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Abstract
In this paper we investigate the use of reinforcement-learning based prediction approaches 
for a real drinking-water treatment plant. Developing such a prediction system is a critical 
step on the path to optimizing and automating water treatment. Before that, there are many 
questions to answer about the predictability of the data, suitable neural network architec-
tures, how to overcome partial observability and more. We first describe this dataset, and 
highlight challenges with seasonality, nonstationarity, partial observability, and heterogene-
ity across sensors and operation modes of the plant. We then describe General Value Func-
tion (GVF) predictions—discounted cumulative sums of observations–and highlight why 
they might be preferable to classical n-step predictions common in time series prediction. 
We discuss how to use offline data to appropriately pre-train our temporal difference learn-
ing (TD) agents that learn these GVF predictions, including how to select hyperparameters 
for online fine-tuning in deployment. We find that the TD-prediction agent obtains an over-
all lower normalized mean-squared error than the n-step prediction agent. Finally, we show 
the importance of learning in deployment, by comparing a TD agent trained purely offline 
with no online updating to a TD agent that learns online. This final result is one of the first 
to motivate the importance of adapting predictions in real-time, for non-stationary high-
volume systems in the real world.
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1  Introduction

Learning in deployment is critical for partially observable decision-making tasks (Sutton 
et al., 2007). If the evolution of state transitions is driven by both the agent’s actions and 
state variables that the agent cannot observe, then the process will appear non-stationary 
to the agent. For example, an agent controlling chemical dosing in a water treatment plant 
may correctly learn the relationship between increasing chemicals to reduce turbidity in 
the water. However, inclement weather events can also impact water turbidity causing the 
agent’s prediction of future turbidity—and thus choices of chemical dosing—to be subop-
timal. One approach to mitigate this problem is to allow the agent to continually update its 
predictions and decision-making policies online in deployment.

Effective multi-step prediction forms the basis for decision-making in almost any rein-
forcement learning system. Classical value-based methods, such as Q-learning (Watkins 
and Dayan, 1992), construct a prediction of future discounted rewards in order to decide 
on what actions to take. Policy gradient methods such as PPO (Schulman et al., 2017) and 
SAC (Haarnoja et al., 2018) typically define the agent’s policy through an estimate of the 
value function. Thus in applications, a reasonable first step is to build a prediction learn-
ing system that can predict reward and sensor values far into the future. This is not only 
an important step to assess the feasibility of adaptive control but is also a useful first step 
because the tasks of feature engineering, network architecture design, optimization, and 
tuning of various hyperparameters will be shared and beneficial to both a prediction learn-
ing system and a full reinforcement learning control system.

There has been growing interest in moving RL techniques out of video games and into 
the real world. In many applications, such as chip design (Mirhoseini et al., 2021), matrix 
multiplication (Fawzi et al., 2022), and even video compression (Mandhane et al., 2022), 
the problem setting of interest is simulation. Another approach is to design and train an 
agent in simulation and then deploy a fixed controller, sometimes even in the real world. 
This approach has been used for example in navigating stratospheric balloons (Bellemare 
et  al., 2020), controlling plasma configurations inside a fusion reactor (Degrave et  al., 
2022), and robotic curling (Won et al., 2020).

In this paper, we study the application of machine learning techniques, specifically pre-
diction methods from reinforcement learning, on a real drinking-water treatment plant. In 
our setting, we do not have access to a high-fidelity simulator of the plant, nor the resources 
to commission one. This work explores the feasibility of adaptive learning systems in the 
real world. Instead of relying on access to a simulator our approach extensively leverages 
offline data for iterating design choices or pre-training the agent.

Closer to our work, recent work on automating HVAC control used an approach where 
the agent is first tuned on off-line data and then a learning controller is deployed that is 
updated once a day (Luo et al., 2022). In this work the authors explicitly avoided offline 
training on operator data, citing the well-known issues of insufficient action coverage. Nev-
ertheless, batch or off-line RL methods (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 
2012; Levine et al., 2020) have been successfully used in settings where a fixed policy or 
value function is extracted from a data-set, with several practical applications (Pietquin 
et al., 2011; Shortreed et al., 2011; Swaminathan et al., 2017; Levine et al., 2018).

Drinking-water treatment is basically a two-stage process, as depicted in Fig. 1. First, 
water is pumped into a large mixing tank where chemicals are added to cause dissolved 
solids to clump together. The next step is to pull the pretreated water through a filter 
membrane where only clean water molecules can pass through the filter membrane and 
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the solids and other continents remain. Periodically, the primary filter is cleaned by sim-
ply running the process backwards blasting the filter membrane clean: a process called 
backwashing. In Canada, the operation of a water-treatment plant can represent up to 
30% of a town’s municipal budget (Copeland and Carter, 2017).

Drinking-water treatment is uniquely challenging compared to other applications due 
to two key characteristics. The data produced by a water-treatment plant, like many real-
world systems, is high-dimensional, noisy, partially observable, and often incomplete, 
making online, continual prediction extremely challenging. In water treatment, the plant 
can operate in different modes, such as production and backwashing. The mode has a 
profound impact on data produced by the system and even changes the range of valid 
sensor readings. Second, the different components of the plant operate at different time-
scales and decisions have delayed consequences. For example, the chemical dosing rate 
is typically not changed more often than once a day, backwashing happens multiple 
times a day, and the pretreatment-tank mixing-rate can be adjusted continuously. Each 
one of these choices can result in changes in sensor readings over minutes—chemical 
dosing changes the water pressure on the filter within 30 min—to months—too much 
chemical dosing can degrade filter efficiency over the long run.

In this paper, we investigate multi-variate, multi-step prediction in deployment on a 
real system. We provide a detailed case study on water treatment, first demonstrating 
the inherent nonstationarity of the problem and the benefits of learning continuously 
in deployment. We show that using a simple trace-based memory to overcome partial 
observability, we can learn accurate multi-step predictions, called general value func-
tions (GVFs) (Sutton et al., 2011; Modayil et al., 2014), using temporal difference (TD) 
learning. Because GVFs can be learned with standard reinforcement learning algorithms 
like TD, they can easily be updated online, on every step. We show that updating online 
can significantly improve performance over only training from an offline log of data. 
The online prediction agent also benefits from this offline data, to pre-train the predic-
tions and to set the hyperparameters for updating online in deployment. Our approach 
allows us to have a fully specified online prediction agent—with hyperparameters auto-
matically selected using a simple modification on the standard validation procedure—
that continues to adapt and improve in deployment.

Finally, we also contrast these GVF multi-step predictions to the more classical 
predictions considered in time series prediction: n-step predictions. The primary goal 
of this comparison is to provide intuition: n-step predictions are a more common and 
widely understood approach to multi-step prediction, as compared to GVFs. Our goal 

Fig. 1   An illustration of the drinking-water treatment plant. The entire plant is divided into two main 
stages: pretreatment and filtration. The pretreatment stage is concerned with adding chemicals to the raw 
water, followed by the filtration stage where the water is pumped through filters for further purification 
(Color figure online)
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is to introduce GVF predictions to a wider audience, and hopefully motivate this addi-
tional modelling tool. Beyond this, we highlight that GVFs can have benefits over n-step 
predictions. The target for a GVF is typically smoother because it is an exponential 
weighting of future observations, rather than an observation at exactly n steps in the 
future. Consequently, we also expect this target to be lower variance and potentially 
simpler to learn. We find that GVF predictions have higher accuracy than the n-step 
predictions on our data, controlling for the same state encoding and network size, in 
terms of the normalized mean-squared error. Taken together, our work provides several 
practical insights on designing neural-network learning systems capable of learning in 
deployment.

2 � The data of water treatment

Like any industrial control process, a water treatment plant has the potential to generate 
an immense amount of data. Our system is instrumented with a large number of sensors 
reporting both (1) water chemistry throughout the treatment pipeline, and (2) properties 
of the mechanical components of the plant. Taken together these sensor readings form a 
long and wide time series with several interesting properties that make long-term predic-
tion difficult. In this section we highlight these properties with examples from a real plant, 
explaining how each makes long-term prediction challenging.

2.1 � Wide, long, and fast data

Our system reports 480 distinct sensor values at a rate of one reading per second produc-
ing a large time series. One year of data consists of over 31 million observations of the 
plant. In contrast, the recent M5 time-series forecasting competition used a dataset with 
42,840-dimensional observations and 1969 time-steps; over 84 million samples (Makrida-
kis et al., 2022). Using multiple years of water treatment data puts us on the same scale as 
state-of-the-art forecasting grande challenge problems. We summarize some of the sensors 
in Table 1, and provide more detail in Table 2.

Our data exhibits a coherent structure over the year, month, day and minute. In Fig. 2 
we plot incoming water temperature at three temporal resolutions. Mechanical systems like 

Table 1   A brief summary of 
different measurements each of 
the sensor type is responsible for 
working out

Sensor type Measures

Pressure Pressure on the membrane
Flowmeter Flow rate of the fluid
pH Acidity and alkalinity of the solution
Temperature Temperature of the water
Turbidity Turbidity of the water
Total organic carbon (TOC) Organic carbon in the water
Conductivity Ability to pass an electric current
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ours often support sampling at rates of 1 Hz or greater, whereas data sets commonly used 
in time-series forecasting are wide and short; typically sampled once a day.1 In water treat-
ment, high-temporal resolutions are relevant because the data can be noisy (as highlighted 
in Fig. 3) and averaging is lossy. In addition, if one were to change process set-points (the 
ultimate end-goal of prediction), this may require rapid adjustment (for example, adjusting 
PID control parameters during a backwashing operation).

2.2 � Sudden, unpredictable events

Our data exhibit substantial distribution shifts, largely due to unpredictable events. For 
example, Fig. 3 shows the impact of cleaning different sensors. Most of these sensors get 
physically dirty over time due to a variety of factors. Sometimes water gets accumulated in 
the sensor enclosure, or moisture develops on the physical sensors, causing the readings to 
become noisy and unreliable. The plant operators manually clean the sensors to make sure 
they are as noise-free as possible and are reliably operating. Often times the sensor patterns 
indicate that they have recently undergone cleaning. This change in pattern manifests itself 
as the sensor signal stabilizes over time post-cleaning.

A water treatment plant operates in different modes which dramatically impacts 
the data generated. The main modes of operation are production and backwash. In 
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Fig. 2   The many timescales of water treatment. Each subplot shows the incoming water temperature from 
the river at different temporal resolutions. Viewing left to right, if we look at temperature over the entire 
day (sub-sampled) we see a single outlier and an otherwise fluctuating baseline. In the middle subplot, 
looking at a single hour of data, we see the spike has more structure. Finally, the rightmost subplot shows 
one minute of data sampled at the fastest possible timescale of the system (no sub-sampling), which shows 
how in a short timescale measurements can even appear constant (Color figure online)
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Fig. 3   Raw values of some of the sensors before and after the cleaning. The black dotted line indicates 
when the sensors were manually cleaned by the plant operators. Note that the data is sub-sampled to avoid 
congestion in the plot (Color figure online)

1  Taking an extreme example, the well-known Sunspots dataset is unidimensional and contains 3240 data 
points.
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production, the water is drawn through the filter to remove containments and it is 
moved to storage. In backwashing—the process of cleaning the filters—water moves 
backward through the system from storage, through the filters and eventually into the 
waste (reject) drain. In Fig. 4 we can see the impact of these two modes across several 
sensors.

In our plant, mode change is driven either by a fixed schedule or human interven-
tion. Maintenance, for example, occurs every day at 4:30 am, triggering the Membrane 
Integration Test (MIT) mode, whereas backwashing occurs on a strict schedule. Sensor 
changes due to these mode changes should be predictable from the time series itself, 
however, more ad hoc operator interventions are better represented as unpredictable 
external events; for example, when the plant is shut down. In addition, unscheduled 
maintenance occurs periodically—it is conceivable that such maintenance could be pre-
dicted based on the state of the plant, but there are other constraints like staffing con-
straints that can drive mode change. Later we discuss how we encoded plant modes, 
which was key for successful prediction.

2.3 � Sensor drift and seasonal change

Water treatment is predominately driven by the conditions of incoming river water 
which changes throughout the year. These changes are driven by seasonal weather pat-
terns. In the dead of Winter, the river is frozen and cool, clean, low turbidity water flows 
under the ice into the intake valves. During the Spring thaw—called the freshet—snow 
and ice all along the watershed of the river melt, increasing volume, flow, turbidity, and 
organic compounds in the river. Early Summer is dominated by a mixture of melted 
snow and ice higher up in the mountains and heavy rains that cause second and third 
freshets. Over the Summer, precipitation reduces, causing the late Summer and Fall to 
exhibit similar patterns as the Winter. All of these patterns are clearly visible in Fig. 5.

Change also happens within a single day. In Fig. 6 we see how two different sensors 
evolve over a single day, on different days. As we can see in the plot of Feed Turbidity, 
some days are similar, but others, such as May 31, 2022, exhibit dramatically different 
dynamics. In some applications like HVAC control (Luo et al., 2022), it is sufficient to 
perform learning on a batch of data once a day. In water treatment, the sensor dynamics 
provide the opportunity to observe sensor changes throughout the day.

Fig. 4   Variation across modes of different sensors. For brevity, we only produce two important modes, 
namely production (PROD), and backwashing (BW). The top row corresponds to the production mode, 
while the bottom row corresponds to the backwashing mode. The x-axis of the backwash data (second row) 
is plotted over a much shorter time scale because backwash only lasts for a couple of minutes, whereas pro-
duction durations are much longer (Color figure online)
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2.4 � The state of a water‑treatment plant?

What information would we need to predict water treatment data many steps into the 
future, with high accuracy? The plots above paint a clear picture of a partially observable 
complex dynamical system. Consider the Spring freshet. The volume and flow of the river 
will be driven by weather patterns and by the snow accumulation all along the watershed 

Freshet

Freshet

Freshet

New
membrane

New
membrane

New
membrane

Cleaning #1

Cleaning #1

Cleaning #1

Cleaning #2

Cleaning #2

Cleaning #2

Influent
Temperature

Membrane
Pressure

Influent
Turbidity

Winter

Winter

Winter

Spring Summer Fall

Spring

Spring

Summer

Summer

Fall

Fall

Fig. 5   A year’s worth of data for three different sensors. These three sensors are representative of the 
impacts that seasonal variations, or changes in the physical state of plant’s components, have on the under-
lying telemetric stream of data. Note that the data is sub-sampled to avoid congestion in the plot. There are 
gaps in the data because the plant was down for maintenance (Color figure online)
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throughout the Winter. Digging deeper, the turbidity and other metrics are also driven by 
erosion and composition of the riverbed, which changes all the time. The chemical makeup 
of the water could spike if there is a change in farming practices in the area—water runoff 
from fields along the river. Even everyday things like a fire in the town can add huge pres-
sure demands on the plant—many plants have dedicated pumps just for fires.

In all the examples above, it would be impractical to sensorize these events so they 
could be detected in the plant. In fact, we would need to predict these events in advance of 
their occurrence (including the weather) in order to accurately predict our data in advance. 
Perhaps, we could simply make predictions based on the entire history of the time-series. 
The history would still only approximate the state, because we do not know the starting 
conditions: data from five and ten years ago. In addition, such an approach is not scalable 
if the end goal is to build a continual learning system that runs for years generating tens of 
millions of samples a year.

In the end, capturing the true underlying state is likely impossible and we must be con-
tent using learning methods that continue to learn in deployment in order to achieve accu-
rate prediction. Such methods track the changing underlying state of the plant. The idea 
is to use computation and extra processing of the recent data to overcome the limitations 
of the agent’s state representation (Sutton et al., 2007; Tao et al., 2023), similar to how an 
approximate model of the world can be used to deal with non-stationary tasks in reinforce-
ment learning. In the next section, we will discuss different algorithms for learning and 
tracking in deployment and later show their advantages on water-treatment data.

3 � Multi‑step prediction

In this paper we are interested in scalar predictions of multi-dimensional time-series, 
many steps into the future. On each discrete time-step, t = 1, 2, ... , the learning algorithm 
observes a new observation vector, ot ∈ ℝ

d , which form a sequence of vectors from the 
beginning of time.

We do not assume knowledge of the underlying process that generates the series. That is, 
the next generation of observation vector may depend not just on o0∶t , but also on other 
quantities not observable to the learning system. For example, the future turbidity of 
the river water is impacted by future weather which is not observable and generally not 
predictable.

The goal is to estimate some scalar function of the future values of the time-series on 
time-step t, given o0∶t . In this paper, we focus on classical n-step predictions from time-
series forecasting and exponentially weighted infinite horizon predictions commonly used 
in reinforcement learning, which we discuss in the following sections.

3.1 � Classical time‑series forecasting

The first prediction problem we consider is simply predicting a component of the time-
series on the next time-step, o[i]

t+1
 . We denote the i-th component of xt as x[i]t  . This scalar 

one-step prediction v̂t at time t can be approximated as a function of a finite history of the 
time-series:

o0∶t ≐ o0, o1, o2, ..., ot.
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where wt ∈ ℝ
k is the learned weights and � is the number of previous observation vectors 

used to construct the prediction. For a classical autoregressive model, fTS is a linear func-
tion of this history o[i]t−�∶t . More generally, fTS can be any nonlinear function, such as one 
learned by a neural network.

In order to predict more than one step into the future we can iterate a one-step prediction 
model. The naive approach is to simply feed the model’s prediction of the next observation 
into itself as input to predict the next step, now 2 steps into the future, and so on. For example 
a three-step prediction:

Notice how two components of the history of the time series have been replaced by esti-
mates. As we iterate the model beyond � steps into the future all the inputs to fTS will 
become model estimates.

Another approach is to directly learn a k-step prediction and avoid iterating altogether. One-
step models are convenient because they can be updated at every timestep. Unfortunately, if 
the one-step model is inaccurate the model produces worse and worse predictions as you iter-
ate it further. A direct method estimates a k prediction as a function of the history of the series:

In many applications, we are interested in multi-dimensional data and in predicting many 
steps in the future. We can go beyond auto-regressive approaches by simply considering 
these time series prediction problems as supervised learning problems. For example, we 
can learn a neural network fDE that inputs the last k multi-dimensional observation vec-
tors ot−k∶t and predicts o[i]

t+1+k
 , trained by constructing a dataset of pairs (ot−k∶t, o

[i]

t+1+k
) . We 

can also go beyond finite k-length histories, and use recurrent neural networks, which is 
becoming a more common practice in time series prediction (see Hewamalage et al. (2021, 
Sect. 2.3.1)). When we start using this supervised learning framing, we lose some of the 
classical strategies for dealing with correlation in the data, but in general, evidence is 
mounting that we can obtain improved performance (Crone et al., 2011; Hewamalage et al., 
2021).

3.2 � GVFs and temporal difference learning

In reinforcement learning, multi-step predictions are formalized as value functions. Here 
the objective is to estimate the discounted sum of all the future values of some observable 
signal, with discount � ∈ [0, 1) ∶

(1)v̂t ≐ fTS(o
[i]
t−𝜏∶t

,wt) ≈ o
[i]

t+1
,

(2)v̂t+2 ≐ fTS([o
[i]

t−𝜏∶t−1
, v̂t+1, v̂t],wt) ≈ o

[i]

t+3
.

(3)v̂t ≐ fDE(o
[i]
t−𝜏∶t

,wt) ≈ o
[i]

t+1+k
.

(4)Gt ≐

∞
∑

j=0

� jo
[i]

t+1+j
.
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Technically Gt summarizes the infinite future of the time-series, but values of o[i] closer to 
time t contribute most to the sum.2 These exponentially weighted summaries of the future 
automatically smooth the underlying data o[i]—potentially making estimation easier—and 
provide a continuous notion of anticipation of the future as discussed in Fig. 7. For this 
reason, they have been called “Nexting" predictions (Modayil and Sutton, 2014), but more 
generally were introduced as general value functions (GVFs) (Sutton et al., 2011), where 
they generalize the notion of a value by allowing any cumulant to be predicted beyond a 
reward.

GVF predictions can be learned using temporal difference learning. As before, the 
prediction is approximated with a parameterized function, fTD(st,w) ≈ Gt , where st is a 
summary of the entire series, o0∶t , up to time t. For example, we could use an RNN to 
summarize this history; we opt for an even simpler approach—memory traces—which we 
describe in Sect. 4.1. The prediction on time-step t is updated using the temporal-difference 
error

where � ∈ (0, 1] and ct ≐ o
[i]
t .

4 � Methods

In this paper, we investigate methods that can be pre-trained from offline logged data and 
perform fine-tuning in deployment. The algorithms we investigate can be used offline, 
online, or a combination of the two. Offline algorithms can randomly sub-sample and 
update from the offline data as much as needed (i.e. until the training loss converges). 
Online data, generated in the deployment phase can only be resampled from a replay buffer 
once it has been observed. Using the online data is restricted: the algorithms cannot look 
ahead into the future of the time-series, they must wait for each data point to become 

(5)wt ← wt + �(ct + �fTD(st,w) − fTD(st−1,w))∇fTD(st−1,w),
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Fig. 7   A sample time-series of tank level from a real water-treatment plant and an idealized prediction 
(labelled return). The x-axis is the time-step, corresponding to one second. The prediction is ideal in the 
sense that we can simply compute the exponentially weighted sum in Eq. (4) given a dataset—the idealized 
prediction is not the output of some estimation procedure. Later we will show learned predictions and how 
they match the ideal. Notice how the idealized prediction increases well before the time-series reaches its 
maximum value, and falls well before the time-series does. In this way, the idealized prediction at any point 
in time provides an anticipatory measure of the rise or fall of the data in the future. This is discussed exten-
sively in prior work (Modayil and Sutton, 2014), so we do not belabour the point here (Color figure online)

2  Note that we do not explicitly give the (partially observable) Markov decision process formalism because 
we do not need that precise notation to explain the concepts. Further, the predictions we consider are all on-
policy predictions, so we do not need to know the explicit decision-making policy in order to do the update. 
For this reason, we avoid introducing all the notation around actions and policies, since they will not be used.
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available step-by-step. After a sample is observed it can be resampled over and over via a 
replay buffer. In this section, we outline the algorithms, and how they can combine offline 
and online learning.

4.1 � Constructing agent‑state

These algorithms can be used in real-time, making and updating predictions live as the 
plant is operating. For simplicity in our experiments, we only simulate that setting here 
using a static offline dataset. The agent can iterate, in order, on the batch of offline data 
and it is equivalent to having made predictions live on the plant. The offline batch of data 
is Doffline = {(ot, ct+1, ot+1)}

N
t=1

 , where N is the total number of transitions, ot ∈ ℝ
d is the 

observation vector, ct+1 ∈ ℝ is the signal to predict or cumulant, ot+1 is the next observa-
tion vector.

The data, however, is partially observable and the agent should construct an approxi-
mate state. A typical approach used in machine learning is to use RNNs, to summarize 
history (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Hausknecht and Stone, 2015; 
Vinyals et al., 2019). However, we found for our sensor-rich problem setting, that a sim-
pler trace-based memory approach was just as effective and much easier to train. The gen-
eral idea is to use an exponentially weighted moving average of the observations; such an 
exponential memory trace has previously been shown to be effective (c.f. Mozer 1989; Tao 
et al. 2023; Rafiee et al. 2023). We include more explicit details on how we created our 
approximate state observation vector in Appendix A.

Once we have constructed this approximate state vector, which we denote ŝt ∈ ℝ
d+k , we 

then apply the algorithms directly on this ŝt without further considering history or state esti-
mation. In other words, we construct an augmented dataset Daugmented = {(ŝt, ct+1, ŝt+1)

N
t=1

} 
and apply our algorithms as if we have access to the environment state—namely as if we 
are in the fully observable setting. All the algorithms we consider use a neural network f 
to compute the prediction fwt

(ŝt) , where wt are the parameters of the neural network. The 
predictions may either be GVF predictions or n-step time series predictions, with the algo-
rithms described in the next two sections.

4.2 � Algorithms for GVFs

The goal for GVF predictions it to estimate the expected discounted sum of future cumu-
lants, as described in Sect. 3.2. The simplest approach is to simply use the textbook 1-step 
temporal difference (TD) learning (Sutton and Barto, 1998). Data is processed as a stream, 
one sample at a time. The approach is summarized in Algorithm 1.

We can also adapt this update to an offline dataset. We can use TD offline, making mul-
tiple passes over the data set, and updating the network weights via mini-batches. Here we 
follow the standard approach used in offline RL for the fully observable setting. In other 
words, we can treat each tuple (ŝt, ct+1, ŝt+1) separately, without having to keep the data in 
order. In contrast, if we were using a recurrent neural network, we would need to maintain 
the dataset order more carefully. In each epoch, we shuffle the dataset Daugmented and update 
the neural network using a mini-batch TD update. Algorithm 2 summarizes the approach.

We use the Adam optimizer (Kingma and Ba, 2015) to update with the mini-batch 
TD updates. We set all but the stepsize � to the typical default values: momentum 
parameter to 0.9, exponential average parameter to 0.99, and the small constant in the 
normalization to 10−4 . The algorithm returns the state of the optimizer—such as the 
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exponential averages of squared gradients and momentum—because our online variants 
continue optimizing online starting with this optimizer state.
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We expect purely offline methods to perform poorly in our non-stationary (partially 
observable) setting compared with those that also update in deployment. The offline data 
may not perfectly reflect what the agent will see in deployment, and, in general, tracking—
namely updating with the most recent data—can also help under partial observability.

We can combine the offline and online methods, by pre-training offline and then allow-
ing the agent to continue learning online. The primary nuance here is that we can either 
continue to use a replay buffer to update online or switch to the simplest online variant of 
TD that simply updates once per sample. We found that the simpler update was typically 
just as good as the variant using replay, so we use this simpler variant in this work. We 
summarize this procedure in Algorithm 3, and for completeness include the replay variant 
and results comparing to it in Appendix C.

It is worth mentioning that we could further improve these algorithms with the variety 
of advances combining TD and neural networks. TD methods can diverge when used with 
neural networks (Tsitsiklis and Van Roy, 1997), and several new algorithms have proposed 
gradient-based versions of TD that resolve the issue (Dai et al., 2017, 2018; Patterson et al., 
2022). In control, a common addition is the use of target networks, which fix the bootstrap 
targets for several steps (Mnih et al., 2015). We found for our setting that the simple TD 
algorithm was effective, so we used this simpler approach.
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4.3 � Algorithms for n‑step predictions

We can similarly consider the offline and online variants of n-step predictions. The offline 
dataset3 consists instead of Dn−step = {(ŝt, ct+n)}

N−n
t=0

 where we predict the cumulant n steps 
into the future from t, given the approximate state ŝt . The targets for GVF predictions 
were returns Gt—discounted sums of cumulants into the future—whereas the targets for 
n-step predictions are the cumulants exactly n steps in the future. Learning fw offline cor-
responds to a regression problem on this dataset, which can be solved using any standard 
techniques. Similarly to OfflineTD, we use stochastic mini-batch gradient descent and the 
Adam optimizer.

As a supervised learning problem, it is straightforward to update in deployment, 
online. However, there is one interesting nuance here, that the targets are not observed 
until n steps into the future. The online algorithm, therefore, has to wait to update 
the prediction fw(ŝt) until it sees the outcome ct+n at time step t + n . This involves 

3  The underlying data is the same as in the TD setting, but the targets are different, and so we explicitly 
construct a supervised learning dataset from this underlying data.
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maintaining a short buffer of size n, until we can obtain the pair (ŝt, ct+n) . This procedure 
is summarized in Algorithm 4.

Though seemingly a minor issue, it is less ideal that the OnlineNStep algorithm has 
to wait n steps to update the prediction for input ŝt . The TD algorithm for GVF predic-
tions, on the other hand, does not have to wait to update, because it bootstraps off of its 
own estimates. Instead of using bootstrapping, we could have used a Monte Carlo algo-
rithm, that regresses ŝt towards computed returns, turning this into a supervised learning 
problem like for the n-step time series problem. However, it has been shown that being 
able to update immediately can result in faster tracking (Sutton et al., 2007; Sutton and 
Barto, 1998), and typically TD algorithms are preferred to Monte Carlo algorithms. The 
issue is worse for Monte Carlo than for n-step targets, because the returns extend fur-
ther than n steps into the future, but nonetheless, there is some suggestive evidence that 
algorithms that need to wait could be disadvantaged.

N-step and GVF predictions are quite similar in the sense that their fundamental role 
is to summarize the future of a time-series, which is easy to see when looking at real 
data. Figure  8 plots the prediction targets for n-step predictions and GVF predictions 
(learned by TD) on real sensor data.

One might wonder why we chose to use the same agent-state construction and neu-
ral network for the N-step targets, as for the GVF targets, when there are many time 
series prediction approaches to chose from. Our primary reason is that we found this 
supervised approach to be effective, in terms of forecasting accuracy. This finding 
actually well-matches recent analysis, that highlights that for larger, multivariate time 
series data, neural network approaches can be more effective than the simpler time-
series approaches (Hewamalage et al., 2021). Essentially, the nonlinear modeling power 
of neural networks becomes useful in these bigger data regimes, whereas the simpler 
methods remain preferable for the typically smaller datasets in the time series litera-
ture. We did test a time-series approach called NLinear that has been recently shown 
to be competitive with state-of-the-art prediction methods, including methods based on 
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Fig. 8   Samples of Membrane Pressure sensor time-series and the corresponding idealized GVF and n-step 
predictions. Consider the first row of subplots. Each subplot shows a different snippet of time: the dashed 
black line depicts the time-series of Membrane Pressure and the purple line shows the corresponding pre-
diction target or ideal prediction. Since the purple line is an ideal prediction of the black line, the purple 
line is shifted forward in time (to the left) revealing events before they occur in the dashed black time-
series. The second row, similar to the first, compares the pressure sensor reading time-series and its ideal 
prediction for TD (labelled “return”) (Color figure online)
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transformers (Zeng et  al., 2023; Zhang and Yan, 2023). The performance was worse 
than our proposed approach for the N-step predictions, as we discuss in Sect. 6.

4.4 � Selecting hyperparameters for deployment

The above algorithms have many hyperparameters. Fortunately, we can use a simple vali-
dation strategy to select them, including the online stepsize parameters. The key idea is to 
treat the validation just like a deployment scenario, where the agent updates in temporal 
order on the dataset. For example, consider selecting the offline stepsize � and online step-
size � , assuming all other hyperparameters are specified (number of offline epochs is fixed, 
etc.). Then we can evaluate each hyperparameter pair (�, �) by 

1.	 splitting the dataset into a training and validation set,
2.	 pre-training with offline stepsize � on the training set,
3.	 updating online with the stepsize � on the validation set (in one pass) as if it is streaming, 

recording the prediction accuracy as the agent updates.

The online prediction accuracy is computed as follows. For the current weights wt , the 
agent gets ŝt and makes a prediction v̂t = fwt

(ŝt) . Because we (the experimenter) can peek 
ahead in the validation set, we can compute the error errt = (v̂t − ct+n)

2 . The agent, of 
course, cannot peek ahead, since it would not be able to do so in deployment. After going 
through the validation set once, we have our set of errors. Note that we only evaluate wt on 
the pair (ŝt, ct+n) . Right after this step, we update the weights to get wt+1 and then evaluate 
the prediction under these new weights for the next step: v̂t+1 = fwt+1

(ŝt+1).
This validation procedure helps us pick a suitable pair of (�, �) precisely because valida-

tion mimics deployment. We want � to be chosen to produce a good initialization and we 
want � to be chosen to facilitate tracking when updating online. For example, if � is too big 
for tracking (or fine-tuning), then the validation error will be poor because the weights will 
move away from a good solution while updating on the validation set and the errors will 
start to get larger, resulting in a poor final average validation error. As another example, if 
� is too small and does not converge on the training set within the given number of epochs, 
then the initialization will not be as good and the validation errors will start higher than 
they otherwise could, until the online updating starts to reduce them.

Though this hyperparameter selection approach is described specifically for n-step pre-
dictions with the offline and online stepsizes, it can be used for TD as well as for other 
hyperparameters. The key point is that, even though the offline hyperparameters are only 
used on the training set and the online hyperparameters only when updating on the vali-
dation, they are both jointly evaluated based on validation error. The primary difference 
for TD is simply that the target is different. Again, because we the experimenter can look 
ahead in the data, we can simply compute the return on the future data, and compute the 
errors errt = (fwt

(ŝt) − Gt)
2.

5 � Experimental setup

We investigate a scenario where the agent pre-trains on offline data and it’s prediction 
accuracy is then tested in deployment. The agent makes predictions on every time step in 
deployment, and we can retroactively check the accuracy of those predictions once we see 
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the future—either after N steps or after enough steps to compute the return. For our experi-
ments, we simply collect a test set and then have the agent predict incrementally on this 
test set, as if it is in deployment. This is perfectly equivalent to making predictions on the 
real system, but importantly allows us to run different algorithms on the same deployment 
(test) data. Further, it allows us to take our year of collected data, and select different time 
periods to split into train and test.

We consider two different scenarios: learning on 4 days, testing on 1 day and learning 
on 30 days, testing on 7 days. Most of our experiments consist of a dataset of five consecu-
tive days of data from the middle of November 2022. The first four days are used as the 
offline training logs while the fifth day is used for the deployment phase. We use the final 
4k steps of the offline training logs as the validation data, which is used for selecting hyper-
parameters. We also re-run all of experiments on another time period of five consecutive 
days in May—chosen because water conditions will be notably different from November—
to ensure conclusions are not specific to November data.

For the final experiment, we use data from the duration of an entire month: the data 
from the entire month of November is used as the offline training logs and the next week 
(December 1st to December 7th) is used as the deployment data. The final 7 days of the 
offline training logs are used as the validation set. In addition, we subsample, so that the 
timescale of sensors readings is every 10 s, rather than every second. The goal of this final 
experiment is to test the agent in a setting where deployment is further from training, likely 
making it more important to update during deployment. Note also that this final setting is 
more challenging, because the time horizon itself is further: a 100-step prediction for the 
five day data is 100 s in the future, whereas it is 1000 s for this final experiment.

All the methods share similar settings. We train a 2-layer feed-forward neural network 
with 512 units in each layer with ReLU activation functions. The input to the network is 
an augmented observation vector of length 384, which is constructed by concatenating the 
185 sensor values from the plant4 with 185 memory traces and an additional 14 inputs 
encoding the plant mode (this is described in detail in Sect. 4 and Appendix A). In total, 
the network contains 722,945 weights. In the experiments that use five days of data, this 
network is optimized for 4000 epochs using the Adam optimizer with an L2 weight decay 
rate of � = 0.003 and a batch size of 512, in the offline phase. After the offline training 
phase ends, we save the optimizer state variables and use them to initialize the optimizer 
during the deployment phase. In deployment, the algorithms update using one sample at a 
time, and use a different online step-size.

For all the methods we use the validation procedure described in Sect.  4.4 
to select the step-size parameter. We swept over offline learning rates 
� ∈ {1�10−3, 1�10−4, 1�10−5, 1�10−6, 1�10−7} and online learning rates 
� ∈ {1�10−4, 1�10−5, 1�10−6, 1�10−7, 1�10−8} . The validation procedure is done sepa-
rately for each algorithm and sensor.

4  The raw sensor vector was length 480. We removed all constant sensor readings, leaving 185 sensors.
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6 � Experiments and results

A natural first question is can we predict the time series well in deployment, given the size, 
complexity, and partially observable characteristics of our data. From there we contrast the 
GVF predictions to n-step predictions, to better understand the GVF results relative to a 
well-understood multistep prediction. Finally, we investigate one of the key claims in this 
work: does learning in deployment help or is offline learning all we need?

GVF predictions are accurate in deployment The object of our first set of results is to 
gain some intuition about GVF predictions. Although widely used in RL to model the util-
ity or value of a policy, exponentially weighted predictions are uncommon. In Fig. 9 we 
visualize predictions from the OnlineTD approach5 on one sensor at three different periods 
of time in deployment. Here we plot the cumulant (sensor value to be predicted into the 
future), the prediction, and the return—our stand-in for an idealized prediction. The time 
series of the return changes before the cumulant, because the return summarizes the future 
values of the cumulant. A good prediction should closely match the return as we see in the 
figure.

In the middle subplot of Fig. 9 we see a large perturbation in the cumulant correspond-
ing to a difficult to predict event. This event, a maintenance clean, happens in the early 
morning. This causes a large increase in pressure on the filter, and unlike the vast majority 
of the training data, this increase is sustained for a long period of time. We can see the pre-
diction correctly anticipates this event but does not get the precise shape of the prediction 
correct.

The particular time of year had a minimal impact on the quality of predictions learned. 
Figure  14, in the appendix is a replication of Fig.  9 with different training and deploy-
ment data, but the same sensor. We used the same architecture, preprocessing, and training 
scheme as described in the previous section and we see the predictions closely match the 
return as before.
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Fig. 9   Predictions of the filter membrane pressure roughly 100 s into the future. The plot shows the pres-
sure sensor in green labelled cumulant (whose magnitude corresponds to the right y-axis). We show three 
snippets of the deployment data. The first subplot shows (on the x-axis) a thousand time steps (seconds) 
at the beginning of deployment. The middle subplot shows data during a maintenance clean, and the last 
subplot features data near the end of the deployment phase (24 h later). Each subplot highlights a different 
characteristic pattern in pressure change. The blue curve shows the TD prediction, first trained offline, then 
updated in deployment. The return represents the ideal prediction and is plotted in black. Note both the TD 
prediction and the return use the left blue axis. The TD predictions tightly match the target’s pattern in all 
three scenarios (Color figure online)

5  All of our results are with pre-training, as this performed significantly better than without using the 
offline data at all. This result is to be expected. Furthermore, our OnlineTD algorithm with pre-training also 
leverages the offline data to automatically set all hyperparameters, providing a fully specified algorithm. 
The conclusion for our setting is that it simply makes the most sense to leverage offline data, rather than 
learning from scratch.
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Comparing GVF and n-step predictions To the uninitiated, GVF predictions can seem 
somewhat alien. To help calibrate our performance expectations, and provide a point of 
comparison, we also learned and plotted the more conventional 100-step predictions of 
future membrane pressure in deployment in Fig. 10. We chose a horizon of 100 steps to 
provide rough alignment with the horizon of a � = 0.99 GVF prediction. The horizon for a 
GVF prediction is typically said to be about 1

1−�
 (Sutton et al., 2011). The figure shows the 

n-step prediction and the GVF prediction on the same segments of data in deployment.
The plot of the n-step prediction and the shifted cumulant (labelled NStep Target) 

should align if the predictions are accurate. At least for membrane pressure, the GVF pre-
dictions better match their prediction target (the return) compared with n-step predictions.

To get a better sense of the quality of these learned predictions, we also compared 
against a simple linear baseline commonly used in time-series forecasting. This method 
called NLinear has been recently shown to be competitive with state-of-the-art prediction 
methods, including methods based on transformers (Zeng et  al., 2023; Zhang and Yan, 
2023). NLinear simply learns a linear map from a history of the normalized sensor values 
to the n-step future target. We experimented with a short history length (336) closer to the 
length of the prediction horizon ( n = 100 ), and a much longer history (4000). The much 
longer history performed better, but generally replicated the periodicity of the sequence in 
its future predictions, overall leading to much worse performance compared to our n-step 
baseline. The results can be found in Fig. 15 in the Appendix.

Generally, across sensors, the learned GVF predictions are smoother than their n-step 
counterparts as shown in Fig. 11. This is perhaps to be expected because the � weighting in 
the GVF prediction targets smooths the raw sensor data. If there are sharp, one-time-step 
spikes, as we see in the Inlet Pressure date, the n-step target itself will be spikey—that is, 
the ideal prediction is not smooth. Otherwise, the main objective of Fig. 11 is to allow you 
the reader to better understand GVF predictions by simply visually comparing them with 
n-step predictions—something that is easy to interpret and you might have more natural 
intuitions for.

One perhaps surprising conclusion from Fig. 11 is that the GVF and n-step predictions 
look surprisingly similar, and thus it is reasonable to ask if there are reasons to prefer one 
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Fig. 10   Comparing GVF predictions (blue) and n-step predictions (purple) of filter membrane pressure. The 
top row shows the n-step predictions on the same three segments of deployment data used in Fig. 9. As 
before, the x-axis is time-steps or seconds. Here we only plot the prediction (labelled TD and NStep100), 
and the ideal prediction (labelled return and NStep target). Although both types of predictions are well 
aligned with their respective targets, however, sometimes the n-step prediction is off. Figure 11 includes the 
results for several other sensors (Color figure online)
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Fig. 11   Comparing n-step predictions (Row 1) and GVF Predictions (Row 2) across several sensors. The 
structure of this plot mirrors Fig. 10 (Color figure online)
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to the other. From a performance perspective, we compare the two in Fig. 12 reporting the 
Normalized Mean Squared Error (NMSE) over the deployment data:

and x denotes the exponentially weighted moving average of the squared GVF prediction 
error over the deployment data. Similarly, �2(Gt) denotes the variance of the returns up to 
time t computed using an exponentially weighted variant of Welford’s online algorithm 
(Welford, 1962). The NMSE is equivalent to the variance unexplained and is a simple ratio 
measure of the MSE of the predictor to the MSE of the mean prediction. NMSE less than 
one indicates that the prediction explains more variance in the data than a mean prediction. 
We use the exponential moving average variants of these measures because our data is non-
stationary. Finally, NMSE for the n-step prediction can be computed by replacing Gt with 
o
[i]

t+100
 in the above equations. Across five sensors, the NMSE is lower for GVF predictions 

compared with n-step predictions, as shown in Fig. 12.
Algorithmically, GVF predictions are interesting for several reasons. GVF predic-

tions can be updated, via TD, online and incrementally from a stream of data, whereas 
n-step predictions involve storing the data and waiting 100 steps until the prediction tar-
gets are observed. The longer the prediction horizon, the longer the system must wait 
without updating the predictions in between. In contrast, TD methods by their recursive 
construction have memory and computational requirements independent of the predic-
tion horizon—independent of � . These points highlight the potential of GVF predictions 
for time-series prediction, as an additional choice for multistep predictions. For any given 
application, the ultimate choice of prediction type and learning method will be driven by 
many factors.

NMSEt ≐
MSEt

𝜎2(Gt)
where MSEt ≐ (v̂t − Gt)

2

Fig. 12   Standard box plots generated using the sequences of Normalized MSE observed throughout the 
entirety of the deployment data for GVF and n-step predictions on 5 different sensors. The horizontal line in 
the middle denotes the median value. The top and bottom box boundaries represent the 75th and 25th per-
centiles, respectively. The whisker boundaries are drawn at the data point that is located closest to the dis-
tance of 1.5 times the Interquartile Range. Note that the NMSE values for TD and NStep100 are not directly 
comparable since their prediction targets are different. However, in both cases, it is desirable to have a lower 
NMSE value. The outliers are not plotted in order to make the visualization easier (Color figure online)
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Mitigating partial observability via online adaption As shown extensively in Sect.  2, 
the data from our plant is highly partially observable, appearing non-stationary when plot-
ted. For the smaller dataset we used in the experiments so far, however, we find that the 
agent trained only on offline data predicts the deployment data well. This outcome is not 
surprising because the training data was collected from only four days of operation and 
the deployment was the following 24-hour period. It is reasonable to expect that the data 
is mostly stationary during this period since there would be no major seasonal weather 
changes, unexpected events like fires are rare, and sensor fouling takes weeks to show up in 
the data stream.

To highlight the need for online learning and demonstrate how changes in the data can 
significantly impact non-adaptive approaches, we used a dataset of 23 days for training, 7 
days of validation followed by the next 7 days treated as the deployment phase. In order 
to reduce the size of this dataset, we sub-sample to a rate of once for every 10 s, rather 
than every second. This also makes the prediction task harder: now a 100 step prediction 
corresponds to 1000 s. Figure 13 compares GVF predictions of a frozen pre-trained agent 
with the online TD agent that was pre-trained on the sample data but continues to learn 
in deployment. Due to the differences in the training data and the deployment data, both 
predictors start far from the ideal prediction (the return), but only online TD can adjust as 
shown in the first subplot. Throughout the remainder of the deployment data online TD 
predictions continued to match their targets.

This result not only highlights when online methods can be beneficial but also mimics a 
fairly realistic deployment scenario. Oftentimes, when working with real systems, we can-
not always access the most recent data. An industrial partner might have limited data logs; 
or sometimes technical problems cause logs to be lost. In our specific application, water 
treatment, the training data might be out of date because the plant could have been out of 
commission. Regardless of the reason, it is useful that simple online methods like TD can 
adapt to such situations.

We pre-trained the Influent Temperature predictions for 25,000 epochs and that of 
Membrane Pressure for 50,000 epochs. Due to resource constraints, the hyper-parameter 

TD
OfflineTD

Return

Fig. 13   OfflineTD and OnlineTD predictions of Influent Temperature and Membrane Pressure on deploy-
ment data a week after training data had ended. We sub-sample the data at the rate of 1 sample per 10 time-
steps. Both agents are trained offline on data from November 1st to November 23rd and validated using the 
data from November 24th to November 30th. The deployment data was taken from a 7-day period from 
December 1st to December 7th. Mirroring previous figures, the x-axis reports time steps (in tens of sec-
onds) in deployment. In this case, we expect a significant distribution shift between training and deploy-
ment data. The result clearly shows this, both predictors start off far from the ideal target (return); predic-
tions updated online in deployment (OnlineTD) can close the gap (Color figure online)
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selection is done differently in this experiment: we swept over offline learning rates 
� ∈ {1�10−5, 1�10−6, 1�10−7} and saved the network with the lowest normalized MSE on 
the training data. Afterwards, we used the best saved network and swept over 20 online 
learning rates � ∈ [1�10−3, ..., 2�10−8] range generated through a geometric progression 
with a common ratio of 0.5 on the validation data.

7 � Conclusion and future work

In this paper we took the first steps toward optimizing and automating water treatment on 
a real plant. Before we can hope to control such a complex industrial facility, we must first 
ensure that learning of any kind is feasible. This paper represents such a feasibility study. 
We provided extensive visualization and analysis of our plant’s data, highlighting how it 
generates a large, high-dimensional data stream that exhibits interesting structure at the 
second, minute, day, and month timescales. Unlike the data commonly used in RL bench-
marks, ours is subject to seasonal trends, and mechanical wear and tear, making it highly 
non-stationary. Through a combination of feature engineering and extensive offline pre-
training on the operator data, we were able to learn accurate multi-step predictions encoded 
as GVFs. Compared with classical n-step methods used in time-series predictions, the GVF 
predictions were more accurate and could be learned incrementally in deployment.

The next steps for this project involve control: automating subproblems within water 
treatment. There are numerous such subproblems, for example, controlling the rate at 
which chemicals are added in pre-treatment. Backwashing is also promising because it is, 
by far, the most energy-intensive part of the operation. We could control the duration of 
backwashing or how often to backwash. At the lowest level, we can adapt the parameters of 
the PID controllers that control the pumps during backwashing. Classical PID controllers 
are not sensitive to the state of the plant; they are tuned when the plant is first commis-
sioned and can become uncalibrated over time.

Algorithmically, we plan to investigate using our learned predictions for control, 
directly. Traditionally, one would define a reward function and use a reinforcement learn-
ing method such as Actor-Critic to directly control aspects of the plant operation. These 
methods are notoriously brittle and difficult to tune. A more practical approach is to use the 
predictions to directly build a controller. Prior work has explored using learned predictions 
inside basic if-then-else control rules to control mobile robots (Modayil and Sutton, 2014). 
The advantage of this approach is that the control-rules are easy to explain to human opera-
tors, but since control is triggered by predictions that are continually updated in deploy-
ment the resultant controller adapts to changing conditions. An extension of this idea is to 
use GVF predictions—like the ones we learned in this work—as input to a neural-network 
based RL agent, similarly to how it was done for autonomous driving (Graves et al., 2020; 
Jin et al., 2022). This work provides the foundations for these next steps in industrial con-
trol with RL.

Appendix A: Details on construction of state

As discussed in Sect. 2, learning directly on the raw data from a Water Treatment Plant 
(WTP) is very challenging due to the noisy, stochastic and partially-observable nature 
of the data. In addition to this, different sensors operate at different timescales and 



5174	 Machine Learning (2024) 113:5151–5181

1 3

frequencies; we summarize some of the sensors in Table 2. In order to minimize the 
effect of these issues on the predictions, we take a series of preprocessing steps on the 
raw data that are described in the sections below.

Note that we do not have significant missing data issues. Our system rarely misses 
sensor readings. However, in the rare case where we do have a missing value, we sim-
ply use zero-imputation and fill in the missing values with zeros.

Table 2   Summary of a few sensors measuring pump speeds, setpoints valves, blowers, and PID control

All of these combine to form the input to our learning system

Sensor name Measures

Feed flow PID PID control for feed flow
Pump flow PID PID control for feed/drain pump flow
Permeate pump flow PID PID control for permeate pump flow
Feed water sample Condition of feed water sampling valve, indicating if it is 

open or not
Post flocculation sample Condition of post flocculation sample isolation valve, 

indicating if it is open or not
Process/permeate pump control speed output Speed control for process/permeate pump
Sulphuric acid pump dose speed Speed of sulphuric acid pump dosing
Hypochlorite pump Hypochlorite pump dosing
Sodium hydroxide pump dose speed Sodium hydroxide pump dosing
Citric acid pump Citric acid pump dosing
Feed inlet valve Condition of feed inlet valve, indicating if it is open or 

not
Feed/waste pump inlet Condition of feed/waste pump inlet valve, indicating if it 

is open or not
Feed/waste pump outlet Condition of feed/waste pump outlet valve, indicating if it 

is open or not
Membrane tank outlet valve Condition of membrane tank outlet valve, indicating if it 

is open or not
Membrane tank recirculation Valve Condition of membrane tank recirculation valve, indicat-

ing if it is open or not
Permeate pump recirculation Valve Condition of permeate pump recirculation valve, indicat-

ing if it is open or not
Permeate outlet value Condition of permeate outlet valve, indicating if it is open 

or not
BP/CIP tank inlet valve Condition of cleaning tank inlet valve, indicating if it is 

open or not
BP/CIP tank recirculation valve Condition of cleaning tank recirculation valve, indicating 

if it is open or not
Blower inlet valve Condition of inlet blower’s valve (A/B/C), indicating if it 

is open or not
Membrane aeration blower control speed output Control speed output of membrane aeration blower
Aeration controller Mode of the aeration (cyclic, constant, etc.)
Plant mode Mode of the plant (production, backwashing, etc.)
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A.1 Categorical observations

Some of the observations are recorded in the form of discrete categorical variables as 
opposed to continuous real numbers. One example is the observation which records the 
current mode of the plant. For such observations, we encode them in a one-hot vector for-
mat. For a categorical observation which can only take on values from one of k categories: 
we convert it into a binary vector of size k in which only the corresponding index of the 
category is set to 1.

A.2 Data normalization

Since different sensors have different ranges, we normalize their values into the [0, 1] 
range. For each individual sensor value o[i]t  in the observation vector, we compute the mini-
mum o[i]

min
 and maximum o[i]

max
 using the logs over the duration of a previous year, where i is 

an index within the observation vector. Afterwards, for every discrete time-step t = 1, 2,… , 
in our dataset, we compute the normalized sensor value o�[i]

t
 as:

A.3 Encoding time of day

The observations contain the information regarding the current time of the day in sec-
onds. This is important since there are certain events that happen at a particular time of 
the day. Additionally, there are some events that are repeated at regular intervals. Let 
S = [s0, s1, s2,…] denote the time-stamp in seconds for that day, then we encode it using 
sine and cosine transforms as:

where 86,400 is the total number of seconds present within a day. It is the maximum value 
that st can take.

A.4 Encoding plant mode length

Understanding which mode the plant is in, and when the mode change will happen is cru-
cial for the agent. This information is only available as a binary indicator, as mode value 
1 against a certain mode indicates that the plant is currently in this mode, while it is 0 
otherwise. This limitation to binary indication adds to the partial observability inherent in 
the state-space. We find that cyclically encoding the mode provides extra information that 

(A1)o�
[i]

t
=

o
[i]
t − o
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alleviates this associated partial observability. Since the agent has access to when the mode 
starts and ends as binary indicators, we utilize it to construct a cyclical thermometer encod-
ing of the mode.

For each mode indicator in our observation vector, we define two thermometers 
w
[i]

sine
,w[i]

cos
∈ ℝ

7 initialized to zeros, and the total mode length m[i]

l
∈ ℝ . Let s be the times-

tamp in seconds. Since the mode is characterized with respect to an observation that is 
observed at a certain time-step, we avoid explicitly denoting mode length with time-step 
for clarity. At each time-step, the thermometers get filled up as:

These thermometers have sine and cosine waves between the start and end of each mode, 
and their rotations about the period increase by a factor of 2j at every time-step.

A.5 State approximation and summarizing history

In order to make use of the historical information during predictions, we compute memory 
traces of the observations. The state is constructed by appending these memory traces to 
the original observation vector, in addition to the mode length and time of day described in 
the above two sections. For each normalized observation o�[i]

t
 at time-step t, we compute its 

memory trace z[i]t  using:

where � is the trace decay rate hyper-parameter. All the memory traces are initialized with 
zeros and are updated in an incremental manner when iterating over the dataset.

Appendix B: Additional results

In order to verify that our results are not dependent on the time of year that we use for 
training, we perform an additional experiment with the same experimental setup that was 
used to produce Fig. 9. The only difference between the experiment in Figs. 9 and 14 is that 
the former is trained on the data from November, 2022 whereas the latter is trained on the 

wsine[j] = sin

(

2j�

(

s

m
[i]

l

))

,wcos[j] = cos

(

2j�

(

s

m
[i]

l

))

(A4)z[i]
t
= �z

[i]

t−1
+ (1 − �)o�

[i]

t

TD

Return

Fig. 14   Predictions of the filter membrane pressure roughly 100 s into the future using data from May. This 
plot mirrors Fig. 9. The architecture, preprocessing, learning algorithms, GVF prediction, and sensor pre-
dicted are all the same. The only difference is that Fig. 9 reports the predictions learned from data from 
the month of November, and this plot uses data from May. As before, the TD predictions tightly match the 
target’s pattern in all three scenarios (Color figure online)
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data from May, 2023. These results show that the predictions closely match the return even 
when the data is taken from a different period of time.

In Fig.  15, we evaluate NLinear and compare it with the N-step method the exact 
same data as in Fig.  9. We used a prediction horizon of n=100 and a history length 
(look-back window) of 4000 time-steps. We compare the NLinear results with the 
N-step since both of these methods share the same prediction target i.e. the cumulant 
value that is 100 steps into the future. These results showcase the limitations of the 

NLinear100

NStep100

NStep Target

Fig. 15   N-step predictions of the filter membrane pressure roughly 100  s into the future learned using 
NLinear. We show three snippets of the deployment data. The first subplot shows (on the x-axis) 1000 time-
steps (seconds) at the beginning of deployment. The middle subplot shows data during a maintenance clean, 
and the last subplot features data near the end of the deployment phase (24  h later). Each subplot high-
lights a different characteristic pattern in pressure change. The blue curve shows the n = 100 step prediction 
learned by NLinear: first trained offline, then updated in deployment. The return represents the ideal n-step 
prediction and is plotted in black. The blue curve shows the n = 100 step prediction learned by our non-
linear n-step baseline described in Sect. 4.3 (Color figure online)
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Fig. 16   Comparing online TD and online TD with replay for GVF Predictions across several sensors. The 
structure of this plot mirrors Fig. 10 (Color figure online)
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NLinear methods: they can only make correct predictions when there is a clear periodic-
ity within the data. Additionally, the look-back window size needs to be large enough so 
that the linear layer can make future predictions according to the repeated past patterns. 
As a result of this, linear methods are simply insufficient for learning a good prediction 
model on our current dataset.

Appendix C: Comparing to TD with replay

We considered both the simpler online TD update in deployment, as well as using TD 
with replay. The TD with replay algorithm is summarized in Algorithm 5. We found, 
though, that they performed very similarly (see Fig. 16), so we used the simpler online 
TD update in the main body.
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