general, tracking—
namely updating with the most recent data—can also help under partial observability.

We can combine the offline and online methods, by pre-training offline and then allow-
ing the agent to continue learning online. The primary nuance here is that we can either
continue to use a replay buffer to update online or switch to the simplest online variant of
TD that simply updates once per sample. We found that the simpler update was typically
just as good as the variant using replay, so we use this simpler variant in this work. We
summarize this procedure in Algorithm 3, and for completeness include the replay variant
and results comparing to it in Appendix C.

It is worth mentioning that we could further improve these algorithms with the variety
of advances combining TD and neural networks. TD methods can diverge when used with
neural networks (Tsitsiklis and Van Roy, 1997), and several new algorithms have proposed
gradient-based versions of TD that resolve the issue (Dai et al., 2017, 2018; Patterson et al.,
2022). In control, a common addition is the use of target networks, which fix the bootstrap
targets for several steps (Mnih et al., 2015). We found for our setting that the simple TD
algorithm was effective, so we used this simpler approach.

5164	 Machine Learning (2024) 113:5151–5181

1 3

4.3 � Algorithms for n‑step predictions

We can similarly consider the offline and online variants of n-step predictions. The offline
dataset3 consists instead of Dn−step = {(ŝt, ct+n)}

N−n
t=0

 where we predict the cumulant n steps
into the future from t, given the approximate state ŝt . The targets for GVF predictions
were returns Gt—discounted sums of cumulants into the future—whereas the targets for
n-step predictions are the cumulants exactly n steps in the future. Learning fw offline cor-
responds to a regression problem on this dataset, which can be solved using any standard
techniques. Similarly to OfflineTD, we use stochastic mini-batch gradient descent and the
Adam optimizer.

As a supervised learning problem, it is straightforward to update in deployment,
online. However, there is one interesting nuance here, that the targets are not observed
until n steps into the future. The online algorithm, therefore, has to wait to update
the prediction fw(ŝt) until it sees the outcome ct+n at time step t + n . This involves

3  The underlying data is the same as in the TD setting, but the targets are different, and so we explicitly
construct a supervised learning dataset from this underlying data.

5165Machine Learning (2024) 113:5151–5181	

1 3

maintaining a short buffer of size n, until we can obtain the pair (ŝt, ct+n) . This procedure
is summarized in Algorithm 4.

Though seemingly a minor issue, it is less ideal that the OnlineNStep algorithm has
to wait n steps to update the prediction for input ŝt . The TD algorithm for GVF predic-
tions, on the other hand, does not have to wait to update, because it bootstraps off of its
own estimates. Instead of using bootstrapping, we could have used a Monte Carlo algo-
rithm, that regresses ŝt towards computed returns, turning this into a supervised learning
problem like for the n-step time series problem. However, it has been shown that being
able to update immediately can result in faster tracking (Sutton et al., 2007; Sutton and
Barto, 1998), and typically TD algorithms are preferred to Monte Carlo algorithms. The
issue is worse for Monte Carlo than for n-step targets, because the returns extend fur-
ther than n steps into the future, but nonetheless, there is some suggestive evidence that
algorithms that need to wait could be disadvantaged.

N-step and GVF predictions are quite similar in the sense that their fundamental role
is to summarize the future of a time-series, which is easy to see when looking at real
data. Figure 8 plots the prediction targets for n-step predictions and GVF predictions
(learned by TD) on real sensor data.

One might wonder why we chose to use the same agent-state construction and neu-
ral network for the N-step targets, as for the GVF targets, when there are many time
series prediction approaches to chose from. Our primary reason is that we found this
supervised approach to be effective, in terms of forecasting accuracy. This finding
actually well-matches recent analysis, that highlights that for larger, multivariate time
series data, neural network approaches can be more effective than the simpler time-
series approaches (Hewamalage et al., 2021). Essentially, the nonlinear modeling power
of neural networks becomes useful in these bigger data regimes, whereas the simpler
methods remain preferable for the typically smaller datasets in the time series litera-
ture. We did test a time-series approach called NLinear that has been recently shown
to be competitive with state-of-the-art prediction methods, including methods based on

0 250 500 750 1000

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

0.6

0.8

1.0
← NStepTarget

Sensor Reading→

Membrane Pressure

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0 250 500 750 1000

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

0.6

0.8

1.0
Sensor Reading→

← Return

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

50

55

60

60

80

100

50

55

60

Fig. 8   Samples of Membrane Pressure sensor time-series and the corresponding idealized GVF and n-step
predictions. Consider the first row of subplots. Each subplot shows a different snippet of time: the dashed
black line depicts the time-series of Membrane Pressure and the purple line shows the corresponding pre-
diction target or ideal prediction. Since the purple line is an ideal prediction of the black line, the purple
line is shifted forward in time (to the left) revealing events before they occur in the dashed black time-
series. The second row, similar to the first, compares the pressure sensor reading time-series and its ideal
prediction for TD (labelled “return”) (Color figure online)

5166	 Machine Learning (2024) 113:5151–5181

1 3

transformers (Zeng et al., 2023; Zhang and Yan, 2023). The performance was worse
than our proposed approach for the N-step predictions, as we discuss in Sect. 6.

4.4 � Selecting hyperparameters for deployment

The above algorithms have many hyperparameters. Fortunately, we can use a simple vali-
dation strategy to select them, including the online stepsize parameters. The key idea is to
treat the validation just like a deployment scenario, where the agent updates in temporal
order on the dataset. For example, consider selecting the offline stepsize � and online step-
size � , assuming all other hyperparameters are specified (number of offline epochs is fixed,
etc.). Then we can evaluate each hyperparameter pair (�, �) by

1.	 splitting the dataset into a training and validation set,
2.	 pre-training with offline stepsize � on the training set,
3.	 updating online with the stepsize � on the validation set (in one pass) as if it is streaming,

recording the prediction accuracy as the agent updates.

The online prediction accuracy is computed as follows. For the current weights wt , the
agent gets ŝt and makes a prediction v̂t = fwt

(ŝt) . Because we (the experimenter) can peek
ahead in the validation set, we can compute the error errt = (v̂t − ct+n)

2 . The agent, of
course, cannot peek ahead, since it would not be able to do so in deployment. After going
through the validation set once, we have our set of errors. Note that we only evaluate wt on
the pair (ŝt, ct+n) . Right after this step, we update the weights to get wt+1 and then evaluate
the prediction under these new weights for the next step: v̂t+1 = fwt+1

(ŝt+1).
This validation procedure helps us pick a suitable pair of (�, �) precisely because valida-

tion mimics deployment. We want � to be chosen to produce a good initialization and we
want � to be chosen to facilitate tracking when updating online. For example, if � is too big
for tracking (or fine-tuning), then the validation error will be poor because the weights will
move away from a good solution while updating on the validation set and the errors will
start to get larger, resulting in a poor final average validation error. As another example, if
� is too small and does not converge on the training set within the given number of epochs,
then the initialization will not be as good and the validation errors will start higher than
they otherwise could, until the online updating starts to reduce them.

Though this hyperparameter selection approach is described specifically for n-step pre-
dictions with the offline and online stepsizes, it can be used for TD as well as for other
hyperparameters. The key point is that, even though the offline hyperparameters are only
used on the training set and the online hyperparameters only when updating on the vali-
dation, they are both jointly evaluated based on validation error. The primary difference
for TD is simply that the target is different. Again, because we the experimenter can look
ahead in the data, we can simply compute the return on the future data, and compute the
errors errt = (fwt

(ŝt) − Gt)
2.

5 � Experimental setup

We investigate a scenario where the agent pre-trains on offline data and it’s prediction
accuracy is then tested in deployment. The agent makes predictions on every time step in
deployment, and we can retroactively check the accuracy of those predictions once we see

5167Machine Learning (2024) 113:5151–5181	

1 3

the future—either after N steps or after enough steps to compute the return. For our experi-
ments, we simply collect a test set and then have the agent predict incrementally on this
test set, as if it is in deployment. This is perfectly equivalent to making predictions on the
real system, but importantly allows us to run different algorithms on the same deployment
(test) data. Further, it allows us to take our year of collected data, and select different time
periods to split into train and test.

We consider two different scenarios: learning on 4 days, testing on 1 day and learning
on 30 days, testing on 7 days. Most of our experiments consist of a dataset of five consecu-
tive days of data from the middle of November 2022. The first four days are used as the
offline training logs while the fifth day is used for the deployment phase. We use the final
4k steps of the offline training logs as the validation data, which is used for selecting hyper-
parameters. We also re-run all of experiments on another time period of five consecutive
days in May—chosen because water conditions will be notably different from November—
to ensure conclusions are not specific to November data.

For the final experiment, we use data from the duration of an entire month: the data
from the entire month of November is used as the offline training logs and the next week
(December 1st to December 7th) is used as the deployment data. The final 7 days of the
offline training logs are used as the validation set. In addition, we subsample, so that the
timescale of sensors readings is every 10 s, rather than every second. The goal of this final
experiment is to test the agent in a setting where deployment is further from training, likely
making it more important to update during deployment. Note also that this final setting is
more challenging, because the time horizon itself is further: a 100-step prediction for the
five day data is 100 s in the future, whereas it is 1000 s for this final experiment.

All the methods share similar settings. We train a 2-layer feed-forward neural network
with 512 units in each layer with ReLU activation functions. The input to the network is
an augmented observation vector of length 384, which is constructed by concatenating the
185 sensor values from the plant4 with 185 memory traces and an additional 14 inputs
encoding the plant mode (this is described in detail in Sect. 4 and Appendix A). In total,
the network contains 722,945 weights. In the experiments that use five days of data, this
network is optimized for 4000 epochs using the Adam optimizer with an L2 weight decay
rate of � = 0.003 and a batch size of 512, in the offline phase. After the offline training
phase ends, we save the optimizer state variables and use them to initialize the optimizer
during the deployment phase. In deployment, the algorithms update using one sample at a
time, and use a different online step-size.

For all the methods we use the validation procedure described in Sect. 4.4
to select the step-size parameter. We swept over offline learning rates
� ∈ {1�10−3, 1�10−4, 1�10−5, 1�10−6, 1�10−7} and online learning rates
� ∈ {1�10−4, 1�10−5, 1�10−6, 1�10−7, 1�10−8} . The validation procedure is done sepa-
rately for each algorithm and sensor.

4  The raw sensor vector was length 480. We removed all constant sensor readings, leaving 185 sensors.

5168	 Machine Learning (2024) 113:5151–5181

1 3

6 � Experiments and results

A natural first question is can we predict the time series well in deployment, given the size,
complexity, and partially observable characteristics of our data. From there we contrast the
GVF predictions to n-step predictions, to better understand the GVF results relative to a
well-understood multistep prediction. Finally, we investigate one of the key claims in this
work: does learning in deployment help or is offline learning all we need?

GVF predictions are accurate in deployment The object of our first set of results is to
gain some intuition about GVF predictions. Although widely used in RL to model the util-
ity or value of a policy, exponentially weighted predictions are uncommon. In Fig. 9 we
visualize predictions from the OnlineTD approach5 on one sensor at three different periods
of time in deployment. Here we plot the cumulant (sensor value to be predicted into the
future), the prediction, and the return—our stand-in for an idealized prediction. The time
series of the return changes before the cumulant, because the return summarizes the future
values of the cumulant. A good prediction should closely match the return as we see in the
figure.

In the middle subplot of Fig. 9 we see a large perturbation in the cumulant correspond-
ing to a difficult to predict event. This event, a maintenance clean, happens in the early
morning. This causes a large increase in pressure on the filter, and unlike the vast majority
of the training data, this increase is sustained for a long period of time. We can see the pre-
diction correctly anticipates this event but does not get the precise shape of the prediction
correct.

The particular time of year had a minimal impact on the quality of predictions learned.
Figure 14, in the appendix is a replication of Fig. 9 with different training and deploy-
ment data, but the same sensor. We used the same architecture, preprocessing, and training
scheme as described in the previous section and we see the predictions closely match the
return as before.

0 200 400 600 800 1000
50

55

60

M
em

br
an
e
Pr
es
su
re

Early in Deployment

0 1000 2000 3000 4000 5000

60

80

100
← Cumulant
← Return

TD →

Maintenance Clean Event

0 1000 2000 3000 4000 5000
50

55

60

Late in Deployment

0.5

0.6

0.7

0.6

0.8

1.0

0.5

0.6

0.7

Fig. 9   Predictions of the filter membrane pressure roughly 100 s into the future. The plot shows the pres-
sure sensor in green labelled cumulant (whose magnitude corresponds to the right y-axis). We show three
snippets of the deployment data. The first subplot shows (on the x-axis) a thousand time steps (seconds)
at the beginning of deployment. The middle subplot shows data during a maintenance clean, and the last
subplot features data near the end of the deployment phase (24 h later). Each subplot highlights a different
characteristic pattern in pressure change. The blue curve shows the TD prediction, first trained offline, then
updated in deployment. The return represents the ideal prediction and is plotted in black. Note both the TD
prediction and the return use the left blue axis. The TD predictions tightly match the target’s pattern in all
three scenarios (Color figure online)

5  All of our results are with pre-training, as this performed significantly better than without using the
offline data at all. This result is to be expected. Furthermore, our OnlineTD algorithm with pre-training also
leverages the offline data to automatically set all hyperparameters, providing a fully specified algorithm.
The conclusion for our setting is that it simply makes the most sense to leverage offline data, rather than
learning from scratch.

5169Machine Learning (2024) 113:5151–5181	

1 3

Comparing GVF and n-step predictions To the uninitiated, GVF predictions can seem
somewhat alien. To help calibrate our performance expectations, and provide a point of
comparison, we also learned and plotted the more conventional 100-step predictions of
future membrane pressure in deployment in Fig. 10. We chose a horizon of 100 steps to
provide rough alignment with the horizon of a � = 0.99 GVF prediction. The horizon for a
GVF prediction is typically said to be about 1

1−�
 (Sutton et al., 2011). The figure shows the

n-step prediction and the GVF prediction on the same segments of data in deployment.
The plot of the n-step prediction and the shifted cumulant (labelled NStep Target)

should align if the predictions are accurate. At least for membrane pressure, the GVF pre-
dictions better match their prediction target (the return) compared with n-step predictions.

To get a better sense of the quality of these learned predictions, we also compared
against a simple linear baseline commonly used in time-series forecasting. This method
called NLinear has been recently shown to be competitive with state-of-the-art prediction
methods, including methods based on transformers (Zeng et al., 2023; Zhang and Yan,
2023). NLinear simply learns a linear map from a history of the normalized sensor values
to the n-step future target. We experimented with a short history length (336) closer to the
length of the prediction horizon ( n = 100 ), and a much longer history (4000). The much
longer history performed better, but generally replicated the periodicity of the sequence in
its future predictions, overall leading to much worse performance compared to our n-step
baseline. The results can be found in Fig. 15 in the Appendix.

Generally, across sensors, the learned GVF predictions are smoother than their n-step
counterparts as shown in Fig. 11. This is perhaps to be expected because the � weighting in
the GVF prediction targets smooths the raw sensor data. If there are sharp, one-time-step
spikes, as we see in the Inlet Pressure date, the n-step target itself will be spikey—that is,
the ideal prediction is not smooth. Otherwise, the main objective of Fig. 11 is to allow you
the reader to better understand GVF predictions by simply visually comparing them with
n-step predictions—something that is easy to interpret and you might have more natural
intuitions for.

One perhaps surprising conclusion from Fig. 11 is that the GVF and n-step predictions
look surprisingly similar, and thus it is reasonable to ask if there are reasons to prefer one

0 200 400 600 800 1000

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

0.6

0.8

1.0
← NStep100

← NStep
Target

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0 200 400 600 800 1000
50

55

60

0 1000 2000 3000 4000 5000

60

80

100

← Return

TD →

0 1000 2000 3000 4000 5000

50

55

60

M
em

br
an
e
Pr
es
su
re

Fig. 10   Comparing GVF predictions (blue) and n-step predictions (purple) of filter membrane pressure. The
top row shows the n-step predictions on the same three segments of deployment data used in Fig. 9. As
before, the x-axis is time-steps or seconds. Here we only plot the prediction (labelled TD and NStep100),
and the ideal prediction (labelled return and NStep target). Although both types of predictions are well
aligned with their respective targets, however, sometimes the n-step prediction is off. Figure 11 includes the
results for several other sensors (Color figure online)

5170	 Machine Learning (2024) 113:5151–5181

1 3

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6 NStep→
Target

NStep100→

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

10

20

30

40

50

0 1000 2000 3000 4000 5000
0

20

40 TD→

Return→

0 1000 2000 3000 4000 5000
0

20

40

In
le
t
Fl
ow

Tr
an
sm

itt
er

0 200 400 600 800 1000

0.12

0.13

0.14

0.15

0.16

0 1000 2000 3000 4000 5000
0.10

0.15

0.20

0.25

0.30

0 1000 2000 3000 4000 5000

0.15

0.20

0.25

0 200 400 600 800 1000
12

13

14

0 1000 2000 3000 4000 5000

15

20

0 1000 2000 3000 4000 5000

12

14

16

18

20

In
flu
en
t
Te
m
pe
ra
tu
re

0 200 400 600 800 1000
0.0

0.5

1.0

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

0 200 400 600 800 1000

20

40

60

0 1000 2000 3000 4000 5000
0

20

40

60

0 1000 2000 3000 4000 5000
0

20

40

60

In
le
t
Pr
es
su
re

0 200 400 600 800 1000

0.2

0.4

0.6

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0 200 400 600 800 1000

30

40

50

60

0 1000 2000 3000 4000 5000

30

40

50

60

0 1000 2000 3000 4000 5000

30

40

50

60

D
ra
in

R
ej
ec
t
Pr
es
su
re

Fig. 11   Comparing n-step predictions (Row 1) and GVF Predictions (Row 2) across several sensors. The
structure of this plot mirrors Fig. 10 (Color figure online)

5171Machine Learning (2024) 113:5151–5181	

1 3

to the other. From a performance perspective, we compare the two in Fig. 12 reporting the
Normalized Mean Squared Error (NMSE) over the deployment data:

and x denotes the exponentially weighted moving average of the squared GVF prediction
error over the deployment data. Similarly, �2(Gt) denotes the variance of the returns up to
time t computed using an exponentially weighted variant of Welford’s online algorithm
(Welford, 1962). The NMSE is equivalent to the variance unexplained and is a simple ratio
measure of the MSE of the predictor to the MSE of the mean prediction. NMSE less than
one indicates that the prediction explains more variance in the data than a mean prediction.
We use the exponential moving average variants of these measures because our data is non-
stationary. Finally, NMSE for the n-step prediction can be computed by replacing Gt with
o
[i]

t+100
 in the above equations. Across five sensors, the NMSE is lower for GVF predictions

compared with n-step predictions, as shown in Fig. 12.
Algorithmically, GVF predictions are interesting for several reasons. GVF predic-

tions can be updated, via TD, online and incrementally from a stream of data, whereas
n-step predictions involve storing the data and waiting 100 steps until the prediction tar-
gets are observed. The longer the prediction horizon, the longer the system must wait
without updating the predictions in between. In contrast, TD methods by their recursive
construction have memory and computational requirements independent of the predic-
tion horizon—independent of � . These points highlight the potential of GVF predictions
for time-series prediction, as an additional choice for multistep predictions. For any given
application, the ultimate choice of prediction type and learning method will be driven by
many factors.

NMSEt ≐
MSEt

𝜎2(Gt)
where MSEt ≐ (v̂t − Gt)

2

Fig. 12   Standard box plots generated using the sequences of Normalized MSE observed throughout the
entirety of the deployment data for GVF and n-step predictions on 5 different sensors. The horizontal line in
the middle denotes the median value. The top and bottom box boundaries represent the 75th and 25th per-
centiles, respectively. The whisker boundaries are drawn at the data point that is located closest to the dis-
tance of 1.5 times the Interquartile Range. Note that the NMSE values for TD and NStep100 are not directly
comparable since their prediction targets are different. However, in both cases, it is desirable to have a lower
NMSE value. The outliers are not plotted in order to make the visualization easier (Color figure online)

5172	 Machine Learning (2024) 113:5151–5181

1 3

Mitigating partial observability via online adaption As shown extensively in Sect. 2,
the data from our plant is highly partially observable, appearing non-stationary when plot-
ted. For the smaller dataset we used in the experiments so far, however, we find that the
agent trained only on offline data predicts the deployment data well. This outcome is not
surprising because the training data was collected from only four days of operation and
the deployment was the following 24-hour period. It is reasonable to expect that the data
is mostly stationary during this period since there would be no major seasonal weather
changes, unexpected events like fires are rare, and sensor fouling takes weeks to show up in
the data stream.

To highlight the need for online learning and demonstrate how changes in the data can
significantly impact non-adaptive approaches, we used a dataset of 23 days for training, 7
days of validation followed by the next 7 days treated as the deployment phase. In order
to reduce the size of this dataset, we sub-sample to a rate of once for every 10 s, rather
than every second. This also makes the prediction task harder: now a 100 step prediction
corresponds to 1000 s. Figure 13 compares GVF predictions of a frozen pre-trained agent
with the online TD agent that was pre-trained on the sample data but continues to learn
in deployment. Due to the differences in the training data and the deployment data, both
predictors start far from the ideal prediction (the return), but only online TD can adjust as
shown in the first subplot. Throughout the remainder of the deployment data online TD
predictions continued to match their targets.

This result not only highlights when online methods can be beneficial but also mimics a
fairly realistic deployment scenario. Oftentimes, when working with real systems, we can-
not always access the most recent data. An industrial partner might have limited data logs;
or sometimes technical problems cause logs to be lost. In our specific application, water
treatment, the training data might be out of date because the plant could have been out of
commission. Regardless of the reason, it is useful that simple online methods like TD can
adapt to such situations.

We pre-trained the Influent Temperature predictions for 25,000 epochs and that of
Membrane Pressure for 50,000 epochs. Due to resource constraints, the hyper-parameter

TD
OfflineTD

Return

Fig. 13   OfflineTD and OnlineTD predictions of Influent Temperature and Membrane Pressure on deploy-
ment data a week after training data had ended. We sub-sample the data at the rate of 1 sample per 10 time-
steps. Both agents are trained offline on data from November 1st to November 23rd and validated using the
data from November 24th to November 30th. The deployment data was taken from a 7-day period from
December 1st to December 7th. Mirroring previous figures, the x-axis reports time steps (in tens of sec-
onds) in deployment. In this case, we expect a significant distribution shift between training and deploy-
ment data. The result clearly shows this, both predictors start off far from the ideal target (return); predic-
tions updated online in deployment (OnlineTD) can close the gap (Color figure online)

5173Machine Learning (2024) 113:5151–5181	

1 3

selection is done differently in this experiment: we swept over offline learning rates
� ∈ {1�10−5, 1�10−6, 1�10−7} and saved the network with the lowest normalized MSE on
the training data. Afterwards, we used the best saved network and swept over 20 online
learning rates � ∈ [1�10−3, ..., 2�10−8] range generated through a geometric progression
with a common ratio of 0.5 on the validation data.

7 � Conclusion and future work

In this paper we took the first steps toward optimizing and automating water treatment on
a real plant. Before we can hope to control such a complex industrial facility, we must first
ensure that learning of any kind is feasible. This paper represents such a feasibility study.
We provided extensive visualization and analysis of our plant’s data, highlighting how it
generates a large, high-dimensional data stream that exhibits interesting structure at the
second, minute, day, and month timescales. Unlike the data commonly used in RL bench-
marks, ours is subject to seasonal trends, and mechanical wear and tear, making it highly
non-stationary. Through a combination of feature engineering and extensive offline pre-
training on the operator data, we were able to learn accurate multi-step predictions encoded
as GVFs. Compared with classical n-step methods used in time-series predictions, the GVF
predictions were more accurate and could be learned incrementally in deployment.

The next steps for this project involve control: automating subproblems within water
treatment. There are numerous such subproblems, for example, controlling the rate at
which chemicals are added in pre-treatment. Backwashing is also promising because it is,
by far, the most energy-intensive part of the operation. We could control the duration of
backwashing or how often to backwash. At the lowest level, we can adapt the parameters of
the PID controllers that control the pumps during backwashing. Classical PID controllers
are not sensitive to the state of the plant; they are tuned when the plant is first commis-
sioned and can become uncalibrated over time.

Algorithmically, we plan to investigate using our learned predictions for control,
directly. Traditionally, one would define a reward function and use a reinforcement learn-
ing method such as Actor-Critic to directly control aspects of the plant operation. These
methods are notoriously brittle and difficult to tune. A more practical approach is to use the
predictions to directly build a controller. Prior work has explored using learned predictions
inside basic if-then-else control rules to control mobile robots (Modayil and Sutton, 2014).
The advantage of this approach is that the control-rules are easy to explain to human opera-
tors, but since control is triggered by predictions that are continually updated in deploy-
ment the resultant controller adapts to changing conditions. An extension of this idea is to
use GVF predictions—like the ones we learned in this work—as input to a neural-network
based RL agent, similarly to how it was done for autonomous driving (Graves et al., 2020;
Jin et al., 2022). This work provides the foundations for these next steps in industrial con-
trol with RL.

Appendix A: Details on construction of state

As discussed in Sect. 2, learning directly on the raw data from a Water Treatment Plant
(WTP) is very challenging due to the noisy, stochastic and partially-observable nature
of the data. In addition to this, different sensors operate at different timescales and

5174	 Machine Learning (2024) 113:5151–5181

1 3

frequencies; we summarize some of the sensors in Table 2. In order to minimize the
effect of these issues on the predictions, we take a series of preprocessing steps on the
raw data that are described in the sections below.

Note that we do not have significant missing data issues. Our system rarely misses
sensor readings. However, in the rare case where we do have a missing value, we sim-
ply use zero-imputation and fill in the missing values with zeros.

Table 2   Summary of a few sensors measuring pump speeds, setpoints valves, blowers, and PID control

All of these combine to form the input to our learning system

Sensor name Measures

Feed flow PID PID control for feed flow
Pump flow PID PID control for feed/drain pump flow
Permeate pump flow PID PID control for permeate pump flow
Feed water sample Condition of feed water sampling valve, indicating if it is

open or not
Post flocculation sample Condition of post flocculation sample isolation valve,

indicating if it is open or not
Process/permeate pump control speed output Speed control for process/permeate pump
Sulphuric acid pump dose speed Speed of sulphuric acid pump dosing
Hypochlorite pump Hypochlorite pump dosing
Sodium hydroxide pump dose speed Sodium hydroxide pump dosing
Citric acid pump Citric acid pump dosing
Feed inlet valve Condition of feed inlet valve, indicating if it is open or

not
Feed/waste pump inlet Condition of feed/waste pump inlet valve, indicating if it

is open or not
Feed/waste pump outlet Condition of feed/waste pump outlet valve, indicating if it

is open or not
Membrane tank outlet valve Condition of membrane tank outlet valve, indicating if it

is open or not
Membrane tank recirculation Valve Condition of membrane tank recirculation valve, indicat-

ing if it is open or not
Permeate pump recirculation Valve Condition of permeate pump recirculation valve, indicat-

ing if it is open or not
Permeate outlet value Condition of permeate outlet valve, indicating if it is open

or not
BP/CIP tank inlet valve Condition of cleaning tank inlet valve, indicating if it is

open or not
BP/CIP tank recirculation valve Condition of cleaning tank recirculation valve, indicating

if it is open or not
Blower inlet valve Condition of inlet blower’s valve (A/B/C), indicating if it

is open or not
Membrane aeration blower control speed output Control speed output of membrane aeration blower
Aeration controller Mode of the aeration (cyclic, constant, etc.)
Plant mode Mode of the plant (production, backwashing, etc.)

5175Machine Learning (2024) 113:5151–5181	

1 3

A.1 Categorical observations

Some of the observations are recorded in the form of discrete categorical variables as
opposed to continuous real numbers. One example is the observation which records the
current mode of the plant. For such observations, we encode them in a one-hot vector for-
mat. For a categorical observation which can only take on values from one of k categories:
we convert it into a binary vector of size k in which only the corresponding index of the
category is set to 1.

A.2 Data normalization

Since different sensors have different ranges, we normalize their values into the [0, 1]
range. For each individual sensor value o[i]t in the observation vector, we compute the mini-
mum o[i]

min
 and maximum o[i]

max
 using the logs over the duration of a previous year, where i is

an index within the observation vector. Afterwards, for every discrete time-step t = 1, 2,… ,
in our dataset, we compute the normalized sensor value o�[i]

t
 as:

A.3 Encoding time of day

The observations contain the information regarding the current time of the day in sec-
onds. This is important since there are certain events that happen at a particular time of
the day. Additionally, there are some events that are repeated at regular intervals. Let
S = [s0, s1, s2,…] denote the time-stamp in seconds for that day, then we encode it using
sine and cosine transforms as:

where 86,400 is the total number of seconds present within a day. It is the maximum value
that st can take.

A.4 Encoding plant mode length

Understanding which mode the plant is in, and when the mode change will happen is cru-
cial for the agent. This information is only available as a binary indicator, as mode value
1 against a certain mode indicates that the plant is currently in this mode, while it is 0
otherwise. This limitation to binary indication adds to the partial observability inherent in
the state-space. We find that cyclically encoding the mode provides extra information that

(A1)o�
[i]

t
=

o
[i]
t − o

[i]

min

o
[i]
max − o

[i]

min

(A2)s
(sin)
t = sin

(

2�st

86400

)

(A3)s
(cos)
t = cos

(

2�st

86400

)

5176	 Machine Learning (2024) 113:5151–5181

1 3

alleviates this associated partial observability. Since the agent has access to when the mode
starts and ends as binary indicators, we utilize it to construct a cyclical thermometer encod-
ing of the mode.

For each mode indicator in our observation vector, we define two thermometers
w
[i]

sine
,w[i]

cos
∈ ℝ

7 initialized to zeros, and the total mode length m[i]

l
∈ ℝ . Let s be the times-

tamp in seconds. Since the mode is characterized with respect to an observation that is
observed at a certain time-step, we avoid explicitly denoting mode length with time-step
for clarity. At each time-step, the thermometers get filled up as:

These thermometers have sine and cosine waves between the start and end of each mode,
and their rotations about the period increase by a factor of 2j at every time-step.

A.5 State approximation and summarizing history

In order to make use of the historical information during predictions, we compute memory
traces of the observations. The state is constructed by appending these memory traces to
the original observation vector, in addition to the mode length and time of day described in
the above two sections. For each normalized observation o�[i]

t
 at time-step t, we compute its

memory trace z[i]t using:

where � is the trace decay rate hyper-parameter. All the memory traces are initialized with
zeros and are updated in an incremental manner when iterating over the dataset.

Appendix B: Additional results

In order to verify that our results are not dependent on the time of year that we use for
training, we perform an additional experiment with the same experimental setup that was
used to produce Fig. 9. The only difference between the experiment in Figs. 9 and 14 is that
the former is trained on the data from November, 2022 whereas the latter is trained on the

wsine[j] = sin

(

2j�

(

s

m
[i]

l

))

,wcos[j] = cos

(

2j�

(

s

m
[i]

l

))

(A4)z[i]
t
= �z

[i]

t−1
+ (1 − �)o�

[i]

t

TD

Return

Fig. 14   Predictions of the filter membrane pressure roughly 100 s into the future using data from May. This
plot mirrors Fig. 9. The architecture, preprocessing, learning algorithms, GVF prediction, and sensor pre-
dicted are all the same. The only difference is that Fig. 9 reports the predictions learned from data from
the month of November, and this plot uses data from May. As before, the TD predictions tightly match the
target’s pattern in all three scenarios (Color figure online)

5177Machine Learning (2024) 113:5151–5181	

1 3

data from May, 2023. These results show that the predictions closely match the return even
when the data is taken from a different period of time.

In Fig. 15, we evaluate NLinear and compare it with the N-step method the exact
same data as in Fig. 9. We used a prediction horizon of n=100 and a history length
(look-back window) of 4000 time-steps. We compare the NLinear results with the
N-step since both of these methods share the same prediction target i.e. the cumulant
value that is 100 steps into the future. These results showcase the limitations of the

NLinear100

NStep100

NStep Target

Fig. 15   N-step predictions of the filter membrane pressure roughly 100 s into the future learned using
NLinear. We show three snippets of the deployment data. The first subplot shows (on the x-axis) 1000 time-
steps (seconds) at the beginning of deployment. The middle subplot shows data during a maintenance clean,
and the last subplot features data near the end of the deployment phase (24 h later). Each subplot high-
lights a different characteristic pattern in pressure change. The blue curve shows the n = 100 step prediction
learned by NLinear: first trained offline, then updated in deployment. The return represents the ideal n-step
prediction and is plotted in black. The blue curve shows the n = 100 step prediction learned by our non-
linear n-step baseline described in Sect. 4.3 (Color figure online)

0 200 400 600 800 1000
50

55

60

M
em

br
an
e
Pr
es
su
re

← Return
TD →

TDReplay →

0 1000 2000 3000 4000 5000

60

80

100

0 1000 2000 3000 4000 5000
50

55

60

0 200 400 600 800 1000
12

13

14

In
flu
en
t
Te
m
pe
ra
tu
re

0 1000 2000 3000 4000 5000

15

20

0 1000 2000 3000 4000 5000

15

20

0 200 400 600 800 1000

40

60

D
ra
in

R
ej
ec
t
Pr
es
su
re

0 1000 2000 3000 4000 5000

40

60

0 1000 2000 3000 4000 5000

40

60

0 200 400 600 800 1000

20

40

In
le
t
Fl
ow

Tr
an
sm

itt
er

0 1000 2000 3000 4000 5000
0

20

40

0 1000 2000 3000 4000 5000
0

20

40

0 200 400 600 800 1000

25

50

In
le
t
Pr
es
su
re

0 1000 2000 3000 4000 5000
0

25

50

0 1000 2000 3000 4000 5000
0

50

Fig. 16   Comparing online TD and online TD with replay for GVF Predictions across several sensors. The
structure of this plot mirrors Fig. 10 (Color figure online)

5178	 Machine Learning (2024) 113:5151–5181

1 3

NLinear methods: they can only make correct predictions when there is a clear periodic-
ity within the data. Additionally, the look-back window size needs to be large enough so
that the linear layer can make future predictions according to the repeated past patterns.
As a result of this, linear methods are simply insufficient for learning a good prediction
model on our current dataset.

Appendix C: Comparing to TD with replay

We considered both the simpler online TD update in deployment, as well as using TD
with replay. The TD with replay algorithm is summarized in Algorithm 5. We found,
though, that they performed very similarly (see Fig. 16), so we used the simpler online
TD update in the main body.

Author Contributions  All authors made significant contributions to the project. Janjua, Shah, and Miahi
wrote all the code and ran all the experiments. White, White and Machado lead the project, helped write the
paper and make plots, and funded the work. All authors contributed to writing the paper.

Funding  This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant program and the Canada CIFAR AI Chairs program. Computational resources
provided by Digital Research Alliance of Canada.

5179Machine Learning (2024) 113:5151–5181	

1 3

Availability of data and materials  We are working with our industrial partner to open-source the data. This
requires approval from several levels including the town municipal government. We hope to have this done
by camera ready.

Code availability  We are working with our industrial partner to open-source the code. This requires approval
from several levels including the town municipal government. We hope to have this done by camera ready.
Naturally, we cannot open source any code involved in commercialization, and thus we are extracting the
algorithmic code for release.

Declarations 

Conflict of interest  Not applicable.

 Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra, S., Ponda, S. S., & Wang,
Z. (2020). Autonomous navigation of stratospheric balloons using reinforcement learning. Nature,
588(7836), 77–82.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014).
Learning phrase representations using RNN encoder-decoder for statistical machine translation. In
Conference on empirical methods in natural language processing.

Copeland, C., & Carter, N. T. (2017). Energy-water nexus: The water sector’s energy use (CRS Report No.
R43200, Washington).

Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empiri-
cal evidence from the nn3 competition on time series prediction. International Journal of Forecasting,
27(3), 635–660.

Dai, B., He, N., Pan, Y., Boots, B., & Song, L. (2017). Learning from conditional distributions via dual
embeddings. In Artificial intelligence and statistics (pp. 1458–1467). PMLR.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., & Song, L. (2018). SBEED: Convergent rein-
forcement learning with nonlinear function approximation. In International conference on machine
learning.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B. D., Carpanese, F., Ewalds, T., Hafner, R., Abdol-
maleki, A., de Las Casas, D., Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli,
M., Kay, J., Merle, A., Moret, J., & Riedmiller, M. A. (2022). Magnetic control of tokamak plasmas
through deep reinforcement learning. Nature, 602(7897), 414–419.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research, 6, 503–556.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M., Novikov, A., Ruiz, F.
J. R., Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis, D., & Kohli, P. (2022). Discovering faster
matrix multiplication algorithms with reinforcement learning. Nature, 610(7930), 47–53.

http://creativecommons.org/licenses/by/4.0/

5180	 Machine Learning (2024) 113:5151–5181

1 3

Graves, D., Nguyen, N. M., Hassanzadeh, K., & Jin, J. (2020). Learning predictive representations in auton-
omous driving to improve deep reinforcement learning. CoRR arXiv:​2006.​15110.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International conference on machine learning.

Hausknecht, M. J., & Stone, P. (2015). Deep recurrent Q-learning for partially observable MDPs. In AAAI
fall symposia.

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecast-
ing: Current status and future directions. International Journal of Forecasting, 37(1), 388–427.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Jin, J., Graves, D., Haigh, C., Luo, J., & Jagersand, M. (2022). Offline learning of counterfactual predic-

tions for real-world robotic reinforcement learning. In International conference on robotics and
automation (ICRA) (pp. 3616–3623).

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International confer-
ence on learning representations (ICLR).

Lange, S., Gabel, T., & Riedmiller, M. A. (2012). Batch reinforcement learning. 12, 45–73.
Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and

perspectives on open problems. CoRR arXiv:​2005.​01643.
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination

for robotic grasping with deep learning and large-scale data collection. International Journal of
Robotics Research, 37(4–5), 421–436.

Luo, J., Paduraru, C., Voicu, O., Chervonyi, Y., Munns, S., Li, J., Qian, C., Dutta, P., Davis, J. Q., Wu,
N., Yang, X., Chang, C., Li, T., Rose, R., Fan, M., Nakhost, H., Liu, T., Kirkman, B., Altamura, F.,
Cline, L., Tonker, P., Gouker, J., Uden, D., Bryan, W. B., Law, J., Fatiha, D., Satra, N., Rothenberg,
J., Carlin, M., Tallapaka, S., Witherspoon, S., Parish, D., Dolan, P., Zhao, C., & Mankowitz, D. J.
(2022). Controlling commercial cooling systems using reinforcement learning. CoRR arXiv:​2211.​
07357.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). The M5 competition: Background, organiza-
tion, and implementation. International Journal of Forecasting, 38(4), 1325–1336.

Mandhane, A., Zhernov, A., Rauh, M., Gu, C., Wang, M., Xue, F., Shang, W., Pang, D., Claus, R., Chi-
ang, C., Chen, C., Han, J., Chen, A., Mankowitz, D. J., Broshear, J., Schrittwieser, J., Hubert, T.,
Vinyals, O., & Mann, T. A. (2022). MuZero with self-competition for rate control in VP9 video
compression. CoRR arXiv:​2202.​06626.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., Lee, Y.-J., Johnson, E.,
Pathak, O., Nazi, A., Pak, J., Tong, A., Srinivasa, K., Hang, W., Tuncer, E., Le, Q. V., Laudon, J.,
Ho, R., Carpenter, R., & Dean, J. (2021). A graph placement methodology for fast chip design.
Nature, 594(7862), 207–212.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., & Ostrovski, G. (2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540), 529–533.

Modayil, J., & Sutton, R. S. (2014). Prediction driven behavior: Learning predictions that drive fixed
responses. In Workshops at the 28th AAAI conference on artificial intelligence.

Modayil, J., White, A., & Sutton, R. S. (2014). Multi-timescale nexting in a reinforcement learning
robot. Adaptive Behavior, 22(2), 146–160.

Mozer, M. C. (1989). A focused backpropagation algorithm for temporal pattern recognition. Complex
Systems, 3(4), 137–169.

Patterson, A., White, A., & White, M. (2022). A generalized projected Bellman error for off-policy value
estimation in reinforcement learning. Journal of Machine Learning Research, 23(1), 6463–6523.

Pietquin, O., Geist, M., Chandramohan, S., & Frezza-Buet, H. (2011). Sample-efficient batch reinforce-
ment learning for dialogue management optimization. ACM Transactions on Speech and Language
Processing, 7(3), 7–1721.

Rafiee, B., Abbas, Z., Ghiassian, S., Kumaraswamy, R., Sutton, R. S., Ludvig, E. A., & White, A.
(2023). From eye-blinks to state construction: Diagnostic benchmarks for online representation
learning. Adaptive Behaviour, 31(1), 3–19.

Riedmiller, M. A. (2005). Neural fitted Q iteration—First experiences with a data efficient neural rein-
forcement learning method. In European conference on machine learning.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization
algorithms. CoRR arXiv:​1707.​06347.

Shortreed, S. M., Laber, E. B., Lizotte, D. J., Stroup, T. S., Pineau, J., & Murphy, S. A. (2011). Inform-
ing sequential clinical decision-making through reinforcement learning: An empirical study.
Machine Learning, 84(1–2), 109–136.

http://arxiv.org/abs/2006.15110
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2211.07357
http://arxiv.org/abs/2211.07357
http://arxiv.org/abs/2202.06626
http://arxiv.org/abs/1707.06347

5181Machine Learning (2024) 113:5151–5181	

1 3

Sutton, R. S., Koop, A., & Silver, D. (2007). On the role of tracking in stationary environments. In Pro-
ceedings of the 24th international conference on machine learning (pp. 871–878).

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., & Precup, D. (2011). Horde:
A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interac-
tion. In International conference on autonomous agents and multiagent systems (pp. 761–768).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning—An introduction. MIT Press.
Swaminathan, A., Krishnamurthy, A., Agarwal, A., Dudík, M., Langford, J., Jose, D., & Zitouni, I.

(2017). Off-policy evaluation for slate recommendation. In Advances in neural information pro-
cessing systems (NeurIPS).

Tao, R. Y., White, A., & Machado, M. C. (2023). Agent-state construction with auxiliary inputs. Transac-
tions on Machine Learning Research (TMLR).

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5), 674–690.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T.,
Agapiou, J. P., Jaderberg, M., & Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782), 350–354.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q −learning . Machine Learning, 8(3–4), 279–292.
Welford, B. (1962). Note on a method for calculating corrected sums of squares and products. Technomet-

rics, 4(3), 419–420.
Won, D.-O., Müller, K.-R., & Lee, S.-W. (2020). An adaptive deep reinforcement learning framework ena-

bles curling robots with human-like performance in real-world conditions. Science Robotics, 5(46),
9764.

Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023). Are transformers effective for time series forecasting?. In
AAAI conference on artificial intelligence.

Zhang, Y., & Yan, J. (2023). Crossformer: Transformer utilizing cross-dimension dependency for multivari-
ate time series forecasting. In The 11th international conference on learning representations.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	GVFs in the real world: making predictions online for water treatment
	Abstract
	1 Introduction
	2 The data of water treatment
	2.1 Wide, long, and fast data
	2.2 Sudden, unpredictable events
	2.3 Sensor drift and seasonal change
	2.4 The state of a water-treatment plant?

	3 Multi-step prediction
	3.1 Classical time-series forecasting
	3.2 GVFs and temporal difference learning

	4 Methods
	4.1 Constructing agent-state
	4.2 Algorithms for GVFs
	4.3 Algorithms for n-step predictions
	4.4 Selecting hyperparameters for deployment

	5 Experimental setup
	6 Experiments and results
	7 Conclusion and future work
	Appendix A: Details on construction of state
	A.1 Categorical observations
	A.2 Data normalization
	A.3 Encoding time of day
	A.4 Encoding plant mode length
	A.5 State approximation and summarizing history

	Appendix B: Additional results
	Appendix C: Comparing to TD with replay
	References

