
Vol.:(0123456789)

Machine Learning (2023) 112:2433–2467
https://doi.org/10.1007/s10994-023-06303-2

1 3

Editor: Scott Sanner.

Extended author information available on the last page of the article

On the sample complexity of actor‑critic method
for reinforcement learning with function approximation

Harshat Kumar1  · Alec Koppel2 · Alejandro Ribeiro1

Received: 18 December 2019 / Revised: 3 January 2023 / Accepted: 12 January 2023 /
Published online: 16 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Reinforcement learning, mathematically described by Markov Decision Problems, may be
approached either through dynamic programming or policy search. Actor-critic algorithms
combine the merits of both approaches by alternating between steps to estimate the value func-
tion and policy gradient updates. Due to the fact that the updates exhibit correlated noise and
biased gradient updates, only the asymptotic behavior of actor-critic is known by connecting its
behavior to dynamical systems. This work puts forth a new variant of actor-critic that employs
Monte Carlo rollouts during the policy search updates, which results in controllable bias that
depends on the number of critic evaluations. As a result, we are able to provide for the first
time the convergence rate of actor-critic algorithms when the policy search step employs pol-
icy gradient, agnostic to the choice of policy evaluation technique. In particular, we establish
conditions under which the sample complexity is comparable to stochastic gradient method for
non-convex problems or slower as a result of the critic estimation error, which is the main com-
plexity bottleneck. These results hold in continuous state and action spaces with linear func-
tion approximation for the value function. We then specialize these conceptual results to the
case where the critic is estimated by Temporal Difference, Gradient Temporal Difference, and
Accelerated Gradient Temporal Difference. These learning rates are then corroborated on a
navigation problem involving an obstacle and the pendulum problem which provide insight into
the interplay between optimization and generalization in reinforcement learning.

Keywords  Actor-critic · Reinforcement learning · Markov decision process · Non-convex
optimization · Stochastic programming

1  Introduction

Actor-critic refers to a family of two time-scale algorithms for reinforcement learning
where one alternates between policy gradient updates (actor) and action-value function
estimation in an online fashion (critic). These approaches form the bedrock of several prac-
tical advances in reinforcement learning, as in supply chain management (Giannoccaro &
Pontrandolfo, 2002), power systems (Jiang et al., 2014), robotic manipulation (Kober &
Peters, 2012), and games of various kinds (Tesauro et al., 1995; Brockman et al., 2016;

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06303-2&domain=pdf
http://orcid.org/0000-0001-7520-2799

2434	 Machine Learning (2023) 112:2433–2467

1 3

Mnih et al., 2016; Silver et al., 2017). While their asymptotic stability has been known
for decades (Konda & Borkar, 1999; Konda & Tsitsiklis, 2000), their sample complexity
is relatively unexplored. In this work, we establish the statistical behavior of actor-critic
algorithms for a number of canonical settings, which to our knowledge is the first time a
comprehensive accounting has been conducted.

We focus on reinforcement learning problems over possibly continuous state and action
spaces, which are defined by a Markov Decision Process (Puterman, 2014): each time, start-
ing from one state, an agent selects an action, and then it transitions to a new state accord-
ing to a distribution Markov in the current state and action. Then, the environment reveals
a reward informing the quality of that decision. The goal of the agent is to select an action
sequence which yields the largest expected accumulation of rewards, defined as the value
(Bellman, 1954; Bertsekas, 2005). Actor-critic algorithms adapt the merits of reinforcement
learning algorithms based on approximate dynamic programming with those based on pol-
icy search, the two dominant model-free approaches in the literature (Sutton et al., 2017).

For finite spaces, one may obtain the globally optimal policy, and therefore it is possible
quantify sample complexity in terms of the gap to the optimal value function (regret) as,
e.g., a polynomial function of the cardinality of the state and action spaces–see Jin et al.
(2018) and references therein. This is possible because these quantities have finite cardinal-
ity; however, in continuous spaces, these analyses break down because policy parameteri-
zation is required, and the value function becomes non-convex with respect to the policy
parameters (unless it is parameterized by a sufficiently high-dimensional neural model
(Wang et al., 2019)).

More specifically, in the actor step of actor-critic, stochastic gradient steps with respect
to the value function over a parameterized family of policies are conducted. Via the Policy
Gradient Theorem (Sutton et al., 2000), the gradient with respect to policy parameters (pol-
icy gradient) is the product of two factors: the score function and the Q function. One may
employ Monte Carlo rollouts to estimate Q-factors, which under careful choice of rollout
horizon, can be shown to be unbiased (Paternain, 2018). As a result, linking policy gra-
dient methods to more standard stochastic programming results for non-convex optimiza-
tion, namely, sublinear O(k−1∕2) rates to stationarity have recently been established (Zhang
et al., 2019). Doing so, however, requires an inordinate amount of querying to the environ-
ment in order to generate trajectory data. In actor-critic, we replace Monte Carlo rollouts
with online estimates for the action-value function.

More specifically, in actor-critic, the critic step estimates the action-value (Q) function
through stochastic approximation, i.e., temporal difference (TD) (Sutton, 1988), approaches
to solving Bellman’s evaluation equation (Watkins & Dayan, 1992; Tsitsiklis, 1994). Com-
bining temporal difference iterations with nonlinear function parameterizations may cause
instability, as shown by Baird (1995); Tsitsiklis and Van Roy (1997). This motivates the
majority of TD algorithms to focus on the case where the Q function is parameterized by a
linear basis expansion over given universal features, which is common in practice (Sutton
et al., 2017), and can be satisfied by radial basis function (RBF) networks or auto-encoders
Park and Sandberg (1991). We consider this setting of universal features given a priori.

The asymptotic stability of linear TD algorithms hinges upon dynamical systems tools
to encapsulate the mean estimation error sequence–see Borkar and Meyn (2000); Kushner
and Yin (2003). By contrast, a number of finite-time characterizations of various TD algo-
rithms have appeared recently, i.e., those based on stochastic fixed point iterations and gra-
dient-based approximations known as gradient temporal difference (GTD) (Sutton et al.,
2009a). For TD algorithms, finite-time sublinear rates have been derived both in the case
where samples (state-action-reward triples) are independent and identically distributed

2435Machine Learning (2023) 112:2433–2467	

1 3

(i.i.d.) (Dalal et al., 2018b; Bhandari et al., 2018; Lakshminarayanan & Szepesvari, 2018)
and when they exhibit Markovian dependence (Srikant & Ying, 2019). Further, the conver-
gence of GTD was established in Koppel et al. (2017); Tolstaya et al. (2018) by employing
coupled supermartingales (Wang et al., 2017a), which permits us to derive the rates of
convergence in expectation of GTD as corollaries. As a result, we may explicitly derive the
bias due to critic estimation error in terms of the number of critic steps. This is in contrast
to the use of an unbiased estimate from a Monte Carlo rollout, as in pure policy gradient
methods. We further note that contemporaneously of beginning this work, several analy-
ses of GTD have been developed (Liu et al., 2015; Dalal et al., 2018b, 2020) that refine
the rates employed in this analysis; however, these results focus on concentration bounds
(“lock-in probability"), a weaker metric of stability than convergence in mean, i.e., conver-
gence in Lebesgue integral implies convergence in measure. Since in this work we focus
on the intuitive and broadly interpretable global convergence to stationarity in terms of the
expected gradient norm of the value function, we seek to employ policy evaluation rates
that are compatible with this goal, and defer refined lock-in probability results, for which
tighter bounds of convergence on the critic exist, to future work.

Convergence of Actor-Critic In this work, we link the behavior of actor-critic to
gradient ascent algorithms with biased gradient directions. This bias is controllable and
depends on the step-size and number of critic iterations per actor update. We perform this
analysis for the setting that samples are i.i.d, which may be explicitly guaranteed through
the introduction of a new Monte Carlo rollout step for each actor update. As a result, we
establish that actor-critic, independent of any critic method, exhibits convergence to sta-
tionary points of the value function that are comparable to stochastic gradient ascent in
the non-convex regime. A key distinguishing feature from standard non-convex stochastic
programming is that the rates are inherently tied to the bias of the search direction which
is determined by the choice of critic scheme. In fact, our methodology is such that a rate
for actor-critic can be derived for any critic-only method for which a convergence rate in
expectation on the parameters can be expressed. In particular, we establish the rates for
actor-critic with temporal difference (TD) (Sutton, 1988) and gradient TD (GTD) (Sutton
et al., 2009a) critic steps. Furthermore, we propose an Accelerated GTD (A-GTD) method
derived from accelerations of stochastic compositional gradient descent (Wang et al.,
2017a), which converges faster than TD and GTD.

In summary, for the continuous spaces, we establish that A-GTD converges faster
than GTD, and the effective convergence rate of TD(0) varies as a result of the feature
space representation selected a priori. In particular, this introduces a trade off between the
smoothness assumptions and the rates derived (see Table 1). TD has no additional smooth-
ness assumptions, and it achieves a rate of O(�−2∕�) . This rate is analogous to the non-
convex analysis of stochastic compositional gradient descent when � is equal to 0.5, which
is a conservative estimate (see Fig. 1). Adding a smoothness assumption, GTD achieves
the faster rate of O(�−3) . By requiring an additional smoothness assumption, we find that
A-GTD achieves the fastest convergence rate of O(�−5∕2) . For the case of finite state action
space, actor critic achieves a convergence rate of O(�−2) . Overall, the contribution in terms
of sample complexities of different actor-critic algorithms may be found in Table 1.

Relative to existing convergence results, actor-critic is classically studied as a form of
two time-scale algorithm (Borkar, 1997), whose asymptotic stability is well-known via
dynamical systems (Kushner & Yin, 2003; Borkar, 2009). To wield these approaches to
establish finite-time performance, however, concentration probabilities and geometric
ergodicity assumptions of the Markov dynamics are required–see Borkar (2009). We obvi-
ate these complications by focusing on the case where independent trajectory samples are

2436	 Machine Learning (2023) 112:2433–2467

1 3

acquirable through querying the environment, for which recent unbiased sampling proce-
dures gave proved adept (Paternain, 2018; Zhang et al., 2019). Relative to existing finite-
time characterizations of actor-critic, Cai et al. (2019) proposes Neural TD updates, which
converges to global optimality under a suitably over-parameterized deep neural network
(DNN) and initialization. One quandary is how to find these initializations or design DNN
architectures to satisfy these conditions. In separate work, the sample complexity of actor-
critic has been established in terms of the value function gradient norm when the critic
parameters are estimated with non-linear function approximation in a batch fashion (Yang
et al., 2018). It is well-known that non-linear function approximators may diverge given by
various counterexamples (Baird, 1995; Tsitsiklis & Van Roy, 1997). Our work circumvents
this obstacle by considering only well-behaved and well-studied linear function approxi-
mation, which includes commonly chosen radial basis function (RBF) networks and auto-
encoders fixed at the outset of RL training.

Since the original date of submission, efforts to refine the analysis in this work exist:
for instance, relaxations of assumptions on the sampling distribution to allow Markovian
dependence (Qiu et al., 2021; Xu et al., 2020; Wu et al., 2020) and augmentations of the
critic objective for practical variance reduction (Parisi et al., 2019). However, these works

Table 1   Rates of Actor Critic with Policy Gradient Actor updates and different critic-only methods.The
term � is the critic stepsize for TD(0) with continuous state-action space, and should be chosen according to
conditioning of the feature space (see Sect. 6.1)

Critic method Convergence rate State-action space Smoothness assumptions Algorithm

GTD (SCGD) O
(

�−3
)

Continuous Assumption 3 Alg 2
GTD (A-SCGD) O

(

�−5∕2
)

Continuous Assumptions 3 and 4 Alg 3
TD(0) O

(

�−2∕�
)

Continuous None Alg 4
TD(0) O

(

�−2
)

Finite None Alg 4

Fig. 1   Plot shows the criti-
cal value of � for which the
exponential term of (64) is
dominated by the second term,
thereby allowing Proposition 1
to hold. In particular, any 𝜎 > 0
chosen between zero and the
curves shown above satisfies the
proposition. We show plots for
varying values of �

TD
 , which is

determined by the feature space
representation. For each value
of �

TD
 , we vary the ratio of the

constants K
2
∕K

1
 from .001 to 100

2437Machine Learning (2023) 112:2433–2467	

1 3

require the Markov transition density to mix at an exponentially fast rate in order to estab-
lish convergence. Thus, while i.i.d. sampling may be difficult to justify, exponentially fast
mixing often does not hold either, unless algorithm step-sizes are sent to null at an expo-
nential rate. These intricacies have motivated experimental techniques to mitigate correla-
tion among samples using replay buffers (Wang et al., 2017b) and parallelization of queries
to a generative model (Gruslys et al., 2018). However, their exact relationship to mixing
rates is opaque. Therefore, for simplicity, in this work we focus on the i.i.d. case.

Moreover, sharper sample complexities for actor-critic have been developed (Qiu et al.
2021; Xu et al. 2020; Wu et al. 2020); however, they do not address the possibility of
designing alternate policy evaluation schemes than TD(0) updates, and instead focus only
on actor-critic in its vanilla form. This is because their perspective is on understanding the
sample complexity of actor-critic alone, whereas we provide a unified perspective upon the
basis of biased stochastic gradient iteration. In doing so, we are able incorporate a variety
of critic updates and illuminate the interplay of problem smoothness, cardinality, and the
choice of critic parameterization. In particular, the sample complexity of actor-critic with
TD(0) updates for the tabular case given in Corollary 4 matches Xu et al. (2020); Wu et al.
(2020), but in continuous spaces, depending on the conditioning of the feature map covari-
ance and other problem smoothness conditions, GTD or A-GTD may yield faster conver-
gence, a facet elsewhere unaddressed in the literature.

Even more recently, efforts have been made to improve upon the rate of convergence
by considering regularized MDP’s with overparametrized networks (Cayci et al., 2022),
single critic step (Olshevsky & Gharesifard, 2022), and single trajectory actor updates
(Chen et al., 2022a). Decentralized convergence rates have also been established (Chen
et al., 2022b; Zeng et al., 2022). Shen et al. (2020) show that for both i.i.d. and markovian
sampling, there is a linear speedup for the decentralized setting whose is bottleneck is the
slowest mixing chain. All of the aforementioned results require the assumption that the
probability for any action given a state is strictly positive, which we do not require.

We evaluate actor-critic with TD, GTD, and A-GTD critic updates on both a navigation
problem and the canonical pendulum problem. For the navigation problem, we find that
indeed A-GTD converges faster than both GTD and TD. Interestingly, the stationary point
it reaches is worse than GTD or TD. This suggests that the choice of critic scheme illu-
minates an interplay between optimization and generalization that is less-well understood
in reinforcement learning (Boyan & Moore, 1995; Bousquet & Elisseeff, 2002). For the
pendulum problem, we also find that A-GTD converges fastest with respect to the gradient
norm, which is consistent with our main convergence results. In particular, we again find
that the faster convergence in gradient norm results the stationary point having a lower
cumulative reward. We additinally consider advantage actor-critic in our simulations (Mnih
et al., 2016). A detailed discussion on the results and implications can be found in Sect. 7.
The remainder of the paper is organized as follows. Section 2 describes the problem of
reinforcement learning and defines common assumptions which we use in our analysis. In
Sect. 3, we derive a generic actor-critic algorithm from an optimization perspective and
describe how the algorithm would be amended given different policy evaluation methods.
The derivation of the convergence rate for generic actor-critic is presented in Sect. 4, and
the specific analysis for Gradient, Accelerated Gradient, and vanilla Temporal Difference
are characterized in Sects. 5 and 6.

2438	 Machine Learning (2023) 112:2433–2467

1 3

2 � Reinforcement learning

We consider the Reinforcement Learning (RL) problem where an agent moves through a
state space S and takes actions that belong to some action set A , and the state/action spaces
are assumed to be continuous compact subsets of Euclidean space: S ⊂ ℝ

q and A ⊂ ℝ
p .

Every time an action is taken, the agent transitions to its next state that depends only on
its current state and action. Moreover, a reward is revealed by the environment. In this
situation, the agent would like to accumulate as much reward as possible in the long term,
which is referred to as value. Mathematically this problem definition may be encapsulated
as a Markov decision process (MDP), which is a tuple (S,A,ℙ,R, �) with Markov transi-
tion density ℙ(s� ∣ s, a) ∶ S ×A → ℙ(S) that determines the probability of moving to state
s′ . Here, � ∈ (0, 1) is the discount factor that parameterizes the value of a given sequence of
actions, which we will define shortly.

At each time t, the agent executes an action at ∈ A given the current state st ∈ S , fol-
lowing a stochastic policy � ∶ S → ℙ(A) , i.e., at ∼ �(⋅ ∣ st) . Then, given the state-action
pair (st, at) , the agent observes a (deterministic) reward rt = R(st, at) and transitions to a
new state s�

t
∼ ℙ(⋅ ∣ st, at) according to a Markov transition density. For any policy � , define

the value function V� ∶ S → ℝ as

which is a measure of the long term average reward accumulation discounted by � . We
can further define the value V� ∶ S ×A → ℝ conditioned on a given initial action as the
action-value, or Q function as Q�(s, a) = �

�
∑∞

t=0
� trt ∣ s0 = s, a0 = a

�

 . Given any initial
state s0 , the goal of the agent is to find the optimal policy � that maximizes the long-term
return V�(s0) , i.e., to solve the following optimization problem

In this work, we investigate actor-critic methods to solve (2), which is a hybrid RL method
that fuses key properties of policy search and approximate dynamic programming. To
ground the discussion, we first derive the canonical policy search technique called pol-
icy gradient method, and explain how actor-critic augments policy gradient. Begin by
noting that to address (2), one must search over an arbitrarily complicated function class
Π which may include those which are unbounded and discontinuous. To mitigate this
issue, we parameterize the policy � by a vector � ∈ ℝ

d , i.e., � = �� , yielding RL tools
called policy gradient methods (Konda & Tsitsiklis, 2000; Bhatnagar et al., 2009; Cas-
tro & Meir, 2010). Under this specification, the search over arbitrarily complicated func-
tion class Π to (2) may be reduced to Euclidean space ℝd , i.e., a vector-valued optimi-
zation, max�∈ℝd J(��) ∶= V��

(s0) . Subsequently, we denote J(��) by J(�) for notational
convenience.

We now make the following standard assumption on the regularity of the MDP problem
and the parameterized policy �� , which are the same conditions as Zhang et al. (2020), as
well as an assumption to bound the state-action feature representation.

Assumption 1  Suppose the reward function R and the parameterized policy �� satisfy the
following conditions:

(1)V�(s) ∶= 𝔼at∼�(⋅∣st),st+1∼ℙ(⋅∣st ,at)

(∞
∑

t=0

� trt ∣ s0 = s

)

,

(2)max
�∈Π

J(�), where J(�) ∶= V�(s0).

2439Machine Learning (2023) 112:2433–2467	

1 3

	 (i)	 The absolute value of the reward R is bounded uniformly by UR , i.e., |R(s, a)| ∈ [0,UR]
for any (s, a) ∈ S ×A.

	 (ii)	 The policy �� is differentiable with respect to � , and the score function ∇ log��(a ∣ s)
is LΘ-Lipschitz and has bounded norm, i.e., for any (s, a) ∈ S ×A ,

Note that the boundedness of the reward function in Assumption 11 is standard in policy
search algorithms (Bhatnagar et al., 2008, 2009; Castro & Meir, 2010; Zhang et al., 2018).
Observe that with R, we have the Q function is absolutely upper bounded by UR∕(1 − �) ,
since by definition

The same bound also applies for V��
(s) for any �� and s ∈ S and thus the objective J(�)

which is defined as V��
(s0) , satisfies,

We note that the conditions (3) and (4) have appeared in recent analyses of policy search
(Castro & Meir, 2010; Pirotta et al., 2015; Papini et al., 2018), and are satisfied by canoni-
cal policy parameterizations such as Boltzmann policy (Konda & Borkar, 1999) and
Gaussian policy (Doya, 2000). For example, for Gaussian policy1 in continuous spaces,
𝜋𝜃(⋅ ∣ s) = N(𝜙(s)⊤𝜃, 𝜎2) , where N(�, �2) denotes the Gaussian distribution with mean �
and variance �2 and �(s) denotes some state feature representation. Then the score func-
tion has the form [a − 𝜙(s)⊤𝜃]𝜙(s)∕𝜎2 , which satisfies (3) and (4) if the feature vectors
�(s) have bounded norm, the parameter � lies some bounded set, and the action a ∈ A is
bounded.

Generally, the value function is nonconvex with respect to the parameter � , meaning
that obtaining a globally optimal solution to (2) is out of reach unless the problem has
additional structured properties, as in phase retrieval (Sun et al., 2016), matrix fac-
torization (Li et al., 2016), and tensor decomposition (Ge et al., 2015), among others.
Thus, our goal is to design actor-critic algorithms to attain stationary points of the
value function J(�) . Moreover, we characterize the sample complexity of actor-critic,
a noticeable gap in the literature for an algorithmic tool decades old (Konda & Borkar,
1999) at the heart of the recent innovations of artificial intelligence architectures (Sil-
ver et al., 2017).

(3)‖∇ log��1 (a ∣ s) − ∇ log��2 (a ∣ s)‖ ≤ LΘ ⋅ ‖�1 − �2‖, for any �1, �2,

(4)‖∇ log��(a ∣ s)‖ ≤ BΘ, for any �.

(5)|Q��
(s, a)| ≤

∞
∑

t=0

� t ⋅ UR =
UR

1 − �
, for any (s, a) ∈ S ×A.

(6)|V��
(s)| ≤ UR

1 − �
, for anys ∈ S, |J(�)| ≤ UR

1 − �
.

1  We observe that in practice, the action space A is bounded, which requires a truncated Gaussian policy to
be used over A , as in Papini et al. (2018).

2440	 Machine Learning (2023) 112:2433–2467

1 3

3 � From policy gradient to actor‑critic

In this section, we derive actor-critic method (Konda & Borkar, 1999) from an opti-
mization perspective: we view actor-critic as a way of doing stochastic gradient ascent
with biased ascent directions, and the magnitude of this bias is determined by the num-
ber of critic evaluations done in the inner loop of the algorithm. The building block of
actor-critic is called policy gradient method, a type of direct policy search, based on
stochastic gradient ascent. Begin by noting that the gradient of the objective J(�) with
respect to policy parameters � , owing to the Policy Gradient Theorem (Sutton et al.,
2000), has the following form:

This expression follows from rolling the sum forward, repeatedly applying Bellman’s
evaluation equation, and exploiting the Markov property of the transition kernel, together
with multiplying and dividing by �� and rewriting the denominator in terms of the
score function via the fact that ∇x log(x) = 1∕x , as in Sutton et al. (2000); Zhang et al.
(2019). In the preceding expression, p(st = s ∣ s0,��) denotes the probability of state st
equals s given initial state s0 and policy � , which is occasionally referred to as the occu-
pancy measure, or the Markov chain transition density induced by policy � . Moreover,
��� (s) = (1 − �)

∑∞

t=0
� tp(st = s ∣ s0,��) is the ergodic distribution associated with the

MDP for fixed policy, which is shown to be a valid distribution (Sutton et al., 2000). For
future reference, we define ��(s, a) = ��� (s) ⋅ ��(a ∣ s) . The derivative of the logarithm of
the policy ∇ log[��(⋅ ∣ s)] is usually referred to as the score function corresponding to the
probability distribution ��(⋅ ∣ s) for any s ∈ S.

Next, we discuss how (8) can be used to develop stochastic methods to address (2).
Unbiased samples of the gradient ∇J(�) are required to perform the stochastic gradient
ascent, which hopefully converges to a stationary solution of the nonconvex maximi-
zation. One way to obtain an estimate of the gradient ∇J(�) is to evaluate the score
function and Q function at the end of a rollout whose length is drawn from a geometric
distribution with parameter 1 − � (Zhang et al., 2020)[Theorem 4.3]. If the Q function
evaluation is unbiased, then the stochastic estimate of the gradient ∇J(�) is unbiased as
well. We therefore define the stochastic estimate by

where the tuple (sT , aT) is drawn from end of the geometric rollout of length
T ∼ Geom(1 − �) . Of course, such an approach is very inefficient with respect to samples,
as it does not utilize the state action transitions up until the final tuple. Using the entire

(7)∇J(�) = ∫s∈S,a∈A

∞
∑

t=0

� t ⋅ p(st = s ∣ s0,��) ⋅ ∇��(a ∣ s) ⋅ Q��
(s, a)dsda

(8)

=
1

1 − � ∫s∈S,a∈A

(1 − �)

∞
∑

t=0

� t ⋅ p(st = s ∣ s0,��) ⋅ ∇��(a ∣ s) ⋅ Q��
(s, a)dsda

=
1

1 − � ∫s∈S,a∈A

��� (s) ⋅ ��(a ∣ s) ⋅ ∇ log[��(a ∣ s)] ⋅ Q��
(s, a)dsda

=
1

1 − �
⋅ �(s,a)∼�� (⋅,⋅)

[

∇ log��(a ∣ s) ⋅ Q��
(s, a)

]

.

(9)∇̂J(𝜃) ∶=
1

1 − 𝛾
Q̂𝜋𝜃

(sT , aT)∇ log𝜋𝜃(aT |sT),

2441Machine Learning (2023) 112:2433–2467	

1 3

trajectory for the actor update comes at the cost of a biased gradient estimate. Before we
characterize this bias, we will discuss how to evaluate the Q function using the single point
estimation for simplicity.

We consider the case where the Q function admits a linear parametrization of the form
Q̂𝜋𝜃

(s, a) = 𝜉⊤𝜑(s, a) , which in the literature on policy search is referred to as the critic
(Konda & Borkar, 1999), as it “criticizes" the performance of actions chosen according to
policy � . We let � ∶ S ×A → ℝ

p be a (possibly nonlinear) feature map such as a network
of radial basis functions or an auto-encoder known a priori. The choice to consider the
Q function with a linear function approximator comes from the well known convergence
results of linear critic-only methods. In contrast, nonlinear function approximators suffer
from the possibility of divergence, as is demonstrated by well known counterexamples
(Baird, 1995; Tsitsiklis & Van Roy, 1997).

The critic parameter � belongs to a bounded set 𝜉 ∈ Ξ ⊂ ℝ
p such that

 This is reasonable because (5) guarantees boundeness of the true Q function. The bound-
edness of the estimate Q̂ follows from requiring the feature map �(s, a) to be bounded, an
assumption which can be achieved through normalization, which we subsequently state

Assumption 2  For any state action pair (s, a) ∈ S ×A , the norm of the feature representa-
tion �(s, a) is bounded by a constant C� ∈ ℝ+.

We also bound the true gradient of the objective function

which is established by (8) being bounded as a result of |Q| ≤ UR∕(1 − �) [c.f. (5)] and
‖∇ log��(a�s)‖ ≤ BΘ [c.f. (4)].

Moreover, for each actor update k, we estimate the parameter �k that defines the Q func-
tion from an online policy evaluation (critic-only) method after some TC(k) iterations,
where k denotes the number of policy gradient updates. Thus, we may write the stochastic
gradient estimate as

If the estimate of the Q function is unbiased, i.e., �[𝜉⊤
k
𝜑(sT , aT) | 𝜃, s, a] = Q(s, a) , then

�[∇̂J(𝜃) | 𝜃] = ∇J(𝜃) (c.f. (Zhang et al., 2020)[Theorem 4.3]). Typically, critic-only meth-
ods do not give unbiased estimates of the Q function; however, in expectation the rate at
which their bias decays is proportional to the number of Q estimation steps. In particular,
denote �∗ as the parameter for which the Q estimate is unbiased:

Hence, by adding and subtracting the true estimate of the parametrized Q function to (12),
we arrive at the fact the policy search direction admits the following decomposition:

(10)‖�‖ ≤ C� for all � ∈ Ξ

(11)‖∇J(�k)‖ ≤ C∇,

(12)∇̂J(𝜃) =
1

1 − 𝛾
𝜉⊤
k
𝜑(sT , aT)∇ log𝜋𝜃(aT |sT).

(13)�[𝜉⊤
∗
𝜑(s, a)] = �[Q̂𝜋𝜃

(s, a)] = Q(s, a).

(14)

∇̂J(𝜃) =
1

1 − 𝛾
(𝜉k − 𝜉∗)

⊤𝜑(sT , aT)∇ log𝜋𝜃(aT |sT) +
1

1 − 𝛾
𝜉⊤
∗
𝜑(sT , aT)∇ log𝜋𝜃(aT |sT).

2442	 Machine Learning (2023) 112:2433–2467

1 3

The second term is the unbiased estimate of the gradient ∇J(�) , whereas the first defines
the difference of the critic parameter at iteration k with the true estimate �∗ . For linear
parameterizations of the Q function, policy evaluation methods establish convergence in
mean of the bias

where g(k) is some decreasing function. We address cases where the critic bias decays at
rate k−b for b ∈ (0, 1] , due to the fact that several state of the art works on policy evalua-
tion may be mapped to the form (15) for this specification (Wang et al., 2017a; Dalal et al.,
2018b). We formalize this with the following proposition.

Proposition 1  Given some b ∈ (0, 1] , there exists a constant L1 > 0 such that

This implies the expected error of the critic parameter is bounded by O(k−b).

Recently, alternate rates have been established as O(log k∕k) ; however, they concede
that O(1/k) rates may be possible (Bhandari et al., 2018; Zou et al., 2019). Thus, we sub-
sume recent sample complexity characterizations of policy evaluation as is described in
Proposition 1. Proposition 1 is an intrinsic property of many policy evaluation schemes,
and thus permits one to substitute the standard subsampling rates of a Monte Carlo-based
estimator for the Q function (as in REINFORCE (Sutton et al., 2000)) with one that is esti-
mated online using, e.g., temporal difference learning. Hence its role is critical in relating
the bias of using critic estimators rather than unbiased gradient estimates to the number of
critic steps.

More specifically, (14) is nearly a valid ascent direction: it is approximately an unbiased
estimate of the gradient ∇J(�) since the first term becomes negligible as the number of
critic estimation steps increases. Based upon this observation, we propose the following
full trajectory variant of actor-critic method (Konda & Borkar, 1999): run a critic estimator
(policy evaluator) for TC(k) steps, whose output is critic parameters �k . We denote the critic
estimator by Critic:ℕ → ℝ

p which returns the parameter �k ∈ ℝ
p after TC(k) ∈ ℕ itera-

tions. Then, simulate a trajectory of length H(k), and update the actor (policy) parameters
� as:

Note that we make the number of critic estimation steps and horizon length grow with k.
Increasing T and H with k allows us to control the bias of the estimate as is seen in Proposi-
tion 1 for the critic evaluations and in the following theorem for horizon length.

Now, we will characterize the bias between the gradient estimate using the entire trajec-
tory of length H(k). Let � =

{

s1, a1,… , sH−1, aH−1, sH
}

 be a sampled trajectory of length
H. Define Ft to be the product of the true state action (Q) function with the score function
evaluated at the tuple (st, at) , namely

One can consider constructing an estimate of the policy gradient using the entire trajectory
of length H by

(15)�[‖�k − �∗‖] ≤ g(k),

(16)�[‖�k − �∗‖] ≤ L1k
−b.

(17)𝜃k+1 = 𝜃k + 𝜂k
1

1 − 𝛾

H(k)
∑

t=1

𝜉⊤
k
𝜑(st, at)∇ log𝜋𝜃k (st, at|𝜃k).

(18)Ft ∶= Q(st, at)∇�log��(st, at).

2443Machine Learning (2023) 112:2433–2467	

1 3

The following theorem establishes the bias between the true policy gradient and the finite
horizon estimate.

Theorem 1  Let Assumption 1 be in effect. Then it is true that for some finite C1,

Proof  First we will show that ��

�
∑∞

t=1
� t−1Ft

�

= ∇�J(�) . We let Pr(st = s|s1) denote the
probability the state at time t is equal to s given the initial state s1.

By Fubini’s Theorem, we are able to exchange the summation and integrals due to the
regularity assumptions. Let ĝ∞ =

∑∞

t=1
𝛾 t−1Ft . Then

By the regularity assumptions, we can bound Ft by URBΘ∕(1 − �) . As such, we establish
the bound

∑∞

t=0
� tFt+H+1 ≤ ∑∞

t=0
� tURBΘ∕(1 − �) ≤ URBΘ∕(1 − �)2 =∶ C1 ≤ ∞

Taking the norm of the expectation completes the proof. 	� ◻

Theorem 1 holds under the assumption that the true Q function is accessible. Of
course, only a biased version of the critic is available through the uses of a critic, as
described before. The algorithm we propose is the actor-critic variant of the finite hori-
zon gradient estimate. The actor parameter update takes the following form:

The following theorem characterizes the bias of the stochastic gradient estimate.

(19)ĝH =

H
∑

t=1

𝛾 t−1Ft.

‖

‖

‖

�𝜏

[

ĝH
]

− ∇𝜃J(𝜃)
‖

‖

‖

≤ 𝛾H−1C1.

(20)

�

[

∞
∑

t=1

� t−1Ft

]

=

∞
∑

t=1

� t−1 ∫S

�
[

Ft|st = s
]

Pr
(

st = s|s1
)

ds

=

∞
∑

t=1

� t−1 ∫S ∫A

Q(s, a)∇�log��(s, a)daPr(st = s|s1)ds

= ∫S ∫A

Q(s, a)∇�log��(s, a)da

∞
∑

t=1

� t−1Pr(st = s|s1)ds

= ∫S ∫A

Q(s, a)∇�log��(s, a)da�
�� (s)ds

= �s∼��� (s)

[

∫A

Q(s, a)∇�log��(s, a)da

]

= �s∼��� (s),a∼�� (s,⋅)

[

Q(s, a)∇� log��(s, a)
]

= ∇�J(�)

(21)ĝ∞ − ĝH = 𝛾H−1

∞
∑

t=0

𝛾 tFt+H+1

(22)𝜃k+1 = 𝜃k + 𝜂kĝ
AC
H

= 𝜃k +
1

1 − 𝛾
𝜂k

H(k)
∑

t=1

𝛾 t−1𝜉⊤
k
𝜑(st, at)∇ log𝜋𝜃k (st, at|𝜃k).

2444	 Machine Learning (2023) 112:2433–2467

1 3

Theorem 2  Let Assumptions 1 and 2 be in effect. Then, when proposition 1 is in effect, it is
true that for a horizon of length H and T critic evaluations,

Proof  Let FAC,t ∶= 𝜉⊤
k
𝜑(st, at)∇𝜃 log𝜋𝜃(st, at) . Then

The final term can be considered an error term. Consider the difference

Let Q(st, at) = 𝜉⊤
∗
𝜑(st, at) . Then by assumptions 1 and 2 and proposition 1,

This implies

Following the same logic as Theorem 1, we can bound the difference between the finite
horizon estimate and the infinite horizon actor-critic estimate by

We evoke triangle inequality to complete the proof.

This concludes the proof. 	� ◻

The fact that the estimate ĝAC
H

 is bounded comes from the fact that ĝAC
∞

 is bounded. We
formalize this for use in the analysis

where C� , C� and BΘ come from Assumption 2, (10) and Assumption 1 1 respectively.
Theorem 2 establishes the bias on the stochastic gradient update. The bias can be

decreased by increasing T, the number of critic update steps per each actor step, and H, the

‖

‖

‖

�𝜏

[

ĝAC
H

]

− ∇𝜃J(𝜃)
‖

‖

‖

≤ C1𝛾
H + C2T

−b

(23)

�𝜏

[

ĝAC
∞

]

= �𝜏

[

∞
∑

t=1

𝛾 t−1FAC,t

]

= �𝜏

[

∞
∑

t=1

𝛾 t−1
(

Ft + FAC,t − Ft

)

]

= �𝜏

[

∞
∑

t=1

𝛾 t−1Ft

]

+ �𝜏

[

∞
∑

t=1

𝛾 t−1
(

FAC,t − Ft

)

]

= ∇𝜃J(𝜃) + �𝜏

[

∞
∑

t=1

𝛾 t−1
(

FAC,t − Ft

)

]

(24)FAC,t − Ft =
(

Q(st, at) − 𝜉⊤
k
𝜑(st, at)

)

∇ log𝜋𝜃(st, at).

(25)|FAC,t − Ft| ≤ T−bL1C�BΘ

(26)
‖

‖

‖

ĝAC
∞

− ∇𝜃J(𝜃)
‖

‖

‖

≤ T−bL1C𝜑BΘ

1

1 − 𝛾
= C2T

−b

(27)‖ĝAC
∞

− ĝAC
H
‖ ≤ C1𝛾

H−1.

(28)
‖ĝ∞ − ĝAC

H
‖ = ‖ĝ∞ − ĝAC

∞
+ ĝAC

∞
− ĝAC

H
‖ ≤ ‖ĝ∞ − ĝAC

∞
‖ + ‖ĝAC

∞
− ĝAC

H
‖ ≤ C1𝛾

H−1 + C2T
−b.

(29)�(‖ĝAC
H
‖) ≤ �(‖ĝAC

∞
‖) ≤ C𝜑C𝜉BΘ

(1 − 𝛾)
=∶ 𝜎,

2445Machine Learning (2023) 112:2433–2467	

1 3

horizon for the actor update. In our main result, we will set both of these quantities to grow
linearly with k, meaning that we decrease the bias with each actor update step (see Theo-
rem 3). In our numerical results, we show that selecting a large enough constant T and H is
sufficient(see Sect. 7).

We summarize the aforementioned procedure, which is agnostic to particular choice of critic
estimator, as Algorithm 1. We acknowledge that the actor-critic algorithm proposed in Algo-
rithm 1 differs from Konda and Borkar (1999) in that rather than updating the actor and critic in
tandem, the critic learns the state-action (Q) function from scratch at each update of the actor algo-
rithm. The classical version of the algorithm can be recovered by setting TC(k) = 1 and initializing
the critic parameter to the previous step. Existing convergence proofs of this format are limited to
asymptotic convergence only, where the critic steps at a faster learning rate than the actor. As such,
this batch-type approach emulates this behavior, as the critic must learn something meaningful
before the actor can update. As such, one might relate our work to Yang et al. (2018); however,
unlike their work, we are not only able to prove convergence to a stationary point of the original
objective by increasing the number of critic evaluations at each actor step rather than keeping it
fixed, but also, we use the entire trajectory rather than a single state action pair sampled from the
discounted state distribution.

Examples of Critic Updates We note that Critic: ℕ → ℝ
p admits two canonical

forms: temporal difference (TD) (Sutton, 1988) and gradient temporal difference (GTD)-
based estimators (Sutton et al., 2008). The TD update for the critic is given as

whereas for the GTD-based estimator for the critic, we consider the update

We further analyze a modification of GTD updates proposed by (Wang et al., 2017a) that
incorporates an extrapolation technique to reduce bias in the estimates and improve error
dependency, which is distinct from accelerated stochastic approximation with Nesterov
Smoothing (Nesterov, 1983). With y0 = 0 and zt defined for t = 1,… , the accelerated GTD
(A-GTD) update becomes

(30)𝛿t = rt + 𝛾𝜉⊤
t
𝜑(s�

t
, a�

t
) − 𝜉⊤

t
𝜑(st, at) , 𝜉t+1 = 𝜉t + 𝛼t𝛿t𝜑(st, at)

(31)
𝛿t = rt + 𝛾𝜉⊤

t
𝜑(s�

t
, a�

t
) − 𝜉⊤

t
𝜑(st, at) , zt+1 = (1 − 𝛽t)zt + 𝛽t𝛿t,

𝜉t+1 = 𝜉t − 2𝛼tzt+1[𝛾𝜑(s
�
t
, a�

t
) − 𝜑(st, at)]

(32)

𝜉t+1 = 𝜉t − 2𝛼t(𝛾𝜑(s
�
t
, a�

t
) − 𝜑(st, at))yt

zt+1 = −

(

1

𝛽t
− 1

)

𝜉t +
1

𝛽t
𝜉t+1

yt+1 = (1 − 𝛽t)yt + 𝛽t(r(st, at) + z⊤
t+1

(

𝛾𝜑(s�
t
, a�

t
) − 𝜑(st, at)

)

2446	 Machine Learning (2023) 112:2433–2467

1 3

Subsequently, we shift focus to characterizing the mean convergence of actor-critic method
given any policy evaluation method satisfying (15) in Sect. 4. Then, we specialize the sam-
ple complexity of actor-critic to the cases associated with critic updates (30) – (32), which
we respectively call Classic (Algorithm 4), Gradient (Algorithm 2), and Accelerated Actor-
Critic (Algorithm 3).

Remark 1  We wish to emphasize that a major advantage of this generic characterization of
actor-critic admits the ability to interchange critic only methods to estimate the state-action
(Q) function. The merit is twofold, as it can extend to faster convergence rates and fewer
assumptions. In particular, recent works have shown tighter sample complexity bounds for
critic-only methods for convergence in probability, which suggests that existing bounds on
convergence in expectation are not necessarily tight. Furthermore, so long as the conver-
gence of the critic takes the form of Proposition 1, the i.i.d. assumption for the critic can
be lifted. The general conditions for stability of trajectories with Markov dependence, i.e.,
negative Lyapunov exponents for mixing rates, may be found in (Meyn & Tweedie, 2012).

4 � Convergence rate of generic actor‑critic

In this section, we derive the rate of convergence in expectation for the variant of actor-
critic defined in Algorithm 1, which is agnostic to the particular choice of policy evaluation
method used to estimate the Q function used in the actor update. Unsurprisingly, we estab-
lish that the rate of convergence in expectation for actor-critic depends on the critic update
used. Therefore, we present the main result in this paper for any generic critic method.
Thereafter, we specialize this result to two well-known choices of policy evaluation previ-
ously described (30) - (31), as well as a new variant that employs acceleration (32).

We begin by noting that under Assumption 1, one may establish Lipschitz continuity of
the policy gradient ∇J(�) (Zhang et al., 2020)[Lemma 4.2].

Lemma 1  (Lipschitz-Continuity of Policy Gradient) The policy gradient ∇J(�) is Lipschitz
continuous with some constant L > 0 , i.e., for any �1, �2 ∈ ℝ

d

This lemma allows us to establish an approximate ascent for the objective sequence
{J(�k)}.

Lemma 2  Consider the actor parameter sequence defined by Algorithm 1. Further let
Assumptions 1 and 2 be in effect. Define the probability space (Ω,F,P) . Further, let Fk
be the �-algebra generated by the set {su, au, 𝜃u}u<k , that is the states, actions, and policy
parameters until time k. Then, the sequence {J(�k)} satisfies the inequality

where C1 and C2 come from Theorem 2.

Proof  See Appendix 1	� ◻

From (34) (Lemma 2), consider taking the total expectation

(33)‖∇J(�1) − ∇J(�2)‖ ≤ L ⋅ ‖�1 − �2‖.

(34)
�[J(�k+1) ∣ Fk] ≥ J(�k) + �k‖∇J(�k)‖

2 − �kC∇C1�
H(k)−1 − �kC∇C2T(k)

−b − L�2�2
k
.

2447Machine Learning (2023) 112:2433–2467	

1 3

This almost describes an ascent of J(�k) . Because the norm of the gradient is non-neg-
ative, if the latter three terms were removed, an argument could be constructed to show
that in expectation, the gradient converges to zero. Unfortunately, both the error of the
finite horizon estimate and the critic error complicate the picture. However, we know that
the error goes to zero in expectation as the number of critic steps and the horizon length
increase. Thus, we leverage this property to derive the sample complexity of actor-critic
(Algorithm 1).

We now present our main result, which is the convergence rate of actor-critic method
when the algorithm remains agnostic to the particular choice of critic scheme. We char-
acterize the rate of convergence by the smallest number K� of actor updates k required to
attain a value function gradient smaller than � , i.e. for 𝜖 > 0,

Theorem 3  Suppose the actor step-size satisfies �k = k−a for a > 0 and the critic update
satisfies Proposition 1. Further let TC(k) = k + 1 ⋅ 1(b = 1) , and H(k) = k . Then the actor
sequence defined by Algorithm 1 satisfies

Minimizing over a yields actor step-size �k = k−1∕2 . Moreover, depending on the rate b of
attenuation of the critic bias [cf. (15)], the resulting sample complexity is:

Proof  See Appendix 2	� ◻

The analysis of Lemma 2 and Theorem 3 do not make any assumptions on the size of the
state action space. Additionally, the result describes the number of actor updates required. The
number of critic updates required is simply the Kth

�
 triangular number, that is

(

K�+1

2

)

 . These
results connect actor-critic algorithms with the behavior of stochastic gradient method for
finding the root of a non-convex objective. Under additional conditions, actor-critic with TD
updates for the critic step attains a O(�−2) rate. However, under milder conditions on the state
and action spaces but more stringent smoothness conditions on the reward function, using
GTD updates for the critic yields O(�−3) rates. These results are formally derived in the fol-
lowing subsections. We further note that contemporaneously of beginning this work, several
refined analyses of TD and GTD have been developed (Dalal et al., 2018b, 2020) that focus
on concentration bounds (“lock-in probability"), a weaker metric of stability than convergence
in mean, i.e., convergence in Lebesgue integral implies convergence in measure. In this work,
we focus on global convergence to stationarity in terms of the expected gradient norm of the
value function, and thus employ policy evaluation rates that are compatible with this goal, i.e.,
rates in the form of attenuation of mean square error. We defer the study of lock-in probabili-
ties to future work.

(35)
�[J(�k+1)] ≥ �[J(�k)] + �k�[‖∇J(�k)‖

2] − �kC∇C1�
H(k)−1 − �kC∇C2T(k)

−b−L�2�2
k
.

(36)K𝜖 = min{k ∶ inf
0≤m≤k ‖∇J(𝜃m)‖

2 < 𝜖}.

(37)K� ≤ O
(

�−1∕�
)

, where � = min{a, 1 − a, b}

(38)K� ≤
{

O
(

�−1∕b
)

if b ∈ (0, 1∕2)

O
(

�−2
)

. if b ∈ (1∕2, 1]

2448	 Machine Learning (2023) 112:2433–2467

1 3

Remark 2  We note that it may be possible to establish convergence in terms of asymptotic
covariance or the Hessian around a stationary point, as in Thoppe and Borkar (2019), and
thus obtain a sharper characterization of the limit points of actor-critic. However, doing
so pre-supposes that the algorithm settle to a neighborhood of a local extrema, and would
require a Hessian parameterization that is only locally valid. Hence sharper global con-
vergence characterizations, to our knowledge, are beyond reach. In this work, our inten-
tion is to establish the global sample complexity of actor-critic type algorithms, and leave
strengthening the local rates using, e.g., techniques developed in Thoppe and Borkar
(2019), to future work.

5 � Rates of gradient and accelerated actor‑critic

In this section, we show how Algorithm 1 can be applied to derive the rate of actor-critic
methods using Gradient Temporal Difference (GTD) as the critic update. Thus, we proceed
with deriving GTD-style updates through links to compositional stochastic programming
(Wang et al., 2017a) which is also the perspective we adopted to derive rates in the previous
section. For simplicity in notation, we let Q stand for Q��

 . Begin by recalling that any critic
method seeks a fixed point of the Bellman evaluation operator:

Since we focus on parameterizations of the Q function by parameter vectors � ∈ ℝ
d with

some fixed feature map � which is learned a priori, the Bellman operator simplifies

The solution of the Bellman equation is its fixed point: T�Q(s, a) = Q(s, a) for all
s ∈ S, a ∈ A . Thus, we seek Q functions that minimize the (projected) Bellman error

where Ξ ⊆ ℝ
p is a closed and convex feasible set. The Bellman error quantifies distance

from the fixed point for a given Q� . Here the projection and �-norm are respectively defined
as

This parameterization of Q implies that we restrict the feasible set–which is in gen-
eral B(S,A) , the space of bounded continuous functions whose domain is S ×A–to be
F = {Q𝜉 ∶ 𝜉 ∈ Ξ ⊂ ℝ

d} (as in Maei et al. (2010)). Without this parameterization, one
would require searching over B(S,A) , whose complexity scales with the dimension of the
state and action spaces (Bellman, 1957), which is costly when dimensions are large, and
downright impossible for continuous spaces (Powell, 2007).

Under certain mild conditions drawing tools from functional analysis, we can define a
projection over a class of functions such that ΠQ̂ = Q̂ . For example, Radial-Basis-Func-
tion (RBF) networks have been shown to be capable of approximating arbitrarily well

(39)(T��Q)(s, a) ≜ r(s, a) + ��s�∈S,a�∼�� (s
�)[Q(s

�, a�) | s, a]

(40)T𝜋𝜃Q𝜉(s, a) = �s�∈S,a�∼𝜋𝜃 (s
�)[r(s, a) + 𝛾𝜉⊤𝜑(s�, a�)|s, a]

(41)min
�∈Ξ

‖ΠT��Q� − Q�‖
2
�
=∶ F(�).

(42)ΠQ̂ = argmin
f∈F

‖Q̂ − f‖𝜇 , ‖Q‖2
𝜇
= ∫ Q2(s, a)𝜇(ds, da),

2449Machine Learning (2023) 112:2433–2467	

1 3

functions in Lp(ℝr) ((Park & Sandberg, 1991), Theorem 1). Further, neural networks
with one hidden layer and sigmoidal activation functions are known to approximate
arbitrarily well continuous functions on the unit cube ((Cybenko, 1989), Theorem 1).

By the definition of the �-norm, we can write F [cf. (41)] as an expectation

As such, we replace the Bellman operator in (43) with (40) to obtain

Pulling the last term into the inner expectation, F(�) can be written as the function com-
position F(�) = (f◦g)(x) = f (g(x)) , where f ∶ ℝ → ℝ and g ∶ ℝ

p
→ ℝ take the form of

expected values

where

Because F(�) can be written as a nested expectations of convex functions, we can use Sto-
chastic Compositional Gradient Descent (SCGD) for the critic update (Wang et al., 2017a).
This requires the computation of the sample gradients for both f and g in (45)

The specification of SCGD to the Bellman evaluation error (44) yields the GTD updates
(31) defined in Sect. 3–see (Sutton et al., 2008) for further details. We now turn to estab-
lishing the convergence rate in expectation for Algorithm 1 (substituting Algorithm 2 for
the Critic(k) ) step using Theorem 3. Doing so requires the conditions of Theorem 3 from
Wang et al. (2017a) to be satisfied, which we subsequently state.

Assumption 3 

(i)	 The outer function f is continuously differentiable, the inner function g is continuous,
the critic parameter feasible set Ξ is closed and convex, and there exists at least one
optimal solution to problem (41), namely �∗ ∈ Ξ

(ii)	 The sample first order information is unbiased. That is,

(iii)	 The function �[g(�)] [cf. (46)] is Cg-Lipshitz continuous and the samples g(�) and ∇g(�)
have bounded second moments

(iv)	 The f(s,a)(y) has a Lipschitz continuous gradient such that

(43)F(�) = �[(T��Q� − Q�)
2].

(44)F(𝜉) = �s,a∼𝜋𝜃 (s)
{(�s�,a�∼𝜋𝜃 (s

�)[r(s, a) + 𝛾𝜉⊤𝜑(s�, a�)|s, a ∼ 𝜋𝜃(s)] − 𝜉⊤𝜑(s, a))2}.

(45)f (y) = �(s,a)[f(s,a)(y)], g(�) = �(s� ,a�)[g(s�,a�)(�) | s, a ∼ ��(s)],

(46)f(s,a)(y) = y2 , g(s�,a�)(𝜉) = r(s, a) + 𝛾𝜉⊤𝜑(s�, a�) − 𝜉⊤𝜑(s, a).

(47)∇f(s,a)(y) = 2y , ∇g(s�,a�)(�) = ��(s�, a�) − �(s, a).

�[g(s�
0
,a�

0
)(�) | s0, a0 ∼ ��(s0)] = g(�)

�[‖∇g(s�
0
,a�

0
)(�)‖

2
� s0, a0 ∼ ��(s0)] ≤ Cg, �[‖g(s�

0
,a�

0
)(�) − g(�)‖2] ≤ Vg

2450	 Machine Learning (2023) 112:2433–2467

1 3

 for all y, ȳ ∈ ℝ

(v)	 The projected Bellman error is strongly convex with respect to the critic parameter �
in the sense that there exists a � such that

The first part of Assumption 3(i) is trivially satisfied by the forms of f and g in (46).
Assumption 3(ii) requires that the state-action pairs used to update the critic parameter
to be independently and identically distributed (i.i.d.), which is a common assumption
unless one focuses on performance along a single trajectory. Doing so requires tools
from dynamical systems under appropriate mixing conditions on the Markov transition
density (Borkar, 2009; Antos et al., 2008), which we obviate here for simplicity and
to clarify insights. We note that the sample complexity of policy evaluation along a
trajectory has been established by Bhandari et al. (2018), but remains open for policy
learning in continuous spaces. Moreover, i.i.d. sampling yields unbiasedness of certain
gradient estimators and second-moment boundedness which are typical for stochastic
optimization (Bottou, 1998). We note that these conditions come directly from Wang
et al. (2017a)–here we translate them to the reinforcement learning context.

We further require F(�) to be strongly convex, so that Wang et al. (2017a)[Theorem 3
and Theorem 7] holds. Consider the Hessian

Due to its structure, and the i.i.d. assumption, the Hessian ∇2F(�) is known to be positive
definite Bertsekas et al. (1995); Dalal et al. (2018b).

We can now combine the convergence result (Theorem 3) from Wang et al. (2017a)
with Theorem 3 to establish the rate of actor-critic with GTD updates for the critic,
through connecting GTD and SCGD. We summarize the resulting method as Algo-
rithm 2, which we call Gradient Actor-Critic.

�[‖∇f(s0,a0)(y)‖
2] ≤ Cf ‖∇f(s0,a0)(y) − f(s0,a0)(ȳ)‖ ≤ Lf‖y − ȳ‖

∇2F(�) ⪰ �I

(48)∇2F(𝜉) = �s,a

[

�s� ,a�

[

𝛾𝜑(s�, a�) − 𝜑(s, a)|s, a
]⊤
�s�,a�

[

𝛾𝜑(s�, a�) − 𝜑(s, a)|s, a
]

]

.

2451Machine Learning (2023) 112:2433–2467	

1 3

Corollary 1  Consider the actor parameter sequence defined by Algorithm 2. If the stepsize
�k = k−1∕2 and the critic stepsizes are �t = 1∕t� and �t = 1∕t2∕3 , then we have the following
bound on K� defined in (36):

Proof  Here we invoke ((Wang et al., 2017a), Theorem 3) which characterizes the rate of
convergence for the critic parameter

Applying Jensen’s inequality, we have

Taking the square root gives us

Therefore, b = 1∕3 (c.f. Proposition 1) in Theorem 3, which determines the O
(

�−3
)

 rate on
K� in the preceding expression. 	� ◻

Unsurprisingly, with additional smoothness assumptions, it is possible to obtain faster
convergence through accelerated variants of GTD. The corresponding actor-critic method
with Accelerated GTD updates is given by substituting Algorithm 3 for Critic(k) in Algo-
rithm 1, which we call Accelerated Actor-Critic. The validity of accelerated rates, aside
from Assumption 3, requires imposing that the inner expectation has Lipschitz gradients
and that sample gradients have boundedness properties which are formally stated below.

(49)K� ≤ O
(

�−3
)

.

(50)�[‖�k − �∗‖
2] ≤ O

�

k−2∕3
�

.

(51)�[‖�k − �∗‖]
2 ≤ �[‖�k − �∗‖

2] ≤ O
�

k−2∕3
�

,

(52)�[‖�k − �∗‖] ≤ O
�

k−1∕3
�

.

2452	 Machine Learning (2023) 112:2433–2467

1 3

Assumption 4 

	 (i)	 There exists a constant scalar Lg > 0 such that

	 (ii)	 The sample gradients satisfy with probability 1 that

With this additional smoothness assumption, sample complexity is reduced, as we state
in the following corollary.

Corollary 2  Consider the actor parameter sequence defined by Algorithm 3. If the stepsize
�k = k−1∕2 and the critic stepsizes are �t = 1∕t� and �t = 1∕t4∕5 , then we have the following
bound on K� defined in (36):

Proof  The proof is identical to the proof of Corollary 1 while invoking Theorem 7 from
Wang et al. (2017a). 	� ◻

Corollary 2 establishes a O(�−5∕2) sample complexity of actor-critic when accelerated
GTD steps are used for the critic update. This is the lowest complexity/fastest rate relative
to all others analyzed in this work for continuous spaces. However, this fast rate requires
the most stringent smoothness conditions. In the following section, we shift to the case
where the critic is updated using vanilla TD(0) updates (30), which is the original form of
actor-critic proposed by Konda and Borkar (1999).

6 � Sample complexity of classic actor‑critic

In this section, we derive convergence rates for actor-critic when the critic is updated using
TD(0) as in (30) for two different canonical settings: the case where the state space action
is continuous (Sect. 6.1) and when it is finite (Sect. 6.2). Both use TD(0) with linear func-
tion approximation in its unaltered form (Sutton, 1988). We substitute Algorithm 4 for the

‖∇�s� ,a�∼�� (s
�)[g(�1)] − ∇�s�,a�∼�� (s

�)[g(�2)]‖ ≤ Lg‖�1 − �2‖, ∀�1, �2 ∈ Ξ

𝔼
�

‖∇g(�)‖4 � s0, a0
� ≤ C2

g
, ∀� ∈ Ξ , 𝔼

�

‖∇f (y)‖4
� ≤ C2

f
, ∀y ∈ ℝ

d

(53)K� ≤ O
(

�−5∕2
)

.

2453Machine Learning (2023) 112:2433–2467	

1 3

Critic(k) step in Algorithm 1, which is the classical form of actor-critic given by Konda
and Borkar (1999); Konda and Tsitsiklis (2000), thus the name Classic Actor-Critic.

6.1 � Continuous state and action spaces

The analysis for Continuous State Action space TD(0) with linear function approxima-
tion uses the analysis from Dalal et al. (2018a) to characterize the rate of convergence
for the critic. Their analysis requires the following common assumption.

Assumption 5  There exists a constant Ks > 0 such that for the filtration Gt defined for the
TD(0) critic updates, we have

where Mt+1 is defined as

where

Assumption 5 is known to hold when the samples have uniformly bounded second
moments, which is a common assumption for convergence results (Sutton et al., 2009a,
b). In the same way the projected Bellman error is strongly convex [see (48)], it is
known that A is positive definite. As such, we define 𝜆TD ∈ (0, 𝜆min(A + A⊤)) . The value
of �TD is conditioned on the feature representation of the state space, which is chosen a
priori. However, this value plays an important role in determining the rate of conver-
gence for TD(0), as we see in the following corollary.

Corollary 3  Consider the actor parameter sequence defined by Algorithm 4. Suppose the
actor step-size is chosen as �k = k−1∕2 and the critic step-size takes the form �t = 1∕(t + 1)�
where � ∈ (0, 1) . Then, for large enough k,

Proof  Here we invoke the TD(0) convergence result from ((Dalal et al., 2018b), Theo-
rem 3.1) which establishes that

for some positive constants K1 and K2 . For � not close to 1, the first term is dominated by
K2∕t

� , which permits us to write that

Applying Jensen’s inequality, we have

(54)�[‖Mt+1‖
2
�Gt] ≤ Ks[1 + ‖�t − �∗‖

2],

(55)Mt+1 =
(

rt + 𝛾𝜉⊤
t
𝜑(st+1, at+1) − 𝜉⊤

t
𝜑(st, at)

)

𝜑(st, at) − b + A

(56)b ∶= �s,a∼𝜋(s)[r(s, a)𝜑(s, a)], and A ∶= �s,a∼𝜋(s)[𝜑(s, a)(𝜑(s, a) − 𝛾𝜑(s�, a�))⊤]

(57)K� ≤ O
(

�−2∕�
)

(58)�[‖�t − �∗‖
2] ≤ K1e

−�TDt
1−�∕2 +

K2

t�

(59)�[‖�t − �∗‖
2] ≤ O

�

1

t�

�

2454	 Machine Learning (2023) 112:2433–2467

1 3

Taking the square root on both sides gives us

which means that the convergence rate statement of Proposition 1 is satisfied with param-
eter b = �∕2 . Because 𝜎 < 1∕2 , this specializes Theorem 3, specifically, (38) to case (i),
which yields the rate

Thus the claim in Corollary 3 is valid. 	� ◻

The operative phrase in the proof of the previous theorem is for � not close to 1.
This is because we want the first second term of (58) to dominate the first term so that
Proposition 1 holds. Asymptotically, this is not a problem, however for finite sample
complexity, the point at which the exponential term is dominated by the second term
is highly sensitive to both �TD and � . The choice of � can be chosen to be larger as the
value of �TD grows. The choice of � as a function of �TD and the number of iterates is
summarized in Fig. 1.

We find that as the value of �TD increases, the critical value of � also increases. This
means that the stepsize of the critic can be chosen to be larger, allowing for faster con-
vergence. Again, we define the critical value of � to be the point at which both terms on
the right hand side of (64) are equal at a specific time t. Therefore, the feature space rep-
resentation plays a large role on the performance of actor-critic with TD(0) updates. This
result becomes apparent in our numerical results (Sect. 7). We note that, the GTD rates
given in Corollary 1 hinge upon strong convexity of the projected Bellman error, which
may hold for carefully chosen state-action feature maps, bounded parameter spaces, and
lower bounds on the reward. These conditions are absent for TD(0) critic updates.

In the next section, we will consider analysis of actor-critic with TD(0) critic updates
in the case where the state and action spaces are finite. As would be expected, this added
assumption significantly improves the bound on the rate of convergence, i.e., reduces the
sample complexity needed for policy parameters that are within � of stationary points of
the value function.

6.2 � Finite state and action spaces

In this section, we characterize the rate of convergence for the actor-critic defined by Algo-
rithm 1 with TD(0) critic updates (Algorithm 4) when the number of states and actions are
finite, i.e., |S| = S < ∞ and |A| = A < ∞ . This setting yields faster convergence. A key
quantity in the analysis of TD(0) in finite spaces is the minimal eigenvalue of the covari-
ance of the feature map �(s, a) weighted by policy �(s) , which is defined as

(60)�[‖�t − �∗‖]
2 ≤ �[‖�t − �∗‖

2] ≤ O
�

1

t�

�

.

(61)�[‖�t − �∗‖] ≤ O
�

1

t�∕2

�

,

(62)K� ≤ O
(

�−2∕�
)

.

(63)𝜔 = min

{

eig

(

∑

(s,a)∈S×A

𝜋(s)𝜑(s, a)𝜑(s, a)⊤

)}

.

2455Machine Learning (2023) 112:2433–2467	

1 3

That � exists is an artifact from the finite state action space assumption. (63) is used to
define conditions on the rate of step-size attenuation for TD(0) [cf. (30)] critic updates in
((Bhandari et al., 2018), Theorem 2 (c)), which we invoke to establish the iteration com-
plexity of actor-critic in finite spaces. We do so next.

Corollary 4  Consider the actor parameter sequence defined by Algorithm 4. Let the actor
step-size satisfy �k = k−1∕2 and the critic step-size decrease as �t = �∕(� + t) where
� = 2∕�(1 − �) and � = 16∕�(1 − �)2 . Then when the number of critic updates per actor
update satisfies TC(k) = k + 1 , the following convergence rate holds

Proof  We begin by invoking the TD(0) convergence result ((Bhandari et al., 2018), Theo-
rem 2 (c)):

for some constants K1,K2 which depend on � and � . Applying Jensen’s inequality, we have

Taking the square root on both sides yields

which means that Proposition 1 is valid with critic convergence rate parameter b = 1∕2 .
Therefore, we may apply Theorem 3 to obtain the rate

as stated in Corollary 4. 	� ◻

7 � Numerical results

In this section, we compare the convergence rates of actor-critic with the aforementioned
critic-only methods on a two-dimensional navigation problem and the inverted pendulum.
Before detailing the RL problem specifics, we first discuss the metrics we use to evaluate
both performance and convergence.

Because the main objective is to maximize the long term average reward accumulation,
it follows naturally to measure the cumulative reward of a trajectory. We evaluate the pol-
icy without action noise (�2 = 0) , with a fixed trajectory length, and with a fixed starting
position which makes the plots easier to compare. In addition, we consider a proxy for the
gradient norm. In particular, we calculate the norm of the difference between two consecu-
tive normalized actor parameters (‖�k∕‖�k‖ − �k+1∕‖�k+1‖‖) . The normalization treats two
scaled versions of the same parameter equivalently. This is meaningful because the action

(64)K� ≤ O
(

�−2
)

(65)�[‖�t − �∗‖
2] ≤ O

�

K1

t + K2

�

,

(66)�[‖�t − �∗‖]
2 ≤ �[‖�t − �∗‖

2] ≤ O

�

K1

t + K2

�

.

(67)�[‖𝜉t − 𝜉∗‖] ≤ O

�

K
−1∕2

1

(t + K2)
−1∕2

�

≲ O(t−1∕2),

(68)K� ≤ O
(

�−2
)

2456	 Machine Learning (2023) 112:2433–2467

1 3

vector field induced by the parameters (see Fig 3) are similarly scaled versions of each
other. In this form, the gradient norm proxy serves as the optimization metric on which our
main result is based.

Along with varying the critic-only methods, we elect to consider two additional vari-
ations on policy gradient where the Q function is replaced by the advantage and value
functions. Recall the definition of the value function from (1). The advantage function is
defined by A(st, at) = Q(st, at) − V(st) , which, by definition of the Q function, can also
take the form of A(st, at) = rt+1 + �V(st+1) − V(st) (Mnih et al., 2016). The main benefit of
using the value function and advantage functions instead of the Q function for actor critic
is that the dimension of the function approximator domain is smaller, as the agent only
needs to learn on the state space.

7.1 � Navigating around an obstacle

We consider the problem of a point agent starting at an initial state s0 ∈ ℝ
2 whose objec-

tive is to navigate to a destination s∗ ∈ ℝ
2 while remaining in the free space at all time. The

free space X ⊂ ℝ
2 is defined by

The feature representation of the state is determined by a radial basis (Gaussian) kernel
where

The p kernel points are chosen evenly on the [−5, 5] × [−5, 5] grid so that the the feature
representation becomes

which we normalize. Given the state st , the action is sampled from a multivariate Gauss-
ian distribution with covariance matrix Σ = 0.5 ⋅ I2 and mean given by 𝜃⊤

k
𝜑(st) . We let the

action determine the direction in which the agent will move. As such, the state transition is
determined by st+1 = st + 0.5at∕‖at‖.

Because the agent’s objective is to reach the target s∗ while remaining in F for all time,
we want to penalize the agent heavily for taking actions which result in the next step being
outside the free space and reward the agent for being close to the target. As such, we define
the reward function to be

The design of this reward function for the navigation problem is informed by the (Zhang
et al., 2020), which suggests that the reward function should be bounded away from zero.
In this simulation, we allow for the agent to continue taking actions through the obstacles.
This formulation is similar to a car driving on a race track which has grass outside the

(69)X ∶=
�

s ∈ ℝ
2�
�

�

‖s‖ ∈ [0.5, 4]
�

.

(70)�(s, s�) = exp

�

−‖s − s�‖2
2

2�2

�

.

(71)𝜑(s) =
[

𝜅(s, s1) 𝜅(s, s2) … 𝜅(s, sp)
]⊤

,

(72)rt+1 =

⎧

⎪

⎨

⎪

⎩

−11 if st+1 ∉ X

−0.1 if ‖st+1 − s∗‖ < 0.5

−1 otherwise .

2457Machine Learning (2023) 112:2433–2467	

1 3

track. The car is allow is allowed to drive off the track, however it incurs a larger cost due
to the substandard driving conditions.

Although it is true that this particular formulation does not allow for generalization, that
is, if the target of the agent, obstacle location, or starting point of the agent are moved, the
agent would have to start from scratch to learn a new meaningful policy, we emphasize that
it is the rates of convergence which are of interest in this exposition, not necessarily finding
the best way to design the navigation problem.

Algorithm Specifics We consider the problem with � = 0.97 . In practice, we use the
entire trajectory data for the critic updates. In particular, for each actor parameter update,
we run ten critic updates with rollout length T = 66 (comes from the expected rollout
length given � = 0.97 ). Similarly, we update the actor along the trajectory of rollout length
H = 67. For simulations, the actor update step �t is chosen to be constant � = 10−3 . For
TD(0), we let also let the critic stepsize be constant, namely �t = � = 0.05 . For GTD, we
let �t = t−1 and �t = t−2∕3 . For A-GTD, we set �t = t−1 and �t = t−4∕5 . We draw the initial
distribution uniformly at random on the grid [−2, 2] × [−2, 2] , and we set the target to be
s∗ = (−2,−2) . For each critic only method, we run the algorithm 50 times. We evaluate the
policy by measuring the accumulated reward of a trajectory of length H = 66.

7.2 � Pendulum problem

We also consider the canonical continuous state action space reinforcement learning prob-
lem of the pendulum. The objective is to balance the pendulum upright starting from any
starting position. Given that this is a well established benchmark for reinforcement learn-
ing, we refer the reader to Brockman et al. (2016) for the specifications on reward and
transition dynamics. Similar to the navigation problem, we let the feature representation
of the state be determined by a radial basis (Gaussian) kernel (c.f. (70)) where the p kernel
points are chosen evenly on [−1,−1,−8,−2] × [1, 1, 8, 2] , where the bounds come from
the sine and cosine of the angle � , the time derivative of the angle 𝜃̇ , and the maximum
torque of the action respectively. The action is chosen by a normal distribution with mean
𝜉⊤𝜑(s, a) and variance �2

a
 . Like the navigation problem, we use a linear policy and linear

critic. Again, we stress that these experiments are meant to show the rates of convergence,
and not necessarily finding the best way to solve the pendulum problem. For the pendulum
problem, we only consider advantage actor-critic.

Algorithm Specifics Similar to the navigation problem, we let � = 0.97 , and we use the
entire trajectory data for the critic updates. In particular, for each actor parameter update,
we run ten critic updates with rollout length T = 66 (comes from the expected rollout
length given � = 0.97 ). Similarly, we update the actor along the trajectory of rollout length
H = 66. For simulations, the actor update step �t is chosen to be constant � = 0.01 . For
critic only methods, we also let also let the critic stepsize be constant. In particular, we let
�t = 0.01 for TD(0), (�t, �t) = (0.2, 0.01) for GTD, and (�t, �t) = (0.05, 0.005) for AGTD.
We evaluate the policy by measuring the average accumulated by a single trajectory start-
ing � = �∕2 with angular velocity � = 1 . The action variance is chosen to be �2

a
= 0.5.

7.3 � Discussion

Recall that the analysis of Corollaries 1, 2, and 3 establish that the convergence rates
for GTD, A-GTD, and TD(0) are O(�−3) , O(�−5∕2) , and O(�−2∕�) respectively [also see
Table 1]. Figure 2 shows the performance of the navigation problem with value and

2458	 Machine Learning (2023) 112:2433–2467

1 3

advantage function policy gradient updates. As expected, A-GTD converges fastest with
respect to the gradient norm proxy, while GTD and TD(0) are comparable. The plots
highlight a disconnect between the convergence in reward and the convergence in gradi-
ent norm. Namely, TD converges faster in gradient norm, but slower with respect to the
cumulative reward. Even more interesting, although AGTD converges fastest with respect
to gradient norm and reward, its resulting stationary point is suboptimal compared to TD
and GTD (see Fig 3). On the other hand, GTD and TD(0) converge the slower, and they
consistently reach the solved region marked by the solid black line at −66 . We say that
rewards which are greater than −66 are solved trajectories because these trajectory spend
time in the destination region. A trajectory which does not reach the destination region will
have accumulated reward of −66 or less. Taken together, these theoretical and experimental
results suggest a tight coupling between the choice of training methodology and the qual-
ity of learned policies. Thus, just as the choice of optimization method, statistical model,
and sample size influence generalization in supervised learning, they do so in reinforce-
ment learning. Theorem 3 characterizes the rate of convergence to a stationary point of

Fig. 2   Navigation Problem: (a) Average reward per episode with confidence bounds over 50 trials. (b) Aver-
age gradient norm proxy over 50 trials. A-GTD converges fastest with respect to the cumulative reward and
gradient norm proxy at the cost of converging to a suboptimal stationary point (see Fig. 3). A moving aver-
age filter of size ten has been applied on the gradient norm proxy to aid in comparison

-4 -3 -2 -1 0
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-4 -3 -2 -1 0
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-4 -3 -2 -1 0
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

)c()b()a(

Fig. 3   Visualization of the learned policy for the navigation problem. The obstacle is shown in the top right
corner, and the target is located at (-2,-2). As Fig. 2 (a) depicts, TD (shown in (a)) and GTD (shown in (b))
learn meaningful policies which guide the agent to the target. In contrast, A-GTD (shown in (c)) simply
learns to avoid the obstacle

2459Machine Learning (2023) 112:2433–2467	

1 3

the Bellman optimality operator, however it does not provide any guarantee on the quality
of the stationary point. Figure 3 captures this trade-off convergence rate and quality of the
stationary point.

The disconnect between convergence in reward and convergence in gradient norm appears
again in the pendulum. Fig. 4 (b) shows the gradient norm proxy for the advantage actor-critic
applied to the pendulum problem. Consistent with Table 1, AGTD converges the fastest with
followed by GTD and TD(0). Here, we again see the disconnect between convergence in gra-
dient norm and cumulative reward. Notice how in the first few iterations, TD(0) actually con-
verges the fastest. In tandem, the cumulative reward of TD(0) also increases quickly. By the
final episode, TD(0) and AGTD perform worse than GTD. This is consistent with the conver-
gence rate and quality of stationary point trade-off observed in the navigation problem.

There are a number of future directions to take this work. To begin, we can establish
bounds on cases where the samples are not i.i.d., but instead have Markovian noise. Second,
we can further generalize our results to consider a generic critic convergence rate that does
not necessarily take the form of Proposition 1. Third, we can explore the choice of feature
representation to explicitly characterize the convergence rate of actor-critic with TD(0) critic
updates with respect to �TD . Finally, we can characterize the behavior of the variance and use
such characterizations to accelerate training.

Appendix

Proof of Lemma 2

By the Mean Value Theorem, there exists 𝜃k = 𝜆𝜃k + (1 − 𝜆)𝜃k+1 for some � ∈ [0, 1] such that

Add and subtract (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k) to the right hand side of (73) to obtain

(73)J(𝜃k+1) = J(𝜃k) + (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k).

0 50 100 150 200

Episodes

-410

-400

-390

-380

-370

-360

-350

-340
C

um
ul

at
iv

e
R

ew
ar

d

TD(0)
GTD
AGTD

0 50 100 150 200

Episodes

-6

-5

-4

-3

-2

-1

0

G
ra

di
en

t N
or

m
 P

ro
xy

 (L
og

 S
ca

le
)

TD(0)
GTD
AGTD

)b()a(

Fig. 4   Pendulum Problem: (a) Average reward per episode with confidence bounds over 50 trials. (b) Aver-
age gradient norm proxy over 50 trials. In contrast to the navigation problem there is a significant gain in
using advantage actor-critic; here, the state action (Q) function was used instead of the value function (V).
A moving average filter of size ten has been applied on the gradient norm proxy to aid in comparison

2460	 Machine Learning (2023) 112:2433–2467

1 3

By Cauchy Schwartz, we know (𝜃k+1 − 𝜃k)
⊤
�

∇J(𝜃k) − ∇J(𝜃k)
� ≥ −‖𝜃k+1 − 𝜃k‖‖∇J(𝜃k) − J(𝜃k)‖ .

Further, by the Lipschitz continuity of the gradient, we know
‖∇J(𝜃k) − ∇J(𝜃k)‖ ≤ L‖𝜃k − 𝜃k‖ . Therefore, we have

where the second inequality comes from substituting 𝜃k = (1 − 𝜆)𝜃k+1 + 𝜆𝜃k . We substitute
this expression into the definition of J(�k+1) in (74) to obtain

Take the expectation with respect to the filtration Fk , and substitute the definition for the
actor update (17)

We know from (29) that ‖∇̂J(𝜃k)‖2 ≤ 𝜎2 , as such we obtain

Therefore, we are left to show that the last term on the right-hand side of the preceding
expression is “nearly" an ascent direction. Recall from Algorithm 1 that the kth update
takes the form (22), that is

Substituting into (78), from Theorem 2, we obtain

This concludes the proof.

Proof of Theorem 3

Take the total expectation of (34) from Lemma 2

Define Uk ∶= J(�∗) − J(�k) where �∗ is the solution of (2) when the policy is parameterized
by � . By this definition, we know that Uk is non-negative for all �k . Add J(�∗) to both sides
of the inequality and rearrange terms

(74)J(𝜃k+1) = J(𝜃k) + (𝜃k+1 − 𝜃k)
⊤
(

∇J(𝜃k) − ∇J(𝜃k)
)

+ (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k).

(75)(𝜃k+1 − 𝜃k)
⊤
�

∇J(𝜃k) − J(𝜃k)
� ≥ −L‖𝜃k − 𝜃k‖ ⋅ ‖𝜃k+1 − 𝜃k‖ ≥ −L‖𝜃k+1 − 𝜃k‖

2 ,

(76)J(𝜃k+1) ≥ J(𝜃k) + (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k) − L‖𝜃k+1 − 𝜃k‖

2.

(77)�[J(𝜃k+1)�Fk] ≥ J(𝜃k) + �[𝜃k+1 − 𝜃k�Fk]
⊤∇J(𝜃k) + −L�[‖𝜂kĝ

AC
H(k)

‖

2
�Fk].

(78)�[J(𝜃k+1)|Fk] ≥ J(𝜃k) + �[𝜃k+1 − 𝜃k|Fk]
⊤∇J(𝜃k) − L𝜎2𝜂2

k
.

(79)�
[

𝜃k+1 − 𝜃k|Fk

]

= 𝜂k�

[

ĝAC
H(k)

|Fk

]

= 𝜂k�
[

∇𝜃J(𝜃k)|Fk

]

+ 𝜂k�

[

ĝAC
H(k)

− ∇𝜃J(𝜃)|Fk

]

(80)

�[J(𝜃k+1)�Fk] ≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 + 𝜂k�

�

ĝAC
H(k)

− ∇𝜃J(𝜃k)�Fk

�⊤

∇𝜃J(𝜃k)−L𝜎
2𝜂2

k

≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 − 𝜂k

�

�

�

�

�

�

ĝAC
H(k)

− ∇𝜃J(𝜃k)�Fk

�⊤

∇𝜃J(𝜃k)
�

�

�

�

−L𝜎2𝜂2
k

≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 − 𝜂k‖�

�

ĝAC
H(k)

�

− ∇𝜃J(𝜃k)‖ ⋅ ‖∇𝜃J(𝜃k)‖−L𝜎
2𝜂2

k

≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 − 𝜂kC∇

�

C1𝛾
H(k)−1 + C2T(k)

−b
�

−L𝜎2𝜂2
k

(81)
�[J(�k+1)] ≥ �[J(�k)] + �k�[‖∇J(�k)‖

2] − �kC∇C1�
H(k)−1 − �kC∇C2TC(k)

−b − L�2�2
k
.

2461Machine Learning (2023) 112:2433–2467	

1 3

Divide both sides by �k and take the sum over {k − N,… , k} for some integer 1 < N < k

Add and subtract 1∕�k−N−1�[Uk−N] on the right hand side. This allows us to write

By definition of Uk , �[Uk+1] ≥ 0 . Therefore we can omit it from the right hand side of (84).
Further, we know that J(�∗) ≤ UR∕(1 − �) as a consequence from Assumption 11 [see (6)].
Hence we have Uk ≤ 2UR∕(1 − �) =∶ C3 for all k. Substituting this fact into the preceding
expression yields

By unraveling the telescoping sum, the first two terms are equal to C3∕�k

Substitute �k = k−a for the step size

We break the remainder of the proof into two cases due to the fact that the right-hand side
of the preceding expression simplifies when b = 1 , and is more intricate when 0 < b < 1 .
We focus on the later case first.

Case (i): b ∈ (0, 1) Consider the case where b ∈ (0, 1) . Set TC(k) = k and H(k) = k .
Substitute the integration rule, namely that

∑k

j=k−N
j−a ≤ k1−a − (k − N − 1)1−a , into (87) to

obtain:

(82)
�
k
�[‖∇J(�

k
)‖2] ≤ �[U

k
] − �[U

k+1] + L�2�2
k
+ �

k
C∇C1

�H(k)−1 + �
k
C∇C2

T
C
(k)−b.

(83)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤

k
�

j=k−N

1

�j

�

�[Uj] − �[Uj+1]
�

+ L�2

k
�

j=k−N

�j

+

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(84)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤

k
�

j=k−N

�

1

�j
−

1

�j−1

�

�[Uj] −
1

�k
�[Uk+1] +

1

�k−N−1
�[Uk−N]

+ L�2

k
�

j=k−N

�j +

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(85)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤

k
�

j=k−N

�

1

�j
−

1

�j−1

�

C3 +
1

�k−N−1
C3 + L�2

k
�

j=k−N

�j

+

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(86)
k
�

j=k−N

�[‖∇J(�j)‖
2] ≤ C3

�k
+ L�2

k
�

j=k−N

�j +

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(87)
k
�

j=k−N

�[‖∇J(�j)‖
2] ≤ C4k

a + L�2

k
�

j=k−N

j−a +

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

2462	 Machine Learning (2023) 112:2433–2467

1 3

Divide both sides by k and set N = k − 1

Suppose k = K� so that we may write

By definition of K� [c.f. (36)], we have that �[‖∇J(𝜃j)‖2] > 𝜖 for all j = 1,… ,K� , so

Defining � = min{a, 1 − a, b} , the preceding expression then implies

which by inverting the expression, yields the sample complexity

Case (ii): b = 1 Now consider the case where b = 1 . Set TC(k) = k + 1 and H(k) = k .
Again, using the integration rule, and that

∑k

j=k−N
(j + 1)−1 ≤ log(k + 1) − log(k − N) , we

substitute into (87) which yields

Divide both sides by k and fix N = k − 1

Let k = K� in the preceding expression, which then becomes

(88)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤C4k

a + C∇C1�
−1

k
�

j=k−N

� j +
L�2

1 − a

�

k1−a − (k − N − 1)1−a
�

+
CL1

1 − b

�

k1−b − (k − N − 1)1−b
�

.

(89)

1

k

k
�

j=1

�[‖∇J(�j)‖
2] ≤ C4k

a−1 + C∇C1�
−1k−1

k
�

j=1

� j +
L�2

1 − a
k−a +

CL1

1 − b
k−b

≤ C4k
a−1 +

C∇C1

�(1 − �)
k−1 +

L�2

1 − a
k−a +

CL1

1 − b
k−b

(90)
1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+ K−b
�

�

.

(91)� ≤ 1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+ K−b
�

�

.

(92)� ≤ O(K−�
�

),

(93)K� ≤ O(�−1∕�).

(94)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤C4k

a + C∇C1

k
�

j=k−N

� j +
L�2

1 − a

�

k1−a − (k − N − 1)1−a
�

+ CL1(log(k + 1) − log(k − N)).

(95)

1

k

k
�

j=1

�[‖∇J(�j)‖
2] ≤ C4k

a−1 + C∇C1�
−1k−1

k
�

j=1

� j +
L�2

1 − a
k−a + CL1

log(k + 1)

k
.

(96)
1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+
log(K� + 1)

K�

�

.

2463Machine Learning (2023) 112:2433–2467	

1 3

Again, by definition of K� [c.f. (36)], we have that �[‖∇J(𝜃j)‖2] > 𝜖 for all j = 1,… ,K� , so

Optimizing over a, we have

On the other hand,

Fix � = min{1∕2, b} , then

which implies

This concludes the proof.

Acknowledgements  The authors thank the anonymous reviewers for comments that help improve the pres-
entation of the manuscript. In particular, we would like to especially thank anonymous reviewer number one
for not only identifying a key technical error in the proof of Theorem 3, but also providing the method to
correct it.

Author contributions  All authors, i.e. Kumar, Koppel, and Ribeiro, made substantial contributions to the
conception and design of the work, drafted the work and revised it critically for important intellectual con-
tent, approve of the version to be published, and agree to the accountable for all aspects of the work.

Funding  This work was partly funded by Army Research Lab (ARL DCIST).

Data availability  Simulations of pendulum were conducted on the Pendulum environment from gym.openai.
com.

Code availability  Experiments were run on custom code using the Pendulum enviornment from gym.ope-
nai.com.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Consent to participate  Not Applicable

Consent for publication  Not Applicable

Ethics approval  Not Applicable

(97)� ≤ 1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+
log(K� + 1)

K�

�

.

(98)𝜖 ≤ O

(

K
−

1

2

𝜖

)

for b >
1

2

(99)� ≤ O
(

K−b
�

)

. for b ≤ 1∕2

(100)� ≤ O(K−�
�

),

(101)K� ≤ O(�−1∕�).

2464	 Machine Learning (2023) 112:2433–2467

1 3

References

Antos, A., Szepesvári, C., & Munos, R. (2008). Fitted q-iteration in continuous action-space mdps.
Advances in Neural Information Processing Systems, 20, 9–16.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation. In: machine
learning proceedings 1995. Elsevier, pp 30–37

Bellman, R. (1954). The theory of dynamic programming. RAND Corp Santa Monica CA: Tech. rep.
Bellman, R.E. (1957). Dynamic Programming. Courier Dover Publications
Bertsekas, D. P. (2005). Dynamic programming and optimal control. European Journal of Control, 11, 4–5.
Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). Dynamic programming and

optimal control (Vol. 1). MA: Athena scientific Belmont.
Bhandari, J., Russo, D., & Singal, R. (2018). A finite time analysis of temporal difference learning with lin-

ear function approximation. In: Conference on learning theory, PMLR, pp 1691–1692
Bhatnagar, S., Ghavamzadeh, M., Lee, M., & Sutton, R. S. (2008). Incremental natural actor-critic algo-

rithms. Advances in Neural Information Processing Systems, 20, 105–112.
Bhatnagar, S., Sutton, R., Ghavamzadeh, M., & Lee, M. (2009). Natural actor-critic algorithms. Automatica,

45(11), 2471–2482.
Borkar, V. S. (1997). Stochastic approximation with two time scales. Systems & Control Letters, 29(5),

291–294.
Borkar, V. S. (2009). Stochastic approximation: a dynamical systems viewpoint, (Vol. 48). Springer.
Borkar, V. S., & Meyn, S. P. (2000). The ode method for convergence of stochastic approximation and rein-

forcement learning. SIAM Journal on Control and Optimization, 38(2), 447–469.
Bottou, L. (1998). Online learning and stochastic approximations. On-line Learning in Neural Networks,

17(9), 142.
Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning Research,

2(3), 499–526.
Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning: Safely approximating the

value function. Advances in Neural Information Processing Systems, 7, 369–376.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).

Openai gym. arXiv preprint arXiv:​1606.​01540
Cai, Q., Yang, Z., Lee, J. D., & Wang, Z. (2019). Neural temporal-difference learning converges to global

optima. Advances in Neural Information Processing Systems, 32, 4–5.
Castro, D. D., & Meir, R. (2010). A convergent online single-time-scale actor-critic algorithm. Journal of

Machine Learning Research, 11, 367–410.
Cayci, S., He, N., & Srikant, R. (2022). Finite-time analysis of entropy-regularized neural natural actor-

critic algorithm. arXiv preprint arXiv:​2206.​00833
Chen, Z., Khodadadian, S., & Maguluri, S. T. (2022). Finite-sample analysis of off-policy natural actor-

critic with linear function approximation. IEEE Control Systems Letters, 6, 2611–2616.
Chen, Z., Zhou, Y., Chen, R.R., & Zou, S. (2022b). Sample and communication-efficient decentralized

actor-critic algorithms with finite-time analysis. In: International conference on machine learning,
PMLR, pp 3794–3834

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4), 303–314.

Dalal, G., Szörényi, B., Thoppe, G., & Mannor, S. (2018). Finite sample analyses for td (0) with function
approximation. Thirty-Second AAAI Conference on Artificial Intelligence, 32, 1–10.

Dalal, G., Thoppe, G., Szörényi, B., & Mannor, S. (2018b). Finite sample analysis of two-timescale stochas-
tic approximation with applications to reinforcement learning. In: Conference On Learning Theory, pp
1199–1233

Dalal, G., Szörényi, B., & Thoppe, G. (2020). A tale of two-timescale reinforcement learning with the tight-
est finite-time bound. AAAI Press, pp 3701–3708, https://​aaai.​org/​ojs/​index.​php/​AAAI/​artic​le/​view/​
5779

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural Computation, 12(1),
219–245.

Ge, R., Huang, F., Jin, C., & Yuan, Y. (2015). Escaping from saddle points–online stochastic gradient for
tensor decomposition. In: Conference on Learning Theory, pp 797–842

Giannoccaro, I., & Pontrandolfo, P. (2002). Inventory management in supply chains: a reinforcement learn-
ing approach. International Journal of Production Economics, 78(2), 153–161.

Gruslys, A., Dabney, W., Azar, M.G., Piot, B., Bellemare, M., & Munos, R. (2018). The reactor: A fast and
sample-efficient actor-critic agent for reinforcement learning. In: international conference on learning
representations

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/2206.00833
https://aaai.org/ojs/index.php/AAAI/article/view/5779
https://aaai.org/ojs/index.php/AAAI/article/view/5779

2465Machine Learning (2023) 112:2433–2467	

1 3

Jiang, D.R., Pham, T.V., Powell, W.B., Salas, D.F., & Scott, W.R. (2014). A comparison of approximate
dynamic programming techniques on benchmark energy storage problems: Does anything work? In:
2014 IEEE symposium on adaptive dynamic programming and reinforcement learning (ADPRL),
IEEE, pp 1–8

Jin, C., Allen-Zhu, Z., Bubeck, S., & Jordan, M. I. (2018). Is q-learning provably efficient? Advances in
Neural Information Processing Systems, 31, 4863–4873.

Kober, J., & Peters, J. (2012). Reinforcement learning in robotics: A survey. Reinforcement Learning (pp.
579–610). London: Springer.

Konda, V. R., & Borkar, V. S. (1999). Actor-critic-type learning algorithms for Markov decision processes.
SIAM Journal on Control and Optimization, 38(1), 94–123.

Konda, V.R., & Tsitsiklis, J.N. (2000). Actor-critic algorithms. In: Advances in Neural Information Pro-
cessing Systems. pp 1008–1014

Koppel, A., Warnell, G., Stump, E., Stone, P., & Ribeiro, A. (2017). Breaking bellman’s curse of dimen-
sionality: Efficient kernel gradient temporal difference. arXiv preprint arXiv:​1709.​04221

Kushner, H. J., & Yin, G. G. (2003). Stochastic approximation and recursive algorithms and applica-
tions. New York, NY: Springer.

Lakshminarayanan, C., & Szepesvari, C. (2018). Linear stochastic approximation: How far does constant
step-size and iterate averaging go? In: international conference on artificial intelligence and statis-
tics, pp 1347–1355

Li, X., Wang, Z., Lu, J., Arora, R., Haupt, J., Liu, H., & Zhao, T. (2016). Symmetry, saddle points, and
global geometry of nonconvex matrix factorization. arXiv preprint arXiv:​1612.​09296 1:5–1

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., & Petrik, M. (2015). Finite-sample analysis of proxi-
mal gradient td algorithms. In: Proceedings of the Thirty-First Conference on Uncertainty in Artifi-
cial Intelligence, pp 504–513

Maei, H.R., Szepesvári, C., Bhatnagar, S., & Sutton, R.S. (2010). Toward off-policy learning control
with function approximation. In: Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pp 719–726

Meyn, S.P., & Tweedie, R.L. (2012). Markov chains and stochastic stability. Springer Science & Busi-
ness Media

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learning. In: International Conference on
Machine Learning, pp 1928–1937

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate o
(1/k2 ). Dokl akad nauk Sssr 269, 543–547.

Olshevsky, A., & Gharesifard, B. (2022). A small gain analysis of single timescale actor critic. arXiv
preprint arXiv:​2203.​02591

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., & Restelli, M. (2018). Stochastic variance-reduced
policy gradient. In: International Conference on Machine Learning. pp 4026–4035

Parisi, S., Tangkaratt, V., Peters, J., & Khan, M. E. (2019). Td-regularized actor-critic methods. Machine
Learning, 108(8–9), 1467–1501.

Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neu-
ral computation, 3(2), 246–257.

Paternain, S. (2018). Stochastic control foundations of autonomous behavior. PhD thesis, University of
Pennsylvania

Pirotta, M., Restelli, M., & Bascetta, L. (2015). Policy gradient in Lipschitz Markov Decision processes.
Machine Learning, 100(2–3), 255–283.

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality, (Vol.
703). New Jersey: Wiley.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. New
Jersey: Wiley.

Qiu, S., Yang, Z., Ye, J., & Wang, Z. (2021). On finite-time convergence of actor-critic algorithm. IEEE
Journal on Selected Areas in Information Theory, 2(2), 652–664.

Shen, H., Zhang, K., Hong, M., & Chen, T. (2020). Asynchronous advantage actor critic: Non-asymp-
totic analysis and linear speedup. arXiv preprint arXiv:​2012.​15511

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,
Lai, M., Bolton, A., et al. (2017). Mastering the game of Go without human knowledge. Nature,
550(7676), 354–359.

Srikant, R., & Ying, L. (2019). Finite-time error bounds for linear stochastic approximation andtd learn-
ing. In: conference on learning theory, PMLR, pp 2803–2830

http://arxiv.org/abs/1709.04221
http://arxiv.org/abs/1612.09296
http://arxiv.org/abs/2203.02591
http://arxiv.org/abs/2012.15511

2466	 Machine Learning (2023) 112:2433–2467

1 3

Sun, J., Qu, Q., & Wright, J. (2016). (2016) A geometric analysis of phase retrieval. Information Theory
(ISIT) (pp. 2379–2383). IEEE: IEEE International Symposium on.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning,
3(1), 9–44.

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for rein-
forcement learning with function approximation. Advances in Neural Information Processing Sys-
tems, 12, 1057–1063.

Sutton, R. S., Szepesvári, C., & Maei, H. R. (2008). A convergent o (n) algorithm for off-policy tem-
poral-difference learning with linear function approximation. Advances in neural information pro-
cessing systems, 21(21), 1609–1616.

Sutton, R.S., Maei, H.R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., & Wiewiora, E. (2009a).
Fast gradient-descent methods for temporal-difference learning with linear function approximation. In:
international conference on machine learning, ACM, pp 993–1000

Sutton, R. S., Maei, H. R., & Szepesvári, C. (2009). A convergent o(n) temporal-difference algorithm for
off-policy learning with linear function approximation. Advances in Neural Information Processing
Systems, 21, 1609–1616.

Sutton, R.S., Barto, A.G. et al. (2017). Reinforcement learning: An introduction, 2nd (edn)
Tesauro, G., et al. (1995). Temporal difference learning and td-gammon. Communications of the ACM,

38(3), 58–68.
Thoppe, G., & Borkar, V. (2019). A concentration bound for stochastic approximation via alekseev’s for-

mula. Stochastic Systems, 9(1), 1–26. https://​doi.​org/​10.​1287/​stsy.​2018.​0019
Tolstaya, E., Koppel, A., Stump, E., & Ribeiro, A. (2018). Nonparametric stochastic compositional gradient

descent for q-learning in continuous markov decision problems. In: 2018 Annual American Control
Conference (ACC), IEEE, pp 6608–6615

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and q-learning. Machine Learning, 16(3),
185–202.

Tsitsiklis, J. N., & Van Roy, B. (1997). Analysis of temporal-diffference learning with function approxima-
tion. Advances in Neural Information Processing Systems, 9, 1075–1081.

Wang, L., Cai, Q., Yang, Z., & Wang, Z. (2019). Neural policy gradient methods: Global optimality and
rates of convergence. In: International Conference on Learning Representations

Wang, M., Fang, E. X., & Liu, H. (2017). Stochastic compositional gradient descent: algorithms for mini-
mizing compositions of expected-value functions. Mathematical Programming, 161(1–2), 419–449.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas, N. (2017b). Sample
efficient actor-critic with experience replay. In: International Conference on Learning Representations

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.
Wu, Y. F., Zhang, W., Xu, P., & Gu, Q. (2020). A finite-time analysis of two time-scale actor-critic methods.

Advances in Neural Information Processing Systems, 33, 17617–17628.
Xu, T., Wang, Z., & Liang, Y. (2020). Non-asymptotic convergence analysis of two time-scale (natural)

actor-critic algorithms. arXiv preprint arXiv:​2005.​03557
Yang, Z., Zhang, K., Hong, M., & Başar, T. (2018). A finite sample analysis of the actor-critic algorithm. In:

2018 IEEE Conference on Decision and Control (CDC), IEEE, pp 2759–2764
Zeng, S., Chen, T., Garcia, A., & Hong, M. (2022). Learning to coordinate in multi-agent systems: A coor-

dinated actor-critic algorithm and finite-time guarantees. In: Learning for Dynamics and Control Con-
ference, PMLR, pp 278–290

Zhang, K., Yang, Z., Liu, H., Zhang, T., & Başar, T. (2018). Fully decentralized multi-agent reinforcement
learning with networked agents. In: International Conference on Machine Learning, pp 5872–5881

Zhang, K., Koppel, A., Zhu, H., & Başar, T. (2019). Convergence and iteration complexity of policy gradi-
ent method for infinite-horizon reinforcement learning. IEEE Conference on Decision and Control

Zhang, K., Koppel, A., Zhu, H., & Basar, T. (2020). Global convergence of policy gradient methods to
(almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6), 3586–3612.

Zou, S., Xu, T., & Liang, Y. (2019). Finite-sample analysis for sarsa with linear function approximation.
Advances in Neural Information Processing Systems, 32, 4–12.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1287/stsy.2018.0019
http://arxiv.org/abs/2005.03557

2467Machine Learning (2023) 112:2433–2467	

1 3

Authors and Affiliations

Harshat Kumar1  · Alec Koppel2 · Alejandro Ribeiro1

 *	 Harshat Kumar
	 harshat@seas.upenn.edu

	 Alec Koppel
	 alec.koppel@jpmchase.com

	 Alejandro Ribeiro
	 aribeiro@seas.upenn.edu

1	 Department of Electrical and Systems Engineering, The University of Pennsylvania, Philadelphia,
USA

2	 JPMorgan AI Research, New York, USA

http://orcid.org/0000-0001-7520-2799

	On the sample complexity of actor-critic method for reinforcement learning with function approximation
	Abstract
	1 Introduction
	2 Reinforcement learning
	3 From policy gradient to actor-critic
	4 Convergence rate of generic actor-critic
	5 Rates of gradient and accelerated actor-critic
	6 Sample complexity of classic actor-critic
	6.1 Continuous state and action spaces
	6.2 Finite state and action spaces

	7 Numerical results
	7.1 Navigating around an obstacle
	7.2 Pendulum problem
	7.3 Discussion

	Appendix
	Proof of Lemma 2
	Proof of Theorem 3

	Acknowledgements
	References

