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Abstract
Reinforcement learning, mathematically described by Markov Decision Problems, may be 
approached either through dynamic programming or policy search. Actor-critic algorithms 
combine the merits of both approaches by alternating between steps to estimate the value func-
tion and policy gradient updates. Due to the fact that the updates exhibit correlated noise and 
biased gradient updates, only the asymptotic behavior of actor-critic is known by connecting its 
behavior to dynamical systems. This work puts forth a new variant of actor-critic that employs 
Monte Carlo rollouts during the policy search updates, which results in controllable bias that 
depends on the number of critic evaluations. As a result, we are able to provide for the first 
time the convergence rate of actor-critic algorithms when the policy search step employs pol-
icy gradient, agnostic to the choice of policy evaluation technique. In particular, we establish 
conditions under which the sample complexity is comparable to stochastic gradient method for 
non-convex problems or slower as a result of the critic estimation error, which is the main com-
plexity bottleneck. These results hold in continuous state and action spaces with linear func-
tion approximation for the value function. We then specialize these conceptual results to the 
case where the critic is estimated by Temporal Difference, Gradient Temporal Difference, and 
Accelerated Gradient Temporal Difference. These learning rates are then corroborated on a 
navigation problem involving an obstacle and the pendulum problem which provide insight into 
the interplay between optimization and generalization in reinforcement learning.

Keywords  Actor-critic · Reinforcement learning · Markov decision process · Non-convex 
optimization · Stochastic programming

1  Introduction

Actor-critic refers to a family of two time-scale algorithms for reinforcement learning 
where one alternates between policy gradient updates (actor) and action-value function 
estimation in an online fashion (critic). These approaches form the bedrock of several prac-
tical advances in reinforcement learning, as in supply chain management (Giannoccaro & 
Pontrandolfo, 2002), power systems (Jiang et  al., 2014), robotic manipulation (Kober & 
Peters, 2012), and games of various kinds (Tesauro et  al., 1995; Brockman et  al., 2016; 
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Mnih et  al., 2016; Silver et  al., 2017). While their asymptotic stability has been known 
for decades (Konda & Borkar, 1999; Konda & Tsitsiklis, 2000), their sample complexity 
is relatively unexplored. In this work, we establish the statistical behavior of actor-critic 
algorithms for a number of canonical settings, which to our knowledge is the first time a 
comprehensive accounting has been conducted.

We focus on reinforcement learning problems over possibly continuous state and action 
spaces, which are defined by a Markov Decision Process (Puterman, 2014): each time, start-
ing from one state, an agent selects an action, and then it transitions to a new state accord-
ing to a distribution Markov in the current state and action. Then, the environment reveals 
a reward informing the quality of that decision. The goal of the agent is to select an action 
sequence which yields the largest expected accumulation of rewards, defined as the value 
(Bellman, 1954; Bertsekas, 2005). Actor-critic algorithms adapt the merits of reinforcement 
learning algorithms based on approximate dynamic programming with those based on pol-
icy search, the two dominant model-free approaches in the literature (Sutton et al., 2017).

For finite spaces, one may obtain the globally optimal policy, and therefore it is possible 
quantify sample complexity in terms of the gap to the optimal value function (regret) as, 
e.g., a polynomial function of the cardinality of the state and action spaces–see Jin et al. 
(2018) and references therein. This is possible because these quantities have finite cardinal-
ity; however, in continuous spaces, these analyses break down because policy parameteri-
zation is required, and the value function becomes non-convex with respect to the policy 
parameters (unless it is parameterized by a sufficiently high-dimensional neural model 
(Wang et al., 2019)).

More specifically, in the actor step of actor-critic, stochastic gradient steps with respect 
to the value function over a parameterized family of policies are conducted. Via the Policy 
Gradient Theorem (Sutton et al., 2000), the gradient with respect to policy parameters (pol-
icy gradient) is the product of two factors: the score function and the Q function. One may 
employ Monte Carlo rollouts to estimate Q-factors, which under careful choice of rollout 
horizon, can be shown to be unbiased (Paternain, 2018). As a result, linking policy gra-
dient methods to more standard stochastic programming results for non-convex optimiza-
tion, namely, sublinear O(k−1∕2) rates to stationarity have recently been established (Zhang 
et al., 2019). Doing so, however, requires an inordinate amount of querying to the environ-
ment in order to generate trajectory data. In actor-critic, we replace Monte Carlo rollouts 
with online estimates for the action-value function.

More specifically, in actor-critic, the critic step estimates the action-value (Q) function 
through stochastic approximation, i.e., temporal difference (TD) (Sutton, 1988), approaches 
to solving Bellman’s evaluation equation (Watkins & Dayan, 1992; Tsitsiklis, 1994). Com-
bining temporal difference iterations with nonlinear function parameterizations may cause 
instability, as shown by Baird (1995); Tsitsiklis and Van Roy (1997). This motivates the 
majority of TD algorithms to focus on the case where the Q function is parameterized by a 
linear basis expansion over given universal features, which is common in practice (Sutton 
et al., 2017), and can be satisfied by radial basis function (RBF) networks or auto-encoders 
Park and Sandberg (1991). We consider this setting of universal features given a priori.

The asymptotic stability of linear TD algorithms hinges upon dynamical systems tools 
to encapsulate the mean estimation error sequence–see Borkar and Meyn (2000); Kushner 
and Yin (2003). By contrast, a number of finite-time characterizations of various TD algo-
rithms have appeared recently, i.e., those based on stochastic fixed point iterations and gra-
dient-based approximations known as gradient temporal difference (GTD) (Sutton et  al., 
2009a). For TD algorithms, finite-time sublinear rates have been derived both in the case 
where samples (state-action-reward triples) are independent and identically distributed 
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(i.i.d.) (Dalal et al., 2018b; Bhandari et al., 2018; Lakshminarayanan & Szepesvari, 2018) 
and when they exhibit Markovian dependence (Srikant & Ying, 2019). Further, the conver-
gence of GTD was established in Koppel et al. (2017); Tolstaya et al. (2018) by employing 
coupled supermartingales (Wang et  al., 2017a), which permits us to derive the rates of 
convergence in expectation of GTD as corollaries. As a result, we may explicitly derive the 
bias due to critic estimation error in terms of the number of critic steps. This is in contrast 
to the use of an unbiased estimate from a Monte Carlo rollout, as in pure policy gradient 
methods. We further note that contemporaneously of beginning this work, several analy-
ses of GTD have been developed (Liu et al., 2015; Dalal et al., 2018b, 2020) that refine 
the rates employed in this analysis; however, these results focus on concentration bounds 
(“lock-in probability"), a weaker metric of stability than convergence in mean, i.e., conver-
gence in Lebesgue integral implies convergence in measure. Since in this work we focus 
on the intuitive and broadly interpretable global convergence to stationarity in terms of the 
expected gradient norm of the value function, we seek to employ policy evaluation rates 
that are compatible with this goal, and defer refined lock-in probability results, for which 
tighter bounds of convergence on the critic exist, to future work.

Convergence of Actor-Critic In this work, we link the behavior of actor-critic to 
gradient ascent algorithms with biased gradient directions. This bias is controllable and 
depends on the step-size and number of critic iterations per actor update. We perform this 
analysis for the setting that samples are i.i.d, which may be explicitly guaranteed through 
the introduction of a new Monte Carlo rollout step for each actor update. As a result, we 
establish that actor-critic, independent of any critic method, exhibits convergence to sta-
tionary points of the value function that are comparable to stochastic gradient ascent in 
the non-convex regime. A key distinguishing feature from standard non-convex stochastic 
programming is that the rates are inherently tied to the bias of the search direction which 
is determined by the choice of critic scheme. In fact, our methodology is such that a rate 
for actor-critic can be derived for any critic-only method for which a convergence rate in 
expectation on the parameters can be expressed. In particular, we establish the rates for 
actor-critic with temporal difference (TD) (Sutton, 1988) and gradient TD (GTD) (Sutton 
et al., 2009a) critic steps. Furthermore, we propose an Accelerated GTD (A-GTD) method 
derived from accelerations of stochastic compositional gradient descent (Wang et  al., 
2017a), which converges faster than TD and GTD.

In summary, for the continuous spaces, we establish that A-GTD converges faster 
than GTD, and the effective convergence rate of TD(0) varies as a result of the feature 
space representation selected a priori. In particular, this introduces a trade off between the 
smoothness assumptions and the rates derived (see Table 1). TD has no additional smooth-
ness assumptions, and it achieves a rate of O(�−2∕�) . This rate is analogous to the non-
convex analysis of stochastic compositional gradient descent when � is equal to 0.5, which 
is a conservative estimate (see Fig. 1). Adding a smoothness assumption, GTD achieves 
the faster rate of O(�−3) . By requiring an additional smoothness assumption, we find that 
A-GTD achieves the fastest convergence rate of O(�−5∕2) . For the case of finite state action 
space, actor critic achieves a convergence rate of O(�−2) . Overall, the contribution in terms 
of sample complexities of different actor-critic algorithms may be found in Table 1.

Relative to existing convergence results, actor-critic is classically studied as a form of 
two time-scale algorithm (Borkar, 1997), whose asymptotic stability is well-known via 
dynamical systems (Kushner & Yin, 2003; Borkar, 2009). To wield these approaches to 
establish finite-time performance, however, concentration probabilities and geometric 
ergodicity assumptions of the Markov dynamics are required–see Borkar (2009). We obvi-
ate these complications by focusing on the case where independent trajectory samples are 
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acquirable through querying the environment, for which recent unbiased sampling proce-
dures gave proved adept (Paternain, 2018; Zhang et al., 2019). Relative to existing finite-
time characterizations of actor-critic, Cai et al. (2019) proposes Neural TD updates, which 
converges to global optimality under a suitably over-parameterized deep neural network 
(DNN) and initialization. One quandary is how to find these initializations or design DNN 
architectures to satisfy these conditions. In separate work, the sample complexity of actor-
critic has been established in terms of the value function gradient norm when the critic 
parameters are estimated with non-linear function approximation in a batch fashion (Yang 
et al., 2018). It is well-known that non-linear function approximators may diverge given by 
various counterexamples (Baird, 1995; Tsitsiklis & Van Roy, 1997). Our work circumvents 
this obstacle by considering only well-behaved and well-studied linear function approxi-
mation, which includes commonly chosen radial basis function (RBF) networks and auto-
encoders fixed at the outset of RL training.

Since the original date of submission, efforts to refine the analysis in this work exist: 
for instance, relaxations of assumptions on the sampling distribution to allow Markovian 
dependence (Qiu et al., 2021; Xu et al., 2020; Wu et al., 2020) and augmentations of the 
critic objective for practical variance reduction (Parisi et al., 2019). However, these works 

Table 1   Rates of Actor Critic with Policy Gradient Actor updates and different critic-only methods.The 
term � is the critic stepsize for TD(0) with continuous state-action space, and should be chosen according to 
conditioning of the feature space (see Sect. 6.1)

Critic method Convergence rate State-action space Smoothness assumptions Algorithm

GTD (SCGD) O
(

�−3
)

Continuous Assumption 3 Alg 2
GTD (A-SCGD) O

(

�−5∕2
)

Continuous Assumptions 3 and 4 Alg 3
TD(0)  O

(

�−2∕�
)

Continuous None Alg 4
TD(0) O

(

�−2
)

Finite None Alg 4

Fig. 1   Plot shows the criti-
cal value of � for which the 
exponential term of (64) is 
dominated by the second term, 
thereby allowing Proposition 1 
to hold. In particular, any 𝜎 > 0 
chosen between zero and the 
curves shown above satisfies the 
proposition. We show plots for 
varying values of �

TD
 , which is 

determined by the feature space 
representation. For each value 
of �

TD
 , we vary the ratio of the 

constants K
2
∕K

1
 from .001 to 100
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require the Markov transition density to mix at an exponentially fast rate in order to estab-
lish convergence. Thus, while i.i.d. sampling may be difficult to justify, exponentially fast 
mixing often does not hold either, unless algorithm step-sizes are sent to null at an expo-
nential rate. These intricacies have motivated experimental techniques to mitigate correla-
tion among samples using replay buffers (Wang et al., 2017b) and parallelization of queries 
to a generative model (Gruslys et al., 2018). However, their exact relationship to mixing 
rates is opaque. Therefore, for simplicity, in this work we focus on the i.i.d. case.

Moreover, sharper sample complexities for actor-critic have been developed (Qiu et al. 
2021; Xu et  al. 2020; Wu et  al. 2020); however, they do not address the possibility of 
designing alternate policy evaluation schemes than TD(0) updates, and instead focus only 
on actor-critic in its vanilla form. This is because their perspective is on understanding the 
sample complexity of actor-critic alone, whereas we provide a unified perspective upon the 
basis of biased stochastic gradient iteration. In doing so, we are able incorporate a variety 
of critic updates and illuminate the interplay of problem smoothness, cardinality, and the 
choice of critic parameterization. In particular, the sample complexity of actor-critic with 
TD(0) updates for the tabular case given in Corollary 4 matches Xu et al. (2020); Wu et al. 
(2020), but in continuous spaces, depending on the conditioning of the feature map covari-
ance and other problem smoothness conditions, GTD or A-GTD may yield faster conver-
gence, a facet elsewhere unaddressed in the literature.

Even more recently, efforts have been made to improve upon the rate of convergence 
by considering regularized MDP’s with overparametrized networks (Cayci et  al., 2022), 
single critic step (Olshevsky & Gharesifard, 2022), and single trajectory actor updates 
(Chen et  al., 2022a). Decentralized convergence rates have also been established (Chen 
et al., 2022b; Zeng et al., 2022). Shen et al. (2020) show that for both i.i.d. and markovian 
sampling, there is a linear speedup for the decentralized setting whose is bottleneck is the 
slowest mixing chain. All of the aforementioned results require the assumption that the 
probability for any action given a state is strictly positive, which we do not require.

We evaluate actor-critic with TD, GTD, and A-GTD critic updates on both a navigation 
problem and the canonical pendulum problem. For the navigation problem, we find that 
indeed A-GTD converges faster than both GTD and TD. Interestingly, the stationary point 
it reaches is worse than GTD or TD. This suggests that the choice of critic scheme illu-
minates an interplay between optimization and generalization that is less-well understood 
in reinforcement learning (Boyan & Moore, 1995; Bousquet & Elisseeff, 2002). For the 
pendulum problem, we also find that A-GTD converges fastest with respect to the gradient 
norm, which is consistent with our main convergence results. In particular, we again find 
that the faster convergence in gradient norm results the stationary point having a lower 
cumulative reward. We additinally consider advantage actor-critic in our simulations (Mnih 
et al., 2016). A detailed discussion on the results and implications can be found in Sect. 7. 
The remainder of the paper is organized as follows. Section  2 describes the problem of 
reinforcement learning and defines common assumptions which we use in our analysis. In 
Sect.  3, we derive a generic actor-critic algorithm from an optimization perspective and 
describe how the algorithm would be amended given different policy evaluation methods. 
The derivation of the convergence rate for generic actor-critic is presented in Sect. 4, and 
the specific analysis for Gradient, Accelerated Gradient, and vanilla Temporal Difference 
are characterized in Sects. 5 and 6.
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2 � Reinforcement learning

We consider the Reinforcement Learning (RL) problem where an agent moves through a 
state space S and takes actions that belong to some action set A , and the state/action spaces 
are assumed to be continuous compact subsets of Euclidean space: S ⊂ ℝ

q and A ⊂ ℝ
p . 

Every time an action is taken, the agent transitions to its next state that depends only on 
its current state and action. Moreover, a reward is revealed by the environment. In this 
situation, the agent would like to accumulate as much reward as possible in the long term, 
which is referred to as value. Mathematically this problem definition may be encapsulated 
as a Markov decision process (MDP), which is a tuple (S,A,ℙ,R, �) with Markov transi-
tion density ℙ(s� ∣ s, a) ∶ S ×A → ℙ(S) that determines the probability of moving to state 
s′ . Here, � ∈ (0, 1) is the discount factor that parameterizes the value of a given sequence of 
actions, which we will define shortly.

At each time t, the agent executes an action at ∈ A given the current state st ∈ S , fol-
lowing a stochastic policy � ∶ S → ℙ(A) , i.e., at ∼ �(⋅ ∣ st) . Then, given the state-action 
pair (st, at) , the agent observes a (deterministic) reward rt = R(st, at) and transitions to a 
new state s�

t
∼ ℙ(⋅ ∣ st, at) according to a Markov transition density. For any policy � , define 

the value function V� ∶ S → ℝ as

which is a measure of the long term average reward accumulation discounted by � . We 
can further define the value V� ∶ S ×A → ℝ conditioned on a given initial action as the 
action-value, or Q function as Q�(s, a) = �

�
∑∞

t=0
� trt ∣ s0 = s, a0 = a

�

 . Given any initial 
state s0 , the goal of the agent is to find the optimal policy � that maximizes the long-term 
return V�(s0) , i.e., to solve the following optimization problem

In this work, we investigate actor-critic methods to solve (2), which is a hybrid RL method 
that fuses key properties of policy search and approximate dynamic programming. To 
ground the discussion, we first derive the canonical policy search technique called pol-
icy gradient method, and explain how actor-critic augments policy gradient. Begin by 
noting that to address (2), one must search over an arbitrarily complicated function class 
Π which may include those which are unbounded and discontinuous. To mitigate this 
issue, we parameterize the policy � by a vector � ∈ ℝ

d , i.e., � = �� , yielding RL tools 
called policy gradient methods (Konda & Tsitsiklis, 2000; Bhatnagar et  al., 2009; Cas-
tro & Meir, 2010). Under this specification, the search over arbitrarily complicated func-
tion class Π to (2) may be reduced to Euclidean space ℝd , i.e., a vector-valued optimi-
zation, max�∈ℝd J(��) ∶= V��

(s0) . Subsequently, we denote J(��) by J(�) for notational 
convenience.

We now make the following standard assumption on the regularity of the MDP problem 
and the parameterized policy �� , which are the same conditions as Zhang et al. (2020), as 
well as an assumption to bound the state-action feature representation.

Assumption 1  Suppose the reward function R and the parameterized policy �� satisfy the 
following conditions: 

(1)V�(s) ∶= 𝔼at∼�(⋅∣st),st+1∼ℙ(⋅∣st ,at)

( ∞
∑

t=0

� trt ∣ s0 = s

)

,

(2)max
�∈Π

J(�), where J(�) ∶= V�(s0).



2439Machine Learning (2023) 112:2433–2467	

1 3

	 (i)	 The absolute value of the reward R is bounded uniformly by UR , i.e., |R(s, a)| ∈ [0,UR] 
for any (s, a) ∈ S ×A.

	 (ii)	 The policy �� is differentiable with respect to � , and the score function ∇ log��(a ∣ s) 
is LΘ-Lipschitz and has bounded norm, i.e., for any (s, a) ∈ S ×A , 

Note that the boundedness of the reward function in Assumption 11 is standard in policy 
search algorithms (Bhatnagar et al., 2008, 2009; Castro & Meir, 2010; Zhang et al., 2018). 
Observe that with R, we have the Q function is absolutely upper bounded by UR∕(1 − �) , 
since by definition

The same bound also applies for V��
(s) for any �� and s ∈ S and thus the objective J(�) 

which is defined as V��
(s0) , satisfies,

We note that the conditions (3) and (4) have appeared in recent analyses of policy search 
(Castro & Meir, 2010; Pirotta et al., 2015; Papini et al., 2018), and are satisfied by canoni-
cal policy parameterizations such as Boltzmann policy (Konda & Borkar, 1999) and 
Gaussian policy (Doya, 2000). For example, for Gaussian policy1 in continuous spaces, 
𝜋𝜃(⋅ ∣ s) = N(𝜙(s)⊤𝜃, 𝜎2) , where N(�, �2) denotes the Gaussian distribution with mean � 
and variance �2 and �(s) denotes some state feature representation. Then the score func-
tion has the form [a − 𝜙(s)⊤𝜃]𝜙(s)∕𝜎2 , which satisfies (3) and (4) if the feature vectors 
�(s) have bounded norm, the parameter � lies some bounded set, and the action a ∈ A is 
bounded.

Generally, the value function is nonconvex with respect to the parameter � , meaning 
that obtaining a globally optimal solution to (2) is out of reach unless the problem has 
additional structured properties, as in phase retrieval (Sun et  al., 2016), matrix fac-
torization (Li et al., 2016), and tensor decomposition (Ge et al., 2015), among others. 
Thus, our goal is to design actor-critic algorithms to attain stationary points of the 
value function J(�) . Moreover, we characterize the sample complexity of actor-critic, 
a noticeable gap in the literature for an algorithmic tool decades old (Konda & Borkar, 
1999) at the heart of the recent innovations of artificial intelligence architectures (Sil-
ver et al., 2017).

(3)‖∇ log��1 (a ∣ s) − ∇ log��2 (a ∣ s)‖ ≤ LΘ ⋅ ‖�1 − �2‖, for any �1, �2,

(4)‖∇ log��(a ∣ s)‖ ≤ BΘ, for any �.

(5)|Q��
(s, a)| ≤

∞
∑

t=0

� t ⋅ UR =
UR

1 − �
, for any (s, a) ∈ S ×A.

(6)|V��
(s)| ≤ UR

1 − �
, for anys ∈ S, |J(�)| ≤ UR

1 − �
.

1  We observe that in practice, the action space A is bounded, which requires a truncated Gaussian policy to 
be used over A , as in Papini et al. (2018).
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3 � From policy gradient to actor‑critic

In this section, we derive actor-critic method (Konda & Borkar, 1999) from an opti-
mization perspective: we view actor-critic as a way of doing stochastic gradient ascent 
with biased ascent directions, and the magnitude of this bias is determined by the num-
ber of critic evaluations done in the inner loop of the algorithm. The building block of 
actor-critic is called policy gradient method, a type of direct policy search, based on 
stochastic gradient ascent. Begin by noting that the gradient of the objective J(�) with 
respect to policy parameters � , owing to the Policy Gradient Theorem (Sutton et  al., 
2000), has the following form:

This expression follows from rolling the sum forward, repeatedly applying Bellman’s 
evaluation equation, and exploiting the Markov property of the transition kernel, together 
with multiplying and dividing by �� and rewriting the denominator in terms of the 
score function via the fact that ∇x log(x) = 1∕x , as in Sutton et  al. (2000); Zhang et  al. 
(2019). In the preceding expression, p(st = s ∣ s0,��) denotes the probability of state st 
equals s given initial state s0 and policy � , which is occasionally referred to as the occu-
pancy measure, or the Markov chain transition density induced by policy � . Moreover, 
��� (s) = (1 − �)

∑∞

t=0
� tp(st = s ∣ s0,��) is the ergodic distribution associated with the 

MDP for fixed policy, which is shown to be a valid distribution (Sutton et al., 2000). For 
future reference, we define ��(s, a) = ��� (s) ⋅ ��(a ∣ s) . The derivative of the logarithm of 
the policy ∇ log[��(⋅ ∣ s)] is usually referred to as the score function corresponding to the 
probability distribution ��(⋅ ∣ s) for any s ∈ S.

Next, we discuss how (8) can be used to develop stochastic methods to address (2). 
Unbiased samples of the gradient ∇J(�) are required to perform the stochastic gradient 
ascent, which hopefully converges to a stationary solution of the nonconvex maximi-
zation. One way to obtain an estimate of the gradient ∇J(�) is to evaluate the score 
function and Q function at the end of a rollout whose length is drawn from a geometric 
distribution with parameter 1 − � (Zhang et al., 2020)[Theorem 4.3]. If the Q function 
evaluation is unbiased, then the stochastic estimate of the gradient ∇J(�) is unbiased as 
well. We therefore define the stochastic estimate by

where the tuple (sT , aT ) is drawn from end of the geometric rollout of length 
T ∼ Geom(1 − �) . Of course, such an approach is very inefficient with respect to samples, 
as it does not utilize the state action transitions up until the final tuple. Using the entire 

(7)∇J(�) = ∫s∈S,a∈A

∞
∑

t=0

� t ⋅ p(st = s ∣ s0,��) ⋅ ∇��(a ∣ s) ⋅ Q��
(s, a)dsda

(8)

=
1

1 − � ∫s∈S,a∈A

(1 − �)

∞
∑

t=0

� t ⋅ p(st = s ∣ s0,��) ⋅ ∇��(a ∣ s) ⋅ Q��
(s, a)dsda

=
1

1 − � ∫s∈S,a∈A

��� (s) ⋅ ��(a ∣ s) ⋅ ∇ log[��(a ∣ s)] ⋅ Q��
(s, a)dsda

=
1

1 − �
⋅ �(s,a)∼�� (⋅,⋅)

[

∇ log��(a ∣ s) ⋅ Q��
(s, a)

]

.

(9)∇̂J(𝜃) ∶=
1

1 − 𝛾
Q̂𝜋𝜃

(sT , aT )∇ log𝜋𝜃(aT |sT ),
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trajectory for the actor update comes at the cost of a biased gradient estimate. Before we 
characterize this bias, we will discuss how to evaluate the Q function using the single point 
estimation for simplicity.

We consider the case where the Q function admits a linear parametrization of the form 
Q̂𝜋𝜃

(s, a) = 𝜉⊤𝜑(s, a) , which in the literature on policy search is referred to as the critic 
(Konda & Borkar, 1999), as it “criticizes" the performance of actions chosen according to 
policy � . We let � ∶ S ×A → ℝ

p be a (possibly nonlinear) feature map such as a network 
of radial basis functions or an auto-encoder known a priori. The choice to consider the 
Q function with a linear function approximator comes from the well known convergence 
results of linear critic-only methods. In contrast, nonlinear function approximators suffer 
from the possibility of divergence, as is demonstrated by well known counterexamples 
(Baird, 1995; Tsitsiklis & Van Roy, 1997).

The critic parameter � belongs to a bounded set 𝜉 ∈ Ξ ⊂ ℝ
p such that

 This is reasonable because (5) guarantees boundeness of the true Q function. The bound-
edness of the estimate Q̂ follows from requiring the feature map �(s, a) to be bounded, an 
assumption which can be achieved through normalization, which we subsequently state

Assumption 2  For any state action pair (s, a) ∈ S ×A , the norm of the feature representa-
tion �(s, a) is bounded by a constant C� ∈ ℝ+.

We also bound the true gradient of the objective function

which is established by (8) being bounded as a result of |Q| ≤ UR∕(1 − �) [c.f. (5)] and 
‖∇ log��(a�s)‖ ≤ BΘ [c.f. (4)].

Moreover, for each actor update k, we estimate the parameter �k that defines the Q func-
tion from an online policy evaluation (critic-only) method after some TC(k) iterations, 
where k denotes the number of policy gradient updates. Thus, we may write the stochastic 
gradient estimate as

If the estimate of the Q function is unbiased, i.e., �[𝜉⊤
k
𝜑(sT , aT ) | 𝜃, s, a] = Q(s, a) , then 

�[∇̂J(𝜃) | 𝜃] = ∇J(𝜃) (c.f. (Zhang et al., 2020)[Theorem 4.3]). Typically, critic-only meth-
ods do not give unbiased estimates of the Q function; however, in expectation the rate at 
which their bias decays is proportional to the number of Q estimation steps. In particular, 
denote �∗ as the parameter for which the Q estimate is unbiased:

Hence, by adding and subtracting the true estimate of the parametrized Q function to (12), 
we arrive at the fact the policy search direction admits the following decomposition:

(10)‖�‖ ≤ C� for all � ∈ Ξ

(11)‖∇J(�k)‖ ≤ C∇,

(12)∇̂J(𝜃) =
1

1 − 𝛾
𝜉⊤
k
𝜑(sT , aT )∇ log𝜋𝜃(aT |sT ).

(13)�[𝜉⊤
∗
𝜑(s, a)] = �[Q̂𝜋𝜃

(s, a)] = Q(s, a).

(14)

∇̂J(𝜃) =
1

1 − 𝛾
(𝜉k − 𝜉∗)

⊤𝜑(sT , aT )∇ log𝜋𝜃(aT |sT ) +
1

1 − 𝛾
𝜉⊤
∗
𝜑(sT , aT )∇ log𝜋𝜃(aT |sT ).
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The second term is the unbiased estimate of the gradient ∇J(�) , whereas the first defines 
the difference of the critic parameter at iteration k with the true estimate �∗ . For linear 
parameterizations of the Q function, policy evaluation methods establish convergence in 
mean of the bias

where g(k) is some decreasing function. We address cases where the critic bias decays at 
rate k−b for b ∈ (0, 1] , due to the fact that several state of the art works on policy evalua-
tion may be mapped to the form (15) for this specification (Wang et al., 2017a; Dalal et al., 
2018b). We formalize this with the following proposition.

Proposition 1  Given some b ∈ (0, 1] , there exists a constant L1 > 0 such that

This implies the expected error of the critic parameter is bounded by O(k−b).

Recently, alternate rates have been established as O(log k∕k) ; however, they concede 
that O(1/k) rates may be possible (Bhandari et al., 2018; Zou et al., 2019). Thus, we sub-
sume recent sample complexity characterizations of policy evaluation as is described in 
Proposition 1. Proposition 1 is an intrinsic property of many policy evaluation schemes, 
and thus permits one to substitute the standard subsampling rates of a Monte Carlo-based 
estimator for the Q function (as in REINFORCE (Sutton et al., 2000)) with one that is esti-
mated online using, e.g., temporal difference learning. Hence its role is critical in relating 
the bias of using critic estimators rather than unbiased gradient estimates to the number of 
critic steps.

More specifically, (14) is nearly a valid ascent direction: it is approximately an unbiased 
estimate of the gradient ∇J(�) since the first term becomes negligible as the number of 
critic estimation steps increases. Based upon this observation, we propose the following 
full trajectory variant of actor-critic method (Konda & Borkar, 1999): run a critic estimator 
(policy evaluator) for TC(k) steps, whose output is critic parameters �k . We denote the critic 
estimator by Critic:ℕ → ℝ

p which returns the parameter �k ∈ ℝ
p after TC(k) ∈ ℕ itera-

tions. Then, simulate a trajectory of length H(k), and update the actor (policy) parameters 
� as:

Note that we make the number of critic estimation steps and horizon length grow with k. 
Increasing T and H with k allows us to control the bias of the estimate as is seen in Proposi-
tion 1 for the critic evaluations and in the following theorem for horizon length.

Now, we will characterize the bias between the gradient estimate using the entire trajec-
tory of length H(k). Let � =

{

s1, a1,… , sH−1, aH−1, sH
}

 be a sampled trajectory of length 
H. Define Ft to be the product of the true state action (Q) function with the score function 
evaluated at the tuple (st, at) , namely

One can consider constructing an estimate of the policy gradient using the entire trajectory 
of length H by

(15)�[‖�k − �∗‖] ≤ g(k),

(16)�[‖�k − �∗‖] ≤ L1k
−b.

(17)𝜃k+1 = 𝜃k + 𝜂k
1

1 − 𝛾

H(k)
∑

t=1

𝜉⊤
k
𝜑(st, at)∇ log𝜋𝜃k (st, at|𝜃k).

(18)Ft ∶= Q(st, at)∇�log��(st, at).
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The following theorem establishes the bias between the true policy gradient and the finite 
horizon estimate.

Theorem 1  Let Assumption 1 be in effect. Then it is true that for some finite C1,

Proof  First we will show that ��

�
∑∞

t=1
� t−1Ft

�

= ∇�J(�) . We let Pr(st = s|s1) denote the 
probability the state at time t is equal to s given the initial state s1.

By Fubini’s Theorem, we are able to exchange the summation and integrals due to the 
regularity assumptions. Let ĝ∞ =

∑∞

t=1
𝛾 t−1Ft . Then

By the regularity assumptions, we can bound Ft by URBΘ∕(1 − �) . As such, we establish 
the bound 

∑∞

t=0
� tFt+H+1 ≤ ∑∞

t=0
� tURBΘ∕(1 − �) ≤ URBΘ∕(1 − �)2 =∶ C1 ≤ ∞

Taking the norm of the expectation completes the proof. 	�  ◻

Theorem  1 holds under the assumption that the true Q function is accessible. Of 
course, only a biased version of the critic is available through the uses of a critic, as 
described before. The algorithm we propose is the actor-critic variant of the finite hori-
zon gradient estimate. The actor parameter update takes the following form:

The following theorem characterizes the bias of the stochastic gradient estimate.

(19)ĝH =

H
∑

t=1

𝛾 t−1Ft.

‖

‖

‖

�𝜏

[

ĝH
]

− ∇𝜃J(𝜃)
‖

‖

‖

≤ 𝛾H−1C1.

(20)

�

[

∞
∑

t=1

� t−1Ft

]

=

∞
∑

t=1

� t−1 ∫S

�
[

Ft|st = s
]

Pr
(

st = s|s1
)

ds

=

∞
∑

t=1

� t−1 ∫S ∫A

Q(s, a)∇�log��(s, a)daPr(st = s|s1)ds

= ∫S ∫A

Q(s, a)∇�log��(s, a)da

∞
∑

t=1

� t−1Pr(st = s|s1)ds

= ∫S ∫A

Q(s, a)∇�log��(s, a)da�
�� (s)ds

= �s∼��� (s)

[

∫A

Q(s, a)∇�log��(s, a)da

]

= �s∼��� (s),a∼�� (s,⋅)

[

Q(s, a)∇� log��(s, a)
]

= ∇�J(�)

(21)ĝ∞ − ĝH = 𝛾H−1

∞
∑

t=0

𝛾 tFt+H+1

(22)𝜃k+1 = 𝜃k + 𝜂kĝ
AC
H

= 𝜃k +
1

1 − 𝛾
𝜂k

H(k)
∑

t=1

𝛾 t−1𝜉⊤
k
𝜑(st, at)∇ log𝜋𝜃k (st, at|𝜃k).
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Theorem 2  Let Assumptions 1 and 2 be in effect. Then, when proposition 1 is in effect, it is 
true that for a horizon of length H and T critic evaluations,

Proof  Let FAC,t ∶= 𝜉⊤
k
𝜑(st, at)∇𝜃 log𝜋𝜃(st, at) . Then

The final term can be considered an error term. Consider the difference

Let Q(st, at) = 𝜉⊤
∗
𝜑(st, at) . Then by assumptions 1 and 2 and proposition 1,

This implies

Following the same logic as Theorem 1, we can bound the difference between the finite 
horizon estimate and the infinite horizon actor-critic estimate by

We evoke triangle inequality to complete the proof.

This concludes the proof. 	�  ◻

The fact that the estimate ĝAC
H

 is bounded comes from the fact that ĝAC
∞

 is bounded. We 
formalize this for use in the analysis

where C� , C� and BΘ come from Assumption 2, (10) and Assumption 1 1 respectively.
Theorem  2 establishes the bias on the stochastic gradient update. The bias can be 

decreased by increasing T, the number of critic update steps per each actor step, and H, the 

‖

‖

‖

�𝜏

[

ĝAC
H

]

− ∇𝜃J(𝜃)
‖

‖

‖

≤ C1𝛾
H + C2T

−b

(23)

�𝜏

[

ĝAC
∞

]

= �𝜏

[

∞
∑

t=1

𝛾 t−1FAC,t

]

= �𝜏

[

∞
∑

t=1

𝛾 t−1
(

Ft + FAC,t − Ft

)

]

= �𝜏

[

∞
∑

t=1

𝛾 t−1Ft

]

+ �𝜏

[

∞
∑

t=1

𝛾 t−1
(

FAC,t − Ft

)

]

= ∇𝜃J(𝜃) + �𝜏

[

∞
∑

t=1

𝛾 t−1
(

FAC,t − Ft

)

]

(24)FAC,t − Ft =
(

Q(st, at) − 𝜉⊤
k
𝜑(st, at)

)

∇ log𝜋𝜃(st, at).

(25)|FAC,t − Ft| ≤ T−bL1C�BΘ

(26)
‖

‖

‖

ĝAC
∞

− ∇𝜃J(𝜃)
‖

‖

‖

≤ T−bL1C𝜑BΘ

1

1 − 𝛾
= C2T

−b

(27)‖ĝAC
∞

− ĝAC
H
‖ ≤ C1𝛾

H−1.

(28)
‖ĝ∞ − ĝAC

H
‖ = ‖ĝ∞ − ĝAC

∞
+ ĝAC

∞
− ĝAC

H
‖ ≤ ‖ĝ∞ − ĝAC

∞
‖ + ‖ĝAC

∞
− ĝAC

H
‖ ≤ C1𝛾

H−1 + C2T
−b.

(29)�(‖ĝAC
H
‖) ≤ �(‖ĝAC

∞
‖) ≤ C𝜑C𝜉BΘ

(1 − 𝛾)
=∶ 𝜎,
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horizon for the actor update. In our main result, we will set both of these quantities to grow 
linearly with k, meaning that we decrease the bias with each actor update step (see Theo-
rem 3). In our numerical results, we show that selecting a large enough constant T and H is 
sufficient(see Sect. 7). 

We summarize the aforementioned procedure, which is agnostic to particular choice of critic 
estimator, as Algorithm  1. We acknowledge that the actor-critic algorithm proposed in Algo-
rithm 1 differs from Konda and Borkar (1999) in that rather than updating the actor and critic in 
tandem, the critic learns the state-action (Q) function from scratch at each update of the actor algo-
rithm. The classical version of the algorithm can be recovered by setting TC(k) = 1 and initializing 
the critic parameter to the previous step. Existing convergence proofs of this format are limited to 
asymptotic convergence only, where the critic steps at a faster learning rate than the actor. As such, 
this batch-type approach emulates this behavior, as the critic must learn something meaningful 
before the actor can update. As such, one might relate our work to Yang et al. (2018); however, 
unlike their work, we are not only able to prove convergence to a stationary point of the original 
objective by increasing the number of critic evaluations at each actor step rather than keeping it 
fixed, but also, we use the entire trajectory rather than a single state action pair sampled from the 
discounted state distribution.

Examples of Critic Updates We note that  Critic: ℕ → ℝ
p admits two canonical 

forms: temporal difference (TD) (Sutton, 1988) and gradient temporal difference (GTD)-
based estimators (Sutton et al., 2008). The TD update for the critic is given as

whereas for the GTD-based estimator for the critic, we consider the update

We further analyze a modification of GTD updates proposed by (Wang et al., 2017a) that 
incorporates an extrapolation technique to reduce bias in the estimates and improve error 
dependency, which is distinct from accelerated stochastic approximation with Nesterov 
Smoothing (Nesterov, 1983). With y0 = 0 and zt defined for t = 1,… , the accelerated GTD 
(A-GTD) update becomes

(30)𝛿t = rt + 𝛾𝜉⊤
t
𝜑(s�

t
, a�

t
) − 𝜉⊤

t
𝜑(st, at) , 𝜉t+1 = 𝜉t + 𝛼t𝛿t𝜑(st, at)

(31)
𝛿t = rt + 𝛾𝜉⊤

t
𝜑(s�

t
, a�

t
) − 𝜉⊤

t
𝜑(st, at) , zt+1 = (1 − 𝛽t)zt + 𝛽t𝛿t,

𝜉t+1 = 𝜉t − 2𝛼tzt+1[𝛾𝜑(s
�
t
, a�

t
) − 𝜑(st, at)]

(32)

𝜉t+1 = 𝜉t − 2𝛼t(𝛾𝜑(s
�
t
, a�

t
) − 𝜑(st, at))yt

zt+1 = −

(

1

𝛽t
− 1

)

𝜉t +
1

𝛽t
𝜉t+1

yt+1 = (1 − 𝛽t)yt + 𝛽t(r(st, at) + z⊤
t+1

(

𝛾𝜑(s�
t
, a�

t
) − 𝜑(st, at)

)
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Subsequently, we shift focus to characterizing the mean convergence of actor-critic method 
given any policy evaluation method satisfying (15) in Sect. 4. Then, we specialize the sam-
ple complexity of actor-critic to the cases associated with critic updates (30) – (32), which 
we respectively call Classic (Algorithm 4), Gradient (Algorithm 2), and Accelerated Actor-
Critic (Algorithm 3).

Remark 1  We wish to emphasize that a major advantage of this generic characterization of 
actor-critic admits the ability to interchange critic only methods to estimate the state-action 
(Q) function. The merit is twofold, as it can extend to faster convergence rates and fewer 
assumptions. In particular, recent works have shown tighter sample complexity bounds for 
critic-only methods for convergence in probability, which suggests that existing bounds on 
convergence in expectation are not necessarily tight. Furthermore, so long as the conver-
gence of the critic takes the form of Proposition 1, the i.i.d. assumption for the critic can 
be lifted. The general conditions for stability of trajectories with Markov dependence, i.e., 
negative Lyapunov exponents for mixing rates, may be found in (Meyn & Tweedie, 2012).

4 � Convergence rate of generic actor‑critic

In this section, we derive the rate of convergence in expectation for the variant of actor-
critic defined in Algorithm 1, which is agnostic to the particular choice of policy evaluation 
method used to estimate the Q function used in the actor update. Unsurprisingly, we estab-
lish that the rate of convergence in expectation for actor-critic depends on the critic update 
used. Therefore, we present the main result in this paper for any generic critic method. 
Thereafter, we specialize this result to two well-known choices of policy evaluation previ-
ously described (30) - (31), as well as a new variant that employs acceleration (32).

We begin by noting that under Assumption 1, one may establish Lipschitz continuity of 
the policy gradient ∇J(�) (Zhang et al., 2020)[Lemma 4.2].

Lemma 1  (Lipschitz-Continuity of Policy Gradient) The policy gradient ∇J(�) is Lipschitz 
continuous with some constant L > 0 , i.e., for any �1, �2 ∈ ℝ

d

This lemma allows us to establish an approximate ascent for the objective sequence 
{J(�k)}.

Lemma 2  Consider the actor parameter sequence defined by Algorithm  1. Further let 
Assumptions 1 and 2 be in effect. Define the probability space (Ω,F,P) . Further, let Fk 
be the �-algebra generated by the set {su, au, 𝜃u}u<k , that is the states, actions, and policy 
parameters until time k. Then, the sequence {J(�k)} satisfies the inequality

where C1 and C2 come from Theorem 2.

Proof  See Appendix 1	�  ◻

From (34) (Lemma 2), consider taking the total expectation

(33)‖∇J(�1) − ∇J(�2)‖ ≤ L ⋅ ‖�1 − �2‖.

(34)
�[J(�k+1) ∣ Fk] ≥ J(�k) + �k‖∇J(�k)‖

2 − �kC∇C1�
H(k)−1 − �kC∇C2T(k)

−b − L�2�2
k
.
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This almost describes an ascent of J(�k) . Because the norm of the gradient is non-neg-
ative, if the latter three terms were removed, an argument could be constructed to show 
that in expectation, the gradient converges to zero. Unfortunately, both the error of the 
finite horizon estimate and the critic error complicate the picture. However, we know that 
the error goes to zero in expectation as the number of critic steps and the horizon length 
increase. Thus, we leverage this property to derive the sample complexity of actor-critic 
(Algorithm 1).

We now present our main result, which is the convergence rate of actor-critic method 
when the algorithm remains agnostic to the particular choice of critic scheme. We char-
acterize the rate of convergence by the smallest number K� of actor updates k required to 
attain a value function gradient smaller than � , i.e. for 𝜖 > 0,

Theorem 3  Suppose the actor step-size satisfies �k = k−a for a > 0 and the critic update 
satisfies Proposition 1. Further let TC(k) = k + 1 ⋅ 1(b = 1) , and H(k) = k . Then the actor 
sequence defined by Algorithm 1 satisfies

Minimizing over a yields actor step-size �k = k−1∕2 . Moreover, depending on the rate b of 
attenuation of the critic bias [cf. (15)], the resulting sample complexity is:

Proof  See Appendix 2	�  ◻

The analysis of Lemma 2 and Theorem 3 do not make any assumptions on the size of the 
state action space. Additionally, the result describes the number of actor updates required. The 
number of critic updates required is simply the Kth

�
 triangular number, that is 

(

K�+1

2

)

 . These 
results connect actor-critic algorithms with the behavior of stochastic gradient method for 
finding the root of a non-convex objective. Under additional conditions, actor-critic with TD 
updates for the critic step attains a O(�−2) rate. However, under milder conditions on the state 
and action spaces but more stringent smoothness conditions on the reward function, using 
GTD updates for the critic yields O(�−3) rates. These results are formally derived in the fol-
lowing subsections. We further note that contemporaneously of beginning this work, several 
refined analyses of TD and GTD have been developed (Dalal et al., 2018b, 2020) that focus 
on concentration bounds (“lock-in probability"), a weaker metric of stability than convergence 
in mean, i.e., convergence in Lebesgue integral implies convergence in measure. In this work, 
we focus on global convergence to stationarity in terms of the expected gradient norm of the 
value function, and thus employ policy evaluation rates that are compatible with this goal, i.e., 
rates in the form of attenuation of mean square error. We defer the study of lock-in probabili-
ties to future work.

(35)
�[J(�k+1)] ≥ �[J(�k)] + �k�[‖∇J(�k)‖

2] − �kC∇C1�
H(k)−1 − �kC∇C2T(k)

−b−L�2�2
k
.

(36)K𝜖 = min{k ∶ inf
0≤m≤k ‖∇J(𝜃m)‖

2 < 𝜖}.

(37)K� ≤ O
(

�−1∕�
)

, where � = min{a, 1 − a, b}

(38)K� ≤
{

O
(

�−1∕b
)

if b ∈ (0, 1∕2)

O
(

�−2
)

. if b ∈ (1∕2, 1]
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Remark 2  We note that it may be possible to establish convergence in terms of asymptotic 
covariance or the Hessian around a stationary point, as in Thoppe and Borkar (2019), and 
thus obtain a sharper characterization of the limit points of actor-critic. However, doing 
so pre-supposes that the algorithm settle to a neighborhood of a local extrema, and would 
require a Hessian parameterization that is only locally valid. Hence sharper global con-
vergence characterizations, to our knowledge, are beyond reach. In this work, our inten-
tion is to establish the global sample complexity of actor-critic type algorithms, and leave 
strengthening the local rates using, e.g., techniques developed in Thoppe and Borkar 
(2019), to future work.

5 � Rates of gradient and accelerated actor‑critic

In this section, we show how Algorithm 1 can be applied to derive the rate of actor-critic 
methods using Gradient Temporal Difference (GTD) as the critic update. Thus, we proceed 
with deriving GTD-style updates through links to compositional stochastic programming 
(Wang et al., 2017a) which is also the perspective we adopted to derive rates in the previous 
section. For simplicity in notation, we let Q stand for Q��

 . Begin by recalling that any critic 
method seeks a fixed point of the Bellman evaluation operator:

Since we focus on parameterizations of the Q function by parameter vectors � ∈ ℝ
d with 

some fixed feature map � which is learned a priori, the Bellman operator simplifies

The solution of the Bellman equation is its fixed point: T�Q(s, a) = Q(s, a) for all 
s ∈ S, a ∈ A . Thus, we seek Q functions that minimize the (projected) Bellman error

where Ξ ⊆ ℝ
p is a closed and convex feasible set. The Bellman error quantifies distance 

from the fixed point for a given Q� . Here the projection and �-norm are respectively defined 
as

This parameterization of Q implies that we restrict the feasible set–which is in gen-
eral B(S,A) , the space of bounded continuous functions whose domain is S ×A–to be 
F = {Q𝜉 ∶ 𝜉 ∈ Ξ ⊂ ℝ

d} (as in Maei et  al. (2010)). Without this parameterization, one 
would require searching over B(S,A) , whose complexity scales with the dimension of the 
state and action spaces (Bellman, 1957), which is costly when dimensions are large, and 
downright impossible for continuous spaces (Powell, 2007).

Under certain mild conditions drawing tools from functional analysis, we can define a 
projection over a class of functions such that ΠQ̂ = Q̂ . For example, Radial-Basis-Func-
tion (RBF) networks have been shown to be capable of approximating arbitrarily well 

(39)(T��Q)(s, a) ≜ r(s, a) + ��s�∈S,a�∼�� (s
�)[Q(s

�, a�) | s, a]

(40)T𝜋𝜃Q𝜉(s, a) = �s�∈S,a�∼𝜋𝜃 (s
�)[r(s, a) + 𝛾𝜉⊤𝜑(s�, a�)|s, a]

(41)min
�∈Ξ

‖ΠT��Q� − Q�‖
2
�
=∶ F(�).

(42)ΠQ̂ = argmin
f∈F

‖Q̂ − f‖𝜇 , ‖Q‖2
𝜇
= ∫ Q2(s, a)𝜇(ds, da),
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functions in Lp(ℝr) ((Park & Sandberg, 1991), Theorem  1). Further, neural networks 
with one hidden layer and sigmoidal activation functions are known to approximate 
arbitrarily well continuous functions on the unit cube ((Cybenko, 1989), Theorem 1).

By the definition of the �-norm, we can write F [cf. (41)] as an expectation

As such, we replace the Bellman operator in (43) with (40) to obtain

Pulling the last term into the inner expectation, F(�) can be written as the function com-
position F(�) = (f◦g)(x) = f (g(x)) , where f ∶ ℝ → ℝ and g ∶ ℝ

p
→ ℝ take the form of 

expected values

where

Because F(�) can be written as a nested expectations of convex functions, we can use Sto-
chastic Compositional Gradient Descent (SCGD) for the critic update (Wang et al., 2017a). 
This requires the computation of the sample gradients for both f and g in (45)

The specification of SCGD to the Bellman evaluation error (44) yields the GTD updates 
(31) defined in Sect. 3–see (Sutton et al., 2008) for further details. We now turn to estab-
lishing the convergence rate in expectation for Algorithm 1 (substituting Algorithm 2 for 
the Critic(k) ) step using Theorem 3. Doing so requires the conditions of Theorem 3 from 
Wang et al. (2017a) to be satisfied, which we subsequently state.

Assumption 3 

(i)	 The outer function f is continuously differentiable, the inner function g is continuous, 
the critic parameter feasible set Ξ is closed and convex, and there exists at least one 
optimal solution to problem (41), namely �∗ ∈ Ξ

(ii)	 The sample first order information is unbiased. That is, 

(iii)	 The function �[g(�)] [cf. (46)] is Cg-Lipshitz continuous and the samples g(�) and ∇g(�) 
have bounded second moments 

(iv)	 The f(s,a)(y) has a Lipschitz continuous gradient such that 

(43)F(�) = �[(T��Q� − Q�)
2].

(44)F(𝜉) = �s,a∼𝜋𝜃 (s)
{(�s�,a�∼𝜋𝜃 (s

�)[r(s, a) + 𝛾𝜉⊤𝜑(s�, a�)|s, a ∼ 𝜋𝜃(s)] − 𝜉⊤𝜑(s, a))2}.

(45)f (y) = �(s,a)[f(s,a)(y)], g(�) = �(s� ,a�)[g(s�,a�)(�) | s, a ∼ ��(s)],

(46)f(s,a)(y) = y2 , g(s�,a�)(𝜉) = r(s, a) + 𝛾𝜉⊤𝜑(s�, a�) − 𝜉⊤𝜑(s, a).

(47)∇f(s,a)(y) = 2y , ∇g(s�,a�)(�) = ��(s�, a�) − �(s, a).

�[g(s�
0
,a�

0
)(�) | s0, a0 ∼ ��(s0)] = g(�)

�[‖∇g(s�
0
,a�

0
)(�)‖

2
� s0, a0 ∼ ��(s0)] ≤ Cg, �[‖g(s�

0
,a�

0
)(�) − g(�)‖2] ≤ Vg
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 for all y, ȳ ∈ ℝ

(v)	 The projected Bellman error is strongly convex with respect to the critic parameter � 
in the sense that there exists a � such that 

The first part of Assumption 3(i) is trivially satisfied by the forms of f and g in (46). 
Assumption 3(ii) requires that the state-action pairs used to update the critic parameter 
to be independently and identically distributed (i.i.d.), which is a common assumption 
unless one focuses on performance along a single trajectory. Doing so requires tools 
from dynamical systems under appropriate mixing conditions on the Markov transition 
density (Borkar, 2009; Antos et  al., 2008), which we obviate here for simplicity and 
to clarify insights. We note that the sample complexity of policy evaluation along a 
trajectory has been established by Bhandari et al. (2018), but remains open for policy 
learning in continuous spaces. Moreover, i.i.d. sampling yields unbiasedness of certain 
gradient estimators and second-moment boundedness which are typical for stochastic 
optimization (Bottou, 1998). We note that these conditions come directly from Wang 
et al. (2017a)–here we translate them to the reinforcement learning context.

We further require F(�) to be strongly convex, so that Wang et al. (2017a)[Theorem 3 
and Theorem 7] holds. Consider the Hessian

Due to its structure, and the i.i.d. assumption, the Hessian ∇2F(�) is known to be positive 
definite Bertsekas et al. (1995); Dalal et al. (2018b).

We can now combine the convergence result (Theorem 3) from Wang et al. (2017a) 
with Theorem  3 to establish the rate of actor-critic with GTD updates for the critic, 
through connecting GTD and SCGD. We summarize the resulting method as Algo-
rithm 2, which we call Gradient Actor-Critic.

�[‖∇f(s0,a0)(y)‖
2] ≤ Cf ‖∇f(s0,a0)(y) − f(s0,a0)(ȳ)‖ ≤ Lf‖y − ȳ‖

∇2F(�) ⪰ �I

(48)∇2F(𝜉) = �s,a

[

�s� ,a�

[

𝛾𝜑(s�, a�) − 𝜑(s, a)|s, a
]⊤
�s�,a�

[

𝛾𝜑(s�, a�) − 𝜑(s, a)|s, a
]

]

.
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Corollary 1  Consider the actor parameter sequence defined by Algorithm 2. If the stepsize 
�k = k−1∕2 and the critic stepsizes are �t = 1∕t� and �t = 1∕t2∕3 , then we have the following 
bound on K� defined in (36):

Proof  Here we invoke ((Wang et al., 2017a), Theorem 3) which characterizes the rate of 
convergence for the critic parameter

Applying Jensen’s inequality, we have

Taking the square root gives us

Therefore, b = 1∕3 (c.f. Proposition 1) in Theorem 3, which determines the O
(

�−3
)

 rate on 
K� in the preceding expression. 	�  ◻

Unsurprisingly, with additional smoothness assumptions, it is possible to obtain faster 
convergence through accelerated variants of GTD. The corresponding actor-critic method 
with Accelerated GTD updates is given by substituting Algorithm 3 for Critic(k) in Algo-
rithm 1, which we call Accelerated Actor-Critic. The validity of accelerated rates, aside 
from Assumption 3, requires imposing that the inner expectation has Lipschitz gradients 
and that sample gradients have boundedness properties which are formally stated below.

(49)K� ≤ O
(

�−3
)

.

(50)�[‖�k − �∗‖
2] ≤ O

�

k−2∕3
�

.

(51)�[‖�k − �∗‖]
2 ≤ �[‖�k − �∗‖

2] ≤ O
�

k−2∕3
�

,

(52)�[‖�k − �∗‖] ≤ O
�

k−1∕3
�

.
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Assumption 4 

	 (i)	 There exists a constant scalar Lg > 0 such that 

	 (ii)	 The sample gradients satisfy with probability 1 that 

With this additional smoothness assumption, sample complexity is reduced, as we state 
in the following corollary.

Corollary 2  Consider the actor parameter sequence defined by Algorithm 3. If the stepsize 
�k = k−1∕2 and the critic stepsizes are �t = 1∕t� and �t = 1∕t4∕5 , then we have the following 
bound on K� defined in (36):

Proof  The proof is identical to the proof of Corollary 1 while invoking Theorem 7 from 
Wang et al. (2017a). 	�  ◻

Corollary 2 establishes a O(�−5∕2) sample complexity of actor-critic when accelerated 
GTD steps are used for the critic update. This is the lowest complexity/fastest rate relative 
to all others analyzed in this work for continuous spaces. However, this fast rate requires 
the most stringent smoothness conditions. In the following section, we shift to the case 
where the critic is updated using vanilla TD(0) updates (30), which is the original form of 
actor-critic proposed by Konda and Borkar (1999).

6 � Sample complexity of classic actor‑critic

In this section, we derive convergence rates for actor-critic when the critic is updated using 
TD(0) as in (30) for two different canonical settings: the case where the state space action 
is continuous (Sect. 6.1) and when it is finite (Sect. 6.2). Both use TD(0) with linear func-
tion approximation in its unaltered form (Sutton, 1988). We substitute Algorithm 4 for the 

‖∇�s� ,a�∼�� (s
�)[g(�1)] − ∇�s�,a�∼�� (s

�)[g(�2)]‖ ≤ Lg‖�1 − �2‖, ∀�1, �2 ∈ Ξ

𝔼
�

‖∇g(�)‖4 � s0, a0
� ≤ C2

g
, ∀� ∈ Ξ , 𝔼

�

‖∇f (y)‖4
� ≤ C2

f
, ∀y ∈ ℝ

d

(53)K� ≤ O
(

�−5∕2
)

.
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Critic(k) step in Algorithm 1, which is the classical form of actor-critic given by Konda 
and Borkar (1999); Konda and Tsitsiklis (2000), thus the name Classic Actor-Critic.

6.1 � Continuous state and action spaces

The analysis for Continuous State Action space TD(0) with linear function approxima-
tion uses the analysis from Dalal et al. (2018a) to characterize the rate of convergence 
for the critic. Their analysis requires the following common assumption.

Assumption 5  There exists a constant Ks > 0 such that for the filtration Gt defined for the 
TD(0) critic updates, we have

where Mt+1 is defined as

where

Assumption 5 is known to hold when the samples have uniformly bounded second 
moments, which is a common assumption for convergence results (Sutton et al., 2009a, 
b). In the same way the projected Bellman error is strongly convex [see (48)], it is 
known that A is positive definite. As such, we define 𝜆TD ∈ (0, 𝜆min(A + A⊤)) . The value 
of �TD is conditioned on the feature representation of the state space, which is chosen a 
priori. However, this value plays an important role in determining the rate of conver-
gence for TD(0), as we see in the following corollary.

Corollary 3  Consider the actor parameter sequence defined by Algorithm 4. Suppose the 
actor step-size is chosen as �k = k−1∕2 and the critic step-size takes the form �t = 1∕(t + 1)� 
where � ∈ (0, 1) . Then, for large enough k,

Proof  Here we invoke the TD(0) convergence result from ((Dalal et  al., 2018b), Theo-
rem 3.1) which establishes that

for some positive constants K1 and K2 . For � not close to 1, the first term is dominated by 
K2∕t

� , which permits us to write that

Applying Jensen’s inequality, we have

(54)�[‖Mt+1‖
2
�Gt] ≤ Ks[1 + ‖�t − �∗‖

2],

(55)Mt+1 =
(

rt + 𝛾𝜉⊤
t
𝜑(st+1, at+1) − 𝜉⊤

t
𝜑(st, at)

)

𝜑(st, at) − b + A

(56)b ∶= �s,a∼𝜋(s)[r(s, a)𝜑(s, a)], and A ∶= �s,a∼𝜋(s)[𝜑(s, a)(𝜑(s, a) − 𝛾𝜑(s�, a�))⊤]

(57)K� ≤ O
(

�−2∕�
)

(58)�[‖�t − �∗‖
2] ≤ K1e

−�TDt
1−�∕2 +

K2

t�

(59)�[‖�t − �∗‖
2] ≤ O

�

1

t�

�
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Taking the square root on both sides gives us

which means that the convergence rate statement of Proposition 1 is satisfied with param-
eter b = �∕2 . Because 𝜎 < 1∕2 , this specializes Theorem 3, specifically, (38) to case (i), 
which yields the rate

Thus the claim in Corollary 3 is valid. 	�  ◻

The operative phrase in the proof of the previous theorem is for � not close to 1. 
This is because we want the first second term of (58) to dominate the first term so that 
Proposition 1 holds. Asymptotically, this is not a problem, however for finite sample 
complexity, the point at which the exponential term is dominated by the second term 
is highly sensitive to both �TD and � . The choice of � can be chosen to be larger as the 
value of �TD grows. The choice of � as a function of �TD and the number of iterates is 
summarized in Fig. 1.

We find that as the value of �TD increases, the critical value of � also increases. This 
means that the stepsize of the critic can be chosen to be larger, allowing for faster con-
vergence. Again, we define the critical value of � to be the point at which both terms on 
the right hand side of (64) are equal at a specific time t. Therefore, the feature space rep-
resentation plays a large role on the performance of actor-critic with TD(0) updates. This 
result becomes apparent in our numerical results (Sect.  7). We note that, the GTD rates 
given in Corollary 1 hinge upon strong convexity of the projected Bellman error, which 
may hold for carefully chosen state-action feature maps, bounded parameter spaces, and 
lower bounds on the reward. These conditions are absent for TD(0) critic updates.

In the next section, we will consider analysis of actor-critic with TD(0) critic updates 
in the case where the state and action spaces are finite. As would be expected, this added 
assumption significantly improves the bound on the rate of convergence, i.e., reduces the 
sample complexity needed for policy parameters that are within � of stationary points of 
the value function.

6.2 � Finite state and action spaces

In this section, we characterize the rate of convergence for the actor-critic defined by Algo-
rithm 1 with TD(0) critic updates (Algorithm 4) when the number of states and actions are 
finite, i.e., |S| = S < ∞ and |A| = A < ∞ . This setting yields faster convergence. A key 
quantity in the analysis of TD(0) in finite spaces is the minimal eigenvalue of the covari-
ance of the feature map �(s, a) weighted by policy �(s) , which is defined as

(60)�[‖�t − �∗‖]
2 ≤ �[‖�t − �∗‖

2] ≤ O
�

1

t�

�

.

(61)�[‖�t − �∗‖] ≤ O
�

1

t�∕2

�

,

(62)K� ≤ O
(

�−2∕�
)

.

(63)𝜔 = min

{

eig

(

∑

(s,a)∈S×A

𝜋(s)𝜑(s, a)𝜑(s, a)⊤

)}

.
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That � exists is an artifact from the finite state action space assumption. (63) is used to 
define conditions on the rate of step-size attenuation for TD(0) [cf. (30)] critic updates in 
((Bhandari et al., 2018), Theorem 2 (c)), which we invoke to establish the iteration com-
plexity of actor-critic in finite spaces. We do so next.

Corollary 4  Consider the actor parameter sequence defined by Algorithm 4. Let the actor 
step-size satisfy �k = k−1∕2 and the critic step-size decrease as �t = �∕(� + t) where 
� = 2∕�(1 − �) and � = 16∕�(1 − �)2 . Then when the number of critic updates per actor 
update satisfies TC(k) = k + 1 , the following convergence rate holds

Proof  We begin by invoking the TD(0) convergence result ((Bhandari et al., 2018), Theo-
rem 2 (c)):

for some constants K1,K2 which depend on � and � . Applying Jensen’s inequality, we have

Taking the square root on both sides yields

which means that Proposition 1 is valid with critic convergence rate parameter b = 1∕2 . 
Therefore, we may apply Theorem 3 to obtain the rate

as stated in Corollary 4. 	�  ◻

7 � Numerical results

In this section, we compare the convergence rates of actor-critic with the aforementioned 
critic-only methods on a two-dimensional navigation problem and the inverted pendulum. 
Before detailing the RL problem specifics, we first discuss the metrics we use to evaluate 
both performance and convergence.

Because the main objective is to maximize the long term average reward accumulation, 
it follows naturally to measure the cumulative reward of a trajectory. We evaluate the pol-
icy without action noise (�2 = 0) , with a fixed trajectory length, and with a fixed starting 
position which makes the plots easier to compare. In addition, we consider a proxy for the 
gradient norm. In particular, we calculate the norm of the difference between two consecu-
tive normalized actor parameters (‖�k∕‖�k‖ − �k+1∕‖�k+1‖‖) . The normalization treats two 
scaled versions of the same parameter equivalently. This is meaningful because the action 

(64)K� ≤ O
(

�−2
)

(65)�[‖�t − �∗‖
2] ≤ O

�

K1

t + K2

�

,

(66)�[‖�t − �∗‖]
2 ≤ �[‖�t − �∗‖

2] ≤ O

�

K1

t + K2

�

.

(67)�[‖𝜉t − 𝜉∗‖] ≤ O

�

K
−1∕2

1

(t + K2)
−1∕2

�

≲ O(t−1∕2),

(68)K� ≤ O
(

�−2
)



2456	 Machine Learning (2023) 112:2433–2467

1 3

vector field induced by the parameters (see Fig  3) are similarly scaled versions of each 
other. In this form, the gradient norm proxy serves as the optimization metric on which our 
main result is based.

Along with varying the critic-only methods, we elect to consider two additional vari-
ations on policy gradient where the Q function is replaced by the advantage and value 
functions. Recall the definition of the value function from (1). The advantage function is 
defined by A(st, at) = Q(st, at) − V(st) , which, by definition of the Q function, can also 
take the form of A(st, at) = rt+1 + �V(st+1) − V(st) (Mnih et al., 2016). The main benefit of 
using the value function and advantage functions instead of the Q function for actor critic 
is that the dimension of the function approximator domain is smaller, as the agent only 
needs to learn on the state space.

7.1 � Navigating around an obstacle

We consider the problem of a point agent starting at an initial state s0 ∈ ℝ
2 whose objec-

tive is to navigate to a destination s∗ ∈ ℝ
2 while remaining in the free space at all time. The 

free space X ⊂ ℝ
2 is defined by

The feature representation of the state is determined by a radial basis (Gaussian) kernel 
where

The p kernel points are chosen evenly on the [−5, 5] × [−5, 5] grid so that the the feature 
representation becomes

which we normalize. Given the state st , the action is sampled from a multivariate Gauss-
ian distribution with covariance matrix Σ = 0.5 ⋅ I2 and mean given by 𝜃⊤

k
𝜑(st) . We let the 

action determine the direction in which the agent will move. As such, the state transition is 
determined by st+1 = st + 0.5at∕‖at‖.

Because the agent’s objective is to reach the target s∗ while remaining in F for all time, 
we want to penalize the agent heavily for taking actions which result in the next step being 
outside the free space and reward the agent for being close to the target. As such, we define 
the reward function to be

The design of this reward function for the navigation problem is informed by the (Zhang 
et al., 2020), which suggests that the reward function should be bounded away from zero. 
In this simulation, we allow for the agent to continue taking actions through the obstacles. 
This formulation is similar to a car driving on a race track which has grass outside the 

(69)X ∶=
�

s ∈ ℝ
2�
�

�

‖s‖ ∈ [0.5, 4]
�

.

(70)�(s, s�) = exp

�

−‖s − s�‖2
2

2�2

�

.

(71)𝜑(s) =
[

𝜅(s, s1) 𝜅(s, s2) … 𝜅(s, sp)
]⊤

,

(72)rt+1 =

⎧

⎪

⎨

⎪

⎩

−11 if st+1 ∉ X

−0.1 if ‖st+1 − s∗‖ < 0.5

−1 otherwise .
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track. The car is allow is allowed to drive off the track, however it incurs a larger cost due 
to the substandard driving conditions.

Although it is true that this particular formulation does not allow for generalization, that 
is, if the target of the agent, obstacle location, or starting point of the agent are moved, the 
agent would have to start from scratch to learn a new meaningful policy, we emphasize that 
it is the rates of convergence which are of interest in this exposition, not necessarily finding 
the best way to design the navigation problem.

Algorithm Specifics  We consider the problem with � = 0.97 . In practice, we use the 
entire trajectory data for the critic updates. In particular, for each actor parameter update, 
we run ten critic updates with rollout length T = 66 (comes from the expected rollout 
length given � = 0.97 ). Similarly, we update the actor along the trajectory of rollout length 
H = 67. For simulations, the actor update step �t is chosen to be constant � = 10−3 . For 
TD(0), we let also let the critic stepsize be constant, namely �t = � = 0.05 . For GTD, we 
let �t = t−1 and �t = t−2∕3 . For A-GTD, we set �t = t−1 and �t = t−4∕5 . We draw the initial 
distribution uniformly at random on the grid [−2, 2] × [−2, 2] , and we set the target to be 
s∗ = (−2,−2) . For each critic only method, we run the algorithm 50 times. We evaluate the 
policy by measuring the accumulated reward of a trajectory of length H = 66.

7.2 � Pendulum problem

We also consider the canonical continuous state action space reinforcement learning prob-
lem of the pendulum. The objective is to balance the pendulum upright starting from any 
starting position. Given that this is a well established benchmark for reinforcement learn-
ing, we refer the reader to Brockman et  al. (2016) for the specifications on reward and 
transition dynamics. Similar to the navigation problem, we let the feature representation 
of the state be determined by a radial basis (Gaussian) kernel (c.f. (70)) where the p kernel 
points are chosen evenly on [−1,−1,−8,−2] × [1, 1, 8, 2] , where the bounds come from 
the sine and cosine of the angle � , the time derivative of the angle 𝜃̇ , and the maximum 
torque of the action respectively. The action is chosen by a normal distribution with mean 
𝜉⊤𝜑(s, a) and variance �2

a
 . Like the navigation problem, we use a linear policy and linear 

critic. Again, we stress that these experiments are meant to show the rates of convergence, 
and not necessarily finding the best way to solve the pendulum problem. For the pendulum 
problem, we only consider advantage actor-critic.

Algorithm Specifics Similar to the navigation problem, we let � = 0.97 , and we use the 
entire trajectory data for the critic updates. In particular, for each actor parameter update, 
we run ten critic updates with rollout length T = 66 (comes from the expected rollout 
length given � = 0.97 ). Similarly, we update the actor along the trajectory of rollout length 
H = 66. For simulations, the actor update step �t is chosen to be constant � = 0.01 . For 
critic only methods, we also let also let the critic stepsize be constant. In particular, we let 
�t = 0.01 for TD(0), (�t, �t) = (0.2, 0.01) for GTD, and (�t, �t) = (0.05, 0.005) for AGTD. 
We evaluate the policy by measuring the average accumulated by a single trajectory start-
ing � = �∕2 with angular velocity � = 1 . The action variance is chosen to be �2

a
= 0.5.

7.3 � Discussion

Recall that the analysis of Corollaries 1, 2, and 3 establish that the convergence rates 
for GTD, A-GTD, and TD(0) are O(�−3) , O(�−5∕2) , and O(�−2∕�) respectively [also see 
Table  1]. Figure  2 shows the performance of the navigation problem with value and 
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advantage function policy gradient updates. As expected, A-GTD converges fastest with 
respect to the gradient norm proxy, while GTD and TD(0) are comparable. The plots 
highlight a disconnect between the convergence in reward and the convergence in gradi-
ent norm. Namely, TD converges faster in gradient norm, but slower with respect to the 
cumulative reward. Even more interesting, although AGTD converges fastest with respect 
to gradient norm and reward, its resulting stationary point is suboptimal compared to TD 
and GTD (see Fig 3). On the other hand, GTD and TD(0) converge the slower, and they 
consistently reach the solved region marked by the solid black line at −66 . We say that 
rewards which are greater than −66 are solved trajectories because these trajectory spend 
time in the destination region. A trajectory which does not reach the destination region will 
have accumulated reward of −66 or less. Taken together, these theoretical and experimental 
results suggest a tight coupling between the choice of training methodology and the qual-
ity of learned policies. Thus, just as the choice of optimization method, statistical model, 
and sample size influence generalization in supervised learning, they do so in reinforce-
ment learning. Theorem  3 characterizes the rate of convergence to a stationary point of 

Fig. 2   Navigation Problem: (a) Average reward per episode with confidence bounds over 50 trials. (b) Aver-
age gradient norm proxy over 50 trials. A-GTD converges fastest with respect to the cumulative reward and 
gradient norm proxy at the cost of converging to a suboptimal stationary point (see Fig. 3). A moving aver-
age filter of size ten has been applied on the gradient norm proxy to aid in comparison
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Fig. 3   Visualization of the learned policy for the navigation problem. The obstacle is shown in the top right 
corner, and the target is located at (-2,-2). As Fig. 2 (a) depicts, TD (shown in (a)) and GTD (shown in (b)) 
learn meaningful policies which guide the agent to the target. In contrast, A-GTD (shown in (c)) simply 
learns to avoid the obstacle
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the Bellman optimality operator, however it does not provide any guarantee on the quality 
of the stationary point. Figure 3 captures this trade-off convergence rate and quality of the 
stationary point.

The disconnect between convergence in reward and convergence in gradient norm appears 
again in the pendulum. Fig. 4 (b) shows the gradient norm proxy for the advantage actor-critic 
applied to the pendulum problem. Consistent with Table 1, AGTD converges the fastest with 
followed by GTD and TD(0). Here, we again see the disconnect between convergence in gra-
dient norm and cumulative reward. Notice how in the first few iterations, TD(0) actually con-
verges the fastest. In tandem, the cumulative reward of TD(0) also increases quickly. By the 
final episode, TD(0) and AGTD perform worse than GTD. This is consistent with the conver-
gence rate and quality of stationary point trade-off observed in the navigation problem.

There are a number of future directions to take this work. To begin, we can establish 
bounds on cases where the samples are not i.i.d., but instead have Markovian noise. Second, 
we can further generalize our results to consider a generic critic convergence rate that does 
not necessarily take the form of Proposition 1. Third, we can explore the choice of feature 
representation to explicitly characterize the convergence rate of actor-critic with TD(0) critic 
updates with respect to �TD . Finally, we can characterize the behavior of the variance and use 
such characterizations to accelerate training.

Appendix

Proof of Lemma 2

By the Mean Value Theorem, there exists 𝜃k = 𝜆𝜃k + (1 − 𝜆)𝜃k+1 for some � ∈ [0, 1] such that

Add and subtract (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k) to the right hand side of (73) to obtain

(73)J(𝜃k+1) = J(𝜃k) + (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k).
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Fig. 4   Pendulum Problem: (a) Average reward per episode with confidence bounds over 50 trials. (b) Aver-
age gradient norm proxy over 50 trials. In contrast to the navigation problem there is a significant gain in 
using advantage actor-critic; here, the state action (Q) function was used instead of the value function (V). 
A moving average filter of size ten has been applied on the gradient norm proxy to aid in comparison
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By Cauchy Schwartz, we know (𝜃k+1 − 𝜃k)
⊤
�

∇J(𝜃k) − ∇J(𝜃k)
� ≥ −‖𝜃k+1 − 𝜃k‖‖∇J(𝜃k) − J(𝜃k)‖ . 

Further, by the Lipschitz continuity of the gradient, we know 
‖∇J(𝜃k) − ∇J(𝜃k)‖ ≤ L‖𝜃k − 𝜃k‖ . Therefore, we have

where the second inequality comes from substituting 𝜃k = (1 − 𝜆)𝜃k+1 + 𝜆𝜃k . We substitute 
this expression into the definition of J(�k+1) in (74) to obtain

Take the expectation with respect to the filtration Fk , and substitute the definition for the 
actor update (17)

We know from (29) that ‖∇̂J(𝜃k)‖2 ≤ 𝜎2 , as such we obtain

Therefore, we are left to show that the last term on the right-hand side of the preceding 
expression is “nearly" an ascent direction. Recall from Algorithm  1 that the kth update 
takes the form (22), that is

Substituting into (78), from Theorem 2, we obtain

This concludes the proof.

Proof of Theorem 3

Take the total expectation of (34) from Lemma 2

Define Uk ∶= J(�∗) − J(�k) where �∗ is the solution of (2) when the policy is parameterized 
by � . By this definition, we know that Uk is non-negative for all �k . Add J(�∗) to both sides 
of the inequality and rearrange terms

(74)J(𝜃k+1) = J(𝜃k) + (𝜃k+1 − 𝜃k)
⊤
(

∇J(𝜃k) − ∇J(𝜃k)
)

+ (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k).

(75)(𝜃k+1 − 𝜃k)
⊤
�

∇J(𝜃k) − J(𝜃k)
� ≥ −L‖𝜃k − 𝜃k‖ ⋅ ‖𝜃k+1 − 𝜃k‖ ≥ −L‖𝜃k+1 − 𝜃k‖

2 ,

(76)J(𝜃k+1) ≥ J(𝜃k) + (𝜃k+1 − 𝜃k)
⊤∇J(𝜃k) − L‖𝜃k+1 − 𝜃k‖

2.

(77)�[J(𝜃k+1)�Fk] ≥ J(𝜃k) + �[𝜃k+1 − 𝜃k�Fk]
⊤∇J(𝜃k) + −L�[‖𝜂kĝ

AC
H(k)

‖

2
�Fk].

(78)�[J(𝜃k+1)|Fk] ≥ J(𝜃k) + �[𝜃k+1 − 𝜃k|Fk]
⊤∇J(𝜃k) − L𝜎2𝜂2

k
.

(79)�
[

𝜃k+1 − 𝜃k|Fk

]

= 𝜂k�

[

ĝAC
H(k)

|Fk

]

= 𝜂k�
[

∇𝜃J(𝜃k)|Fk

]

+ 𝜂k�

[

ĝAC
H(k)

− ∇𝜃J(𝜃)|Fk

]

(80)

�[J(𝜃k+1)�Fk] ≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 + 𝜂k�

�

ĝAC
H(k)

− ∇𝜃J(𝜃k)�Fk

�⊤

∇𝜃J(𝜃k)−L𝜎
2𝜂2

k

≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 − 𝜂k

�

�

�

�

�

�

ĝAC
H(k)

− ∇𝜃J(𝜃k)�Fk

�⊤

∇𝜃J(𝜃k)
�

�

�

�

−L𝜎2𝜂2
k

≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 − 𝜂k‖�

�

ĝAC
H(k)

�

− ∇𝜃J(𝜃k)‖ ⋅ ‖∇𝜃J(𝜃k)‖−L𝜎
2𝜂2

k

≥ J(𝜃k) + 𝜂k‖∇𝜃J(𝜃k)‖
2 − 𝜂kC∇

�

C1𝛾
H(k)−1 + C2T(k)

−b
�

−L𝜎2𝜂2
k

(81)
�[J(�k+1)] ≥ �[J(�k)] + �k�[‖∇J(�k)‖

2] − �kC∇C1�
H(k)−1 − �kC∇C2TC(k)

−b − L�2�2
k
.
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Divide both sides by �k and take the sum over {k − N,… , k} for some integer 1 < N < k

Add and subtract 1∕�k−N−1�[Uk−N] on the right hand side. This allows us to write

By definition of Uk , �[Uk+1] ≥ 0 . Therefore we can omit it from the right hand side of (84). 
Further, we know that J(�∗) ≤ UR∕(1 − �) as a consequence from Assumption 11 [see (6)]. 
Hence we have Uk ≤ 2UR∕(1 − �) =∶ C3 for all k. Substituting this fact into the preceding 
expression yields

By unraveling the telescoping sum, the first two terms are equal to C3∕�k

Substitute �k = k−a for the step size

We break the remainder of the proof into two cases due to the fact that the right-hand side 
of the preceding expression simplifies when b = 1 , and is more intricate when 0 < b < 1 . 
We focus on the later case first.

Case (i): b ∈ (0, 1) Consider the case where b ∈ (0, 1) . Set TC(k) = k and H(k) = k . 
Substitute the integration rule, namely that 

∑k

j=k−N
j−a ≤ k1−a − (k − N − 1)1−a , into (87) to 

obtain:

(82)
�
k
�[‖∇J(�

k
)‖2] ≤ �[U

k
] − �[U

k+1] + L�2�2
k
+ �

k
C∇C1

�H(k)−1 + �
k
C∇C2

T
C
(k)−b.

(83)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤

k
�

j=k−N

1

�j

�

�[Uj] − �[Uj+1]
�

+ L�2

k
�

j=k−N

�j

+

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(84)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤

k
�

j=k−N

�

1

�j
−

1

�j−1

�

�[Uj] −
1

�k
�[Uk+1] +

1

�k−N−1
�[Uk−N]

+ L�2

k
�

j=k−N

�j +

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(85)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤

k
�

j=k−N

�

1

�j
−

1

�j−1

�

C3 +
1

�k−N−1
C3 + L�2

k
�

j=k−N

�j

+

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(86)
k
�

j=k−N

�[‖∇J(�j)‖
2] ≤ C3

�k
+ L�2

k
�

j=k−N

�j +

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.

(87)
k
�

j=k−N

�[‖∇J(�j)‖
2] ≤ C4k

a + L�2

k
�

j=k−N

j−a +

k
�

j=k−N

�

C∇C1�
H(j)−1C∇C2TC(j)

−b
�

.
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Divide both sides by k and set N = k − 1

Suppose k = K� so that we may write

By definition of K� [c.f. (36)], we have that �[‖∇J(𝜃j)‖2] > 𝜖 for all j = 1,… ,K� , so

Defining � = min{a, 1 − a, b} , the preceding expression then implies

which by inverting the expression, yields the sample complexity

Case (ii): b = 1 Now consider the case where b = 1 . Set TC(k) = k + 1 and H(k) = k . 
Again, using the integration rule, and that 

∑k

j=k−N
(j + 1)−1 ≤ log(k + 1) − log(k − N) , we 

substitute into (87) which yields

Divide both sides by k and fix N = k − 1

Let k = K� in the preceding expression, which then becomes

(88)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤C4k

a + C∇C1�
−1

k
�

j=k−N

� j +
L�2

1 − a

�

k1−a − (k − N − 1)1−a
�

+
CL1

1 − b

�

k1−b − (k − N − 1)1−b
�

.

(89)

1

k

k
�

j=1

�[‖∇J(�j)‖
2] ≤ C4k

a−1 + C∇C1�
−1k−1

k
�

j=1

� j +
L�2

1 − a
k−a +

CL1

1 − b
k−b

≤ C4k
a−1 +

C∇C1

�(1 − �)
k−1 +

L�2

1 − a
k−a +

CL1

1 − b
k−b

(90)
1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+ K−b
�

�

.

(91)� ≤ 1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+ K−b
�

�

.

(92)� ≤ O(K−�
�

),

(93)K� ≤ O(�−1∕�).

(94)

k
�

j=k−N

�[‖∇J(�j)‖
2] ≤C4k

a + C∇C1

k
�

j=k−N

� j +
L�2

1 − a

�

k1−a − (k − N − 1)1−a
�

+ CL1(log(k + 1) − log(k − N)).

(95)

1

k

k
�

j=1

�[‖∇J(�j)‖
2] ≤ C4k

a−1 + C∇C1�
−1k−1

k
�

j=1

� j +
L�2

1 − a
k−a + CL1

log(k + 1)

k
.

(96)
1

K�

K�
�

j=1

�[‖∇J(�j)‖
2] ≤ O

�

Ka−1
�

+ K−1
�

+ K−a
�

+
log(K� + 1)

K�

�

.
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Again, by definition of K� [c.f. (36)], we have that �[‖∇J(𝜃j)‖2] > 𝜖 for all j = 1,… ,K� , so

Optimizing over a, we have

On the other hand,

Fix � = min{1∕2, b} , then

which implies

This concludes the proof.
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