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Abstract
Network pruning has been known to produce compact models without much accuracy deg-
radation. However, how the pruning process affects a network’s robustness and the working 
mechanism behind remain unresolved. In this work, we theoretically prove that the spar-
sity of network weights is closely associated with model robustness. Through experiments 
on a variety of adversarial pruning methods, image-classification models and datasets, we 
find that weights sparsity will not hurt but improve robustness, where both weights inherit-
ance from the lottery ticket and adversarial training improve model robustness in network 
pruning. Based on these findings, we propose a novel adversarial training method called 
inverse weights inheritance, which imposes sparse weights distribution on a large network 
by inheriting weights from a small network, thereby improving the robustness of the large 
network.

Keywords Adversarial learning · Neural network pruning · Robustness · Sparsity

1 Introduction

It is widely recognized that deep neural networks (DNNs) are usually over-parameterized, 
and network pruning has been adopted to remove insignificant weights from a large neural 
network without hurting the accuracy. Despite its success, pruning strategies have been 
rarely discussed in the adversarial learning setting where the network is trained against 
adversarial examples, and the robustness of the network is as important as accuracy.

It is unclear what pruning methods are effective and which factors are critical for retain-
ing model robustness. Believing that the inherited model weights may not be effective in 
preserving network accuracy (Ye et al. 2019; Liu et al. 2019), Ye et al. (2019) propose a 
concurrent adversarial training and weight pruning framework to seek a compressed robust 
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model. Gui et al. (2019) further incorporates pruning and several other techniques into a 
unified optimization framework to preserve high robustness while achieving a high com-
pression ratio. However, the conventional three-stage ‘training—pruning—fine-tuning’ 
pipeline has not been closely examined in the adversarial context. More crucially, it is 
unclear which components in the network pruning methods are critical to preserving model 
performance. To this end, we design a comprehensive set of experiments to answer these 
questions.

Despite some adversarial pruning methods that have been proposed, there is still a lack 
of theoretical foundation to explain the working mechanism behind those methods. In fact, 
there are seemingly contradictory opinions on the robustness of pruned networks: Madry 
et  al. (2018) suggest network capacity is crucial to robustness, and a wider network is 
more likely to obtain higher accuracy and robustness than a simple network. In contrast, 
Guo et al. (2018) theoretically prove that an appropriately higher weight sparsity implies 
stronger robustness on naturally trained models. Theories on clean training models such 
as the ‘Lottery Ticket Hypothesis’ (Frankle and Carbin 2019) point out that, a subnetwork 
extracted from a large network can always achieve comparable performance with the origi-
nal one in the natural setting. However, it remains unknown if the hypothesis holds true for 
adversarially robust networks. We are motivated to explore how adversarial pruning affects 
the intrinsic characteristics of the network and its impact on model robustness.

In this study, we find that the robustness of the model improves as its weights become 
sparser. We show that weights sparsity not only includes the traditional L0-sparsity, i.e., 
the number of parameters retained, but also a weight distribution closer to zero, repre-
sented generally by the Lp norm of weights. These forms of sparsity can lead to robustness 
improvement, which is verified theoretically and experimentally. By extensive experiments 
on a variety of state-of-the-art pruning methods, models, and datasets, we also demon-
strate that a pruned network inheriting weights from a large robust network has improved 
robustness than a network with the same structure but randomly initialized weights. More-
over, weight inheritance implicitly produces sparser weights distributions on adversarially 
pruned models.

Inspired by the connection between model sparsity and robustness, we propose a 
new adversarial training strategy called inverse weights inheritance (IWI): by inheriting 
weights from a pruned model, a large network can achieve higher robustness than being 
adversarially trained from scratch. The pruned model can be the ‘winning ticket’ of the 
large network, as we verify that ‘Lottery Ticket Hypothesis’ (Frankle and Carbin 2019) 
holds true in the adversarial learning context. The performance results of our proposed 
training strategy corroborate that sparse weights and high capacity are not contradictory, 
but contribute joint efforts to model robustness.

Overall, we made the following contributions. First, we analyze the theoretical connec-
tion between network robustness and sparsity and generalize it to Lp norm. Second, through 
comprehensive experiments, we find that weights inheritance and adversarial training are 
important in adversarial pruning, which implicitly provide weights sparsity. Finally, based 
on our findings, we propose a new adversarial training strategy that achieves improved 
robustness efficiently in large networks.

This paper is organized as follows. Section 2 introduces the related works. Preliminaries 
are given in Sect. 3 for a better understanding of our work. In Sect. 4, we raise the theo-
retical relation between sparsity and robustness. Then we report the experimental results 
on the one-shot pruning in Sect.  5. The following Sect.  6 explores improved means to 
achieve sparsity and robustness, including adversarial lottery tickets on small models, and 
IWI on large ones. Finally, in Sect. 7 we summarize our conclusions, and discuss possible 
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improvements and future work. Detailed proofs and additional discussion on experimental 
settings and results are presented in the appendix.

2  Related work

2.1  Network robustness and generalization

Adversarial examples (Goodfellow et al. 2015) are generated by adding imperceptible per-
turbations to the input which leads to performance reduction. Madry et al. (2018) motivate 
projected gradient descent (PGD) as a universal ‘first-order adversary,’ and propose the 
saddle point formulation to train a robust network. Adversarial training and its variants 
are proposed to improve network robustness against adversarial examples (Kurakin et al. 
2017; Fawzi et al. 2018). Goldblum et al. (2020) observe robustness can transfer and even 
improve between networks by knowledge distillation.

Network robustness against adversaries also has a  strong relation with generalization 
as revealed in Xu and Mannor (2012). Various approaches have been proposed to improve 
generalization capability, including optimizing loss surface (Keskar et  al. 2017; Petzka 
et al. 2020), and imposing weights sparsity (Arora et al. 2018; Morcos et al. 2019; Bartold-
son et al. 2020). There are also works on deriving the generalization bound in adversarial 
settings, i.e., the adversarial risk bound (Fawzi et  al. 2016; Balda et  al. 2019), which is 
also evaluated empirically in varied experimental settings (Bastani et al. 2016; Moosavi-
Dezfooli et al. 2016; Salman et al. 2019). In this paper, we apply distortion bound as an 
empirical metric to evaluate the model robustness against adversarial perturbation.

2.2  Adversarial network compression

Network compression in adversarial context has been recently discussed in search of small 
and robust models (Wang et al. 2018; Zhao et al. 2018; Ye et al. 2019; Sehwag et al. 2019). 
Several frameworks (Rakin et al. 2019; Madaan et al. 2019; Gui et al. 2019) have been pro-
posed to adversarially train a neural network while constraining its size by pruning and/or 
quantization. However, these works do not answer which pruning factors are important for 
robust networks, nor which pruning methods are effective.

From the theoretical aspect, Hein and Andriushchenko (2017) propose a formal guaran-
tee of adversarial robustness in terms of the local Lipschitz constant. By building a bridge 
between the local Lipschitz constant and weight sparsity, Guo et al. (2018) consider that an 
appropriately higher weight sparsity on naturally trained networks implies higher robust-
ness. Dinh et al. (2020) also find an adversarially trained network with sparser weights dis-
tribution tends to be more robust, such as EnResNet20 (Wang et al. 2019). Different from 
compression, Dhillon et  al. (2018) propose dynamic sparsity as an approach to improve 
robustness. By supplementing the concept of ‘sparsity,’ we found empirical evidence of 
the link between robustness and sparsity, as well as training strategies to boost robustness.

While Liu et al. (2019) claim that for network pruning in the natural setting, weights 
inherited by unstructured and predefined structured pruning may not be useful, as it may 
trap the pruned network to bad local minima, we show with experiments that weight 
inheritance improves the robustness in the adversarial setting, which we conjecture that 
it is because the inverse weights inheritance embraces larger networks during training, 
which can help the model jump out of local minima and achieve better generalization 
performance.
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3  Preliminaries

3.1  Network robustness evaluation

Following the convention of previous literature, we adopt L∞-PGD attack (Madry et  al. 
2018), i.e., the strongest attack utilizing the local first-order information of the network, 
both in adversarial training and robustness evaluation. The PGD attack constructs adver-
sarial examples in t iterations, with a step size s and total perturbation strength � . We utilize 
the accuracy on the  PGD perturbed testing dataset to evaluate model robustness against 
adversarial attacks.

The distortion bound of adversarial examples (Bastani et al. 2016; Salman et al. 2019) 
also serves as a robustness metric which represents the model’s ability to correctly classify 
perturbed inputs. We estimate the distortion bound by searching the minimum � of PGD 
attack that crafts a valid adversarial example on a given batch.

3.2  Network pruning methods

Network pruning is a set of widely implemented compression methods for its excellent per-
formance and plasticity in practice. Pruning methods related to this paper can be divided 
into two categories: structured pruning and unstructured pruning. Structured pruning 
prunes a network at the level of filters (Lang 2018; Li et al. 2017; Luo et al. 2017), chan-
nels (Liu et al. 2017) or columns (Wen et al. 2016), depending on their respective impor-
tance. The importance of a filter or a channel can be determined by the norm of the weights 
(Li et al. 2017) or the channel scaling factor (Ye et al. 2018; Liu et al. 2017) (sometimes 
the scaling factor in batch normalization layers). The unstructured pruning (LeCun et al. 
1990; Hassibi and Stork 1993) prunes at the level of individual weight according to the 
Hessian matrix of the loss function. Han et al. (2015) propose to prune weights with small 
magnitude, and the compression ratio is further enhanced in Han et al. (2016) by quantiza-
tion and Huffman coding.

We pick four representative and intrinsically different pruning methods: Local Unstruc-
tured Pruning (LUP) (Han et al. 2016), Global Unstructured Pruning (GUP) (Frankle and 
Carbin 2019), Filter Pruning (FP) (Li et al. 2017) and Network Slimming (NS) (Liu et al. 
2017). LUP and GUP are unstructured pruning, whereas FP and NS are structured prun-
ing. Both GUP and NS prune globally according to the importance of weights or channels 
across all convolutional layers, while LUP and FP prune an identical percentage of weights 
or filters per layer locally. FP is a predefined pruning method while GUP, LUP and NS are 
automatic pruning methods where the structure is determined by the pruning algorithm at 
runtime.

3.3  Lottery ticket hypothesis

The ‘Lottery Ticket Hypothesis’ (Frankle and Carbin 2019) shows the existence of a sparse 
subnetwork (or ‘winning ticket’) in a randomly initialized network that can reach compa-
rable performance with the large network. Nevertheless, Ye et al. (2019) argue against the 
existence of ‘winning ticket’ in adversarial settings. On the other hand, Cosentino et  al. 
(2019) manage to acquire adversarial winning tickets of simple models without harming 
model robustness. Li et al. (2020) further propose an optimized learning rate schedule to 
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boost the searching performance of lottery tickets, while demonstrating why the method in 
Ye et al. (2019) fails to find them.

4  Study of robustness and sparsity

In this section, we theoretically prove that sparser weights distribution indicates an 
improved level of robustness. In the theoretical deduction, we assume DNNs with ReLU 
activation functions, but the conclusion can be generalized to a variety of models, as we 
verify by experiments.

We focus on nonlinear DNNs with ReLU activation functions for classification tasks 
as an example to study the connection between sparsity and robustness. Let us consider a 
multi-layer perceptron g(⋅) trained with labeled training datasets {

(
xi, yi

)
} . Each layer of 

the network is parameterized by a weight matrix Wd ∈ ℝ
nd−1×nd and wk = Wd[∶, k] repre-

sents the weights associated with the k-th class in the final layer. � denotes the ReLU func-
tion. Then the prediction scores of xi for class k can be denoted as

Let ŷ = argmaxk∈{1,...,c} gk(x) denote the class with the highest prediction score. Assuming 
the classifier is Lipschitz continuous, the local Lipschitz constant of function gŷ(x) − gk(x) 
over the neighborhood of x is defined as Lk

q,x
= maxx∈Bp(0,R)

‖∇gŷ(x) − ∇gk(x)‖ , where 
Bp(x,R) denotes a ball centered at x with radius R under Lp norm. Previous works (Hein 
and Andriushchenko 2017; Guo et al. 2018) have associated robustness with the local Lip-
schitz constant by the following proposition:

Proposition 1 (Hein and Andriushchenko 2017; Guo et  al. 2018) Let ŷ = arg 
maxk∈{1,...,c} gk(x) and 1

p
+

1

q
= 1 . For any perturbation �x ∈ Bp(0,R) , p ∈ ℝ

+ and a set of 
Lipschitz continuous functions {gk ∶ ℝ

n
↦ ℝ} , the classification decision on x + �x will not 

change from ŷ with

where Lk
q,x

 is the local Lipschitz constant of function gŷ(x) − gk(x).

Eqn.  (2) has clearly depicted the relation between robustness and the local Lipschitz 
constant — a smaller Lk

q,x
 represents a higher level of robustness as a larger distortion can 

be tolerated without changing the prediction. Guo et  al. (2018) further give the relation 
between the local Lipschitz constant and the weights. We further deduct that the relation 
satisfies the following theorem:

Theorem  1 (The robustness and weights distribution of ReLU networks.) Letting 
1

p
+

1

q
= 1 , for any x ∈ ℝ

n , k ∈ {1, ..., c} and q ∈ {1, 2} , the local Lipschitz constant of 
function gŷ(x) − gk(x) satisfies

(1)gk
(
xi
)
= wT

k
�
(
WT

d−1
�
(
...�

(
WT

1
xi
)))

.

(2)‖‖𝛿x‖‖p ≤ min

{
min
k≠ŷ

gŷ(x) − gk(x)

Lk
q,x

,R

}
,
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Note that the local Lipschitz constant is upper bounded by the product of the Lp-norm of 
the weights matrices. That is to say, if ‖‖‖Wj

‖‖‖p is small, Lk
q,x

 is constrained to be small, lead-
ing to a higher level of robustness. The proof of Thm. 1 is omitted here due to space con-
straint and we refer readers to the supplementary document for the detailed proof.

We have at least two interpretations of Thm. 1: if we let p = 0 , Eqn. (3) is bounded by 
the number of non-zero weights of the model, and hence the higher the proportion of non-
zero weights, the more robust the model is. On the other hand, a smaller value of ‖‖‖Wj

‖‖‖p 
suggests the distribution of weights is closer to zero. This indicates that if a model has a 
weights distribution closer to zero, it may be more robust than other models with the same 
structure. We will respectively show how the two points are supported by the experimental 
results.

5  Adversarial pruning improves robustness by imposing sparsity

Although Thm. 1 establishes a preliminary link between sparsity and robustness, it does 
not tell us how to achieve sparsity and robustness by the equation. An intuitive way is to 
prune a network to reduce the number of non-zero weights of the model, which is also done 
in (Guo et al. 2018) but only in the natural setting. In this section we apply the method in 
adversarial contexts to show that adversarial pruning and retraining are able to improve 
model sparsity, hence providing robustness as Thm. 1 suggests.

5.1  Implementation details

In this part, we describe the implementation details in examining adversarially robust net-
work pruning. To obtain objective results, we mostly follow the experimental settings in 
previous works (Liu et al. 2019; Yang et al. 2019; Ye et al. 2019; Zhang and Zhu 2019). 
Our experiments are carried out with PyTorch 1.0 on NVIDIA GeForce 2080 Ti GPUs.

5.1.1  Datasets and networks

We conduct experiments on the image classification task with datasets CIFAR-10, Tiny-
ImageNet, and CIFAR-100, which are representatives for small-scale datasets, large-scale 
datasets, and datasets somewhere in between. Three state-of-the-art network architectures 
are chosen: VGG (Simonyan and Zisserman 2015), ResNet (He et al. 2016), and DenseNet 
(Huang et al. 2017) as the base large networks. A DenseNet-BC with depth 40 and growth 
rate k = 12 is also used on CIFAR-10.

5.1.2  One‑shot pruning methods

We conduct the pruning methods defined by Sect. 3.2 in an one-shot manner that removes 
the parameters at one step, followed by post retraining to convergence. We re-implement 
each pruning methods to achieve comparable performance with that reported in the current 

(3)Lk
q,x

≤
‖‖‖wŷ − wk

‖‖‖q

d−1∏

j=1

(‖‖‖Wj
‖‖‖p
)
.
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literature. For FP, we conduct it on every two consecutive convolutional layers and skip 
the shortcuts in ResNet according to (Luo et al. 2017), also it is not available on DenseNet 
as pruning one filter would lead to input channel changes in all subsequent layers (Li et al. 
2017; Liu et al. 2019). For NS, the highest pruning ratio is selected according to the maxi-
mum channel pruning ratio to avoid the removal of layers (Liu et al. 2017).

5.1.3  Adversarial training and evaluation

We employ the widely used L∞-PGD adversary with perturbation � = 8∕255 and step 
size s = 2∕255 in our experiments. Following recent works (Guo et al. 2020), we utilize 
iteration t = 10 for training, and evaluate robustness on t = 100 , while other testing itera-
tions are also included in the appendix. The distortion bound is also computed under same 
adversarial setting. We report the average of distortion bounds across all samples.

For all trainings, we adopt an SGD optimizer with momentum of 0.9 and weight decay 
of 5 × 10−4 . The batch sizes for CIFAR-10 and CIFAR-100 are both 128. On Tiny-Ima-
geNet, the batch size is 128 for ResNet18 and 32 for DenseNet121 following Zhang and 
Zhu (2019) and Yang et al. (2019).

5.1.4  Stopping criteria

Typically, it is not well-defined how to train models to ‘full convergence’ when stepwise 
decaying learning rate schedule is applied. Hence we adopt two stopping criteria indi-
cating models have been sufficiently trained for ease of comparison. Stop-E denotes the 
network is trained for a fixed number of epochs. For CIFAR-10, CIFAR-100, and Tiny-
ImageNet, we set the start learning rate to be 0.1, 0.1, and 0.01, respectively. The learn-
ing rate is divided by 10 for every 1/3 of the total epochs. Stop-C monitors the validation 
loss changes to automatically adjust the learning rate. For example, when defining patience 
to be 10 epochs and relative threshold to be 10−5 , the learning rate decays only when the 
average validation loss does not decrease by more than 0.001% for consecutive 10 epochs. 
Models stop training after 2 learning rate decays.

5.2  Adversarial one‑shot pruning

To obtain small and robust models, we first adversarially train each base network until 
reaching the state-of-the-art clean and adversarial accuracy, and then prune each network 
by different means. We show that pruning is able to maintain model robustness in some 
adversarial settings. Beyond that, adversarial retraining after pruning mostly improves 
robustness, at a sparser weights distribution than models with the same structure.

When networks are pruned, we immediately test their accuracies on clean and adver-
sarial samples. The results on CIFAR-10 and Tiny-ImageNet are shown in Table 5 in the 
supplementary material. Compared to the performance on the base network (marked under 
the model name), the pruned network only moderately suffers from accuracy loss when 
the pruning ratio is not very high, and the pruning methods are automatic, i.e., LUP, GUP, 
and NS. Note that those methods automatically extract a subnetwork without altering the 
weights, resulting in a higher L0 sparsity compared to base models. Considering pruning 
reduces model capacity, the mild performance loss is reasonable.

Although pruning shows a promising method to introduce sparsity, it does not end up 
in robust models each time. We hence impose adversarial retraining on pruned networks to 
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enhance robustness. The results are provided in Table 1. Since there is a tradeoff between 
accuracy and robustness (Zhang et  al. 2019), and some models tend to sacrifice one for 
the other, we choose to report the performance where the sum of adversarial accuracy and 
clean accuracy is the highest. Distortion bound is also reported for a complete view. We 
refer readers to the supplementary material for further discussions on the results.

Most networks in Table 1 obtain higher accuracy and robustness than pruning without 
retraining, and a large proportion of them can achieve better performance than the base 
networks. Specifically, LUP and NS only suffer notable performance degradation at high 
pruning ratios, whereas GUP remains a remarkable high performance across all pruning 
ratios. FP cannot preserve network performance well.

To see whether the weights inherited from a large network truly help the pruned network 
converge, we conduct a series of comparison experiments, as shown in Table 2. Compared 
to FP, FP-rand initializes a small network with the same structure as the corresponding 
pruned network. For automatic pruning methods including LUP, GUP, and NS, we re-use 
the pruned network structure with re-initialized weights. As we found, compared with FP-
rand, FP provides little or no improvement with the inherited weights. On the contrary, 
automatic pruning with inherited weights almost always performs better than that with ran-
domly initialized weights.

We evaluate the relation between model robustness and model norm according to 
Eqn.  (2) and (3). In Fig.  3, we demonstrate the changes of model L2 norm brought by 
adversarial retraining after pruning at different pruning ratios for GUP. We also plot the 
empirical model norms and their adversarial distortion bounds. The latter serves as an indi-
cator for the robustness. We found the results are in accord with Eqn.  (2) and (3) that a 
smaller model norm usually indicates a higher upper bound of robustness.

Although Table 1 and Table 2 experimentally found effective methods or factors to gain 
robustness for pruned networks, it still remains unclear how it relates to sparsity. Inter-
estingly, by examining the weights distribution after adversarial retraining, we found that 
most automatically pruned networks with inherited weights have similar or higher sparsity 
than those with randomly initialized weights, as some examples shown in Fig.  2, while 
the networks pruned by predefined pruning (FP) show the opposite trend. This could be 
explained by Thm. 1, since a weight distribution closer to zero implies higher robustness. 
Therefore, weight inheritance and adversarial retraining implicitly provide a way to obtain 
sparse networks.

5.2.1  Comparison with previous results

We also compare our conclusion with previous works and summarize the difference as fol-
lows. We find inherited weights by automatic pruning (LUP, GUP, NS) provide better ini-
tialization for small networks, while predefined pruning does not. Liu et al. (2019) argue 
that weights inherited from structured pruning have little impact on the performance of the 
pruned network. While the experiments on FP agree with the conclusion, that on NS does 
not. Wang et al. (2018) also suggests inherited weights are important to preserving network 
accuracy and robustness in adversarial settings, but they do not discuss the working mecha-
nism behind.
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6  Lottery tickets and inverse weights inheritance

Although adversarial one-shot pruning produce convincing results, it lacks stability in sce-
narios such as where the pruning ratio is high. In this section, we aim to explore improved 
methods to obtain sparse and robust neural networks beyond adversarial pruning and 
retraining, on both small and large network architectures. 

6.1  Lottery tickets in adversarial settings

We seek that in a randomly-initialized large network, if a subnetwork exists achieving com-
parable robustness as the large one, which is also known as the ‘winning ticket’ in Frankle 
and Carbin (2019) in a natural setting. More specifically, we perform Alg. 1 to find out the 
‘winning ticket’ in the adversarial setting. A discussion of hyperparameters can be found in 
the supplementary material.

The results on CIFAR-10 and CIFAR-100 are displayed in Table 3. On ResNet18 and 
VGG16 trained on CIFAR-10, no noticeable performance degradation occurs when the 
pruning ratio is as high as 80% . This is slightly different from pruning on natural mod-
els (Frankle and Carbin 2019), where accuracies do not drop until pruning ratio reaches 
around 88.2% and 92% respectively on Resnet18 and VGG16. We think the difference may 
be explained by the more complicated decision boundary of a robust model (Fawzi et al. 
2016), and hence its ‘winning ticket’ requires a higher capacity.

To ensure our conclusion holds against randomness, we perform repeated experiments 
in representative settings where the average and standard deviation of 5 trials are shown 
in Fig. 4. The former conclusion remains valid that both clean and adversarial accuracy 
almost do not decrease from baseline when p ≤ 80%.

To better understand lottery tickets in adversarial settings, we compare the weights dis-
tribution between one-shot pruned model and the winning ticket at the same pruning ratio. 
Fig.  5 illustrates the example of two models pruned at the same pruning ratio by GUP 
and Alg. 1 respectively on CIFAR-10, with adversarial accuracy 47.09% versus 47.36% 
on ResNet18, and 44.36% versus 45.15% on VGG16, correspondingly. As we observe, 
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whereas GUP models tend to have a flatter distribution which is consistent with Ye et al. 
(2019), the winning tickets have more near-zero valued weights, indicating a higher level 
of sparsity. To further demonstrate the relation between the L2 norm sparsity and adver-
sarial robustness, we also display the results for lottery tickets in Fig. 3 to compare with 
GUP. It can be observed that the adversarial lottery tickets produces slightly lower weight 
norms than one-shot GUP, while enjoying a higher distortion bound, which agrees with the 
theoretical resutls in Eqn. (2) and (3). Thus we conclude that it is able to achieve preferable 
adversarial robustness through the lottery tickets settings.

6.1.1  Comparison with previous results

Ye et al. (2019) argue against the existence of ‘winning ticket’ in adversarial settings. Nev-
ertheless, through experiments we show that ‘winning ticket’ exists in adversarial settings 
and can be obtained efficiently with a few rounds of pruning and less retraining. Our con-
clusion is different mostly because we search ‘winning ticket’ by iterative global unstruc-
tured pruning as in Frankle and Carbin (2019), while Ye et  al. (2019) use a layer-wise 
pruning method. As indicated in Frankle and Carbin (2019), layers with fewer parameters 
may become bottlenecks under a layer-wise pruning method, and thus winning tickets fail 
to emerge. We also compare our work with Li et al. (2020), and find the few-shot pruning 
in Li et al. (2020) does not outperform iterative pruning results in our setting.

We also plot the results in Table  1 and Table  3 by showing the relation between the 
number of remaining parameters of the pruned models against the adversarial testing accu-
racy in Fig. 1. By comparing with recent works including RobNet (Guo et al. 2020) and 
ATMC (Gui et al. 2019) utilizing the same training and testing metrics, which is PGD10 
and PGD100, respectively, we demonstrate that our approach is able to acquire smaller 
networks with robustness comparable to the original dense models through adversarial 
network pruning, extensively effective under different current model structures among 
ResNet, VGG, and DenseNet.

Fig. 1  The relation between parameter numbers and adversarial robustness in our approach and the state-
of-the-art methods on different architectures. The dotted lines represent the baselines of three base (large) 
models. Models residing at the upper left corner have higher adversarial accuracies and smaller sizes. All 
models on CIFAR-10 are adversarially trained by PGD with � = 8∕255 and t = 10 steps, and evaluated 
by PGD attack of � = 8∕255 and t = 100 steps. We also mark the results Guo et al. (2020) and Gui et al. 
(2019) by stars in the same settings. Our experiments show that adversarial pruning methods are effective 
in obtaining networks of smaller parameters with comparable or even better robustness than the baselines
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Table 2  Clean testing accuracy/
adversarial testing accuracy 
(in %) of scratch networks 
that shares the same structure 
with the corresponding pruned 
network, with the weights 
randomly initialized.

Accuracy higher than the base model is in bold

One-Shot Pruning w/ Randomly Initialized Weights on CIFAR-10 w/ 
Stop-E

Network p% LUP-rand GUP-rand FP-rand NS-rand

ResNet18 30 81.91/46.54 81.41/48.78 82.24/46.58 83.21/46.28
60 82.58/46.40 81.91/47.46 80.64/46.22 82.61/46.04
90 78.36/44.97 81.99/46.90 80.34/45.50 –

VGG16 30 79.67/42.37 79.56/45.26 80.27/44.38 78.68/43.52
60 78.26/43.79 80.23/45.22 78.52/44.21 78.77/43.74
90 72.32/41.38 77.78/43.97 74.24/42.39 77.37/43.52

Fig. 2  Weights distribution of the pruned network adversarially trained with inherited weights or randomly 
initialized weights. In general, networks with inherited weights from automatic pruning methods includ-
ing LUP, GUP, NS have an equivalent or higher sparsity than their counterparts with randomly initialized 
weights. FP has lower sparsity than FP-rand

Fig. 3  Effect on model norms 
by retraining at different pruning 
ratios, and the practical relation 
between model norms and adver-
sarial distortion bound
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Table 3  Clean testing accuracy/
adversarial testing accuracy 
(in %) of adversarially trained 
‘winning ticket.’ p% is the 
pruning ratio

‘60 ( 20 × 3 iter )’ means iteratively remove 20% of the weights in each 
for 3 iterations to achieve a final pruning ratio of 60% . Each iteration 
of pruning is preceded by 1 epoch of training, and the total training 
epoch is 240. Accuracy higher than the base model is in bold

Winning Tickets on CIFAR-10 and CIFAR-100 w/ Stop-E

Network p% CIFAR-10 CIFAR-100

ResNet18 0 (baseline) 82.84/49.40 50.50/21.13
30 ( 30 × 1 iter) 84.29/45.54 50.62/21.72
60 ( 20 × 3 iter) 84.03/47.99 52.68/21.54
80 ( 20 × 4 iter) 82.83/48.19 52.23/20.80
90 ( 30 × 3 iter) 81.41/47.36 49.43/21.27
95 ( 31.7 × 3 iter) 78.43/46.49 -

VGG16 0 (baseline) 78.57/44.68 44.44/18.86
30 ( 30 × 1 iter) 80.90/45.58 42.21/19.16
60 ( 20 × 3 iter) 80.05/45.56 42.65/19.12
80 ( 20 × 4 iter) 79.30/45.16 45.90/18.93
90 ( 30 × 3 iter) 78.87/45.15 45.76/18.89
95 ( 31.7 × 3 iter) 77.23/45.02 -

Fig. 4  Repeated results of clean 
testing accuracy/adversarial 
testing accuracy and deviation 
(in %) of adversarially trained 
‘winning ticket’ on CIFAR-10 
with Stop-E corresponding to 
p = 80, 90, 95% . The dotted lines 
represent baselines

Fig. 5  Weights distribution example of the pruned network obtained by one-shot GUP and adversarial lot-
tery at the same pruning ratio. The distribution indicates that the adversarial winning tickets have higher 
sparsity than corresponding GUP pruned models
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6.2  Inverse weights inheritance

According to our experimental results in one-shot adversarial pruning, it seems that net-
works with smaller capacities (higher L0-sparsity) can also have an equivalent or even 
higher accuracy and robustness than large networks. This appears to be contradictory to 
the conclusion in Madry et al. (2018) that classifying examples in a robust way requires the 
model to have a larger capacity, as the decision boundary is more complicated. We ask the 
question that, can a network be sparse and have larger capacity at the same time? As we 
analyze, it is indeed possible to have such networks with superior performance.

We introduce a new training strategy called inverse weights inheritance (IWI), which 
is inspired by Thm. 1 and adversarial network pruning results. By the strategy, a large net-
work acquires sparse weights distribution by inheriting weights from a small robust net-
work, which is pruned from the same large network in the first place and is adversarially 
trained. Alg. 2 gives an example of using the lottery ticket to obtain such a small network. 
For a fair comparison, we train the base networks with Stop-C and Stop-E (240 epochs) and 
report the one with higher performance. To train the large network with inherited weights, 
we first run Alg. 1 to obtain the ‘winning ticket’ and then train the ‘winning ticket’ (a small 
network) for 120 epochs. Then the weights of the trained ‘winning ticket’ are loaded back 
to the large network to train for another 45 epochs (Stop-E) or until convergence (Stop-C). 
In Table  4, the large network with inherited weights not only outperforms the ‘winning 
ticket’ but also exceeds the base network.

We perform repeated experiments and display the average results on CIFAR-10 with 
Stop-E as shown in Fig. 6. We also provide the baselines and winning tickets results for 
clearer comparison. Significance test shows that the accuracy increase brought by IWI 
has p-value p < 0.01 in T-test compared with winning tickets for both architectures, and 
p < 0.01 over VGG16 baselines. Thus we conclude our improvements are valid against 
randomness.

To find out the reason, we measure the weight distributions of each network and partial 
results are given in Fig.  7. We conclude from the figure that, with inherited weights as 
initialization, the distribution of the final weights for the large networks is sparser (closer 
to zero) than those with random initialization, which is in accord with Thm. 1. The results 
suggest that for networks with the same structure, IWI implicitly finds sparse weights dis-
tribution for the large networks, and the network can achieve an improved level of clean 
and adversarial accuracies. Moreover, it is evident that those networks are sparse and have 
large capacities at the same time.
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Beyond performance boost, IWI also accelerates the adversarial training process, mainly 
due to the lower expense of adversarially training a small network, and less training epochs 
required after the large network inheriting weights. The detail of training effort saved can 
be found in the supplementary material. We have also tried other methods, such as using an 

Table 4  Clean testing accuracy/adversarial testing accuracy (in %)/distortion lower bound of inverse 
weights inherited networks

Performance of base networks are marked under the model name. The performance of the inherited Win-
ning Tickets is shown in Table 3. Accuracy and distortion bounds higher than the base model are in bold

Network p% Stop-C Stop-E

(a) Inverse Weights Inheritance on CIFAR-10
 ResNet18 82.84/49.40/2.519 80 84.05/50.30/2.728 83.14/49.59/2.303

90 83.56/49.89/2.819 81.68/49.03/2.662
95 84.60/49.34/2.659 83.19/48.93/1.734

 VGG16 78.57/44.68/3.471 80 81.21/47.38/2.338 81.15/47.46/1.600
90 81.36/47.54/2.597 80.74/47.53/2.622
95 81.29/46.98/3.341 80.68/47.59/3.219

(b) Inverse Weights Inheritance on CIFAR-100
 ResNet18 50.50/21.13/3.047 30 53.49/22.07/3.872 51.57/20.68/1.191

60 52.98/21.65/3.197 50.74/21.28/3.472
80 50.06/21.03/1.900 50.78/21.15/1.881
90 52.91/21.53/2.812 50.16/21.39/2.056

 VGG16 44.44/18.86/2.338 30 47.18/18.91/1.491 44.79/19.10/1.534
60 45.97/19.38/1.147 45.16/18.68/1.191
80 46.51/19.22/2.631 43.79/18.90/2.759
90 47.64/19.26/3.169 43.30/18.94/2.000

Fig. 6  Multiple-run results of 
clean testing accuracy/adversarial 
testing accuracy and deviation 
(in %) of IWI on CIFAR-10 
with Stop-E corresponding to 
p = 80, 90, 95% . The dash lines 
represent baselines and the dot-
ted lines are lottery ticket results

Fig. 7  Weights distribution of large networks trained by inverse weights inheritance (IWI) and adversarially 
trained with random initialization (Baseline). Both are trained for 240 epochs (Stop-E). Net XX% denotes a 
large network trained by inheriting the weights of a ‘winning ticket’ with XX% weights pruned
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additional regularization term to impose sparsity in large networks, but it failed. Interested 
readers may refer to the supplementary material for more details.

7  Conclusions, limitations and future work

In this work, we conducted comprehensive studies on adversarial network pruning. The 
contributions are three-fold: First, we give a novel theoretical explanation on the connec-
tion between adversarial robustness and network sparsity, which is supported by substantial 
empirical evidence. Second, we demonstrate the efficacy of training network with robust-
ness via our proposed algorithm including one-shot pruning and searching the ‘winning 
ticket.’ Third, we design a new adversarial training strategy to achieve sparsity and large 
capacity at the same time for robustness.

The limitations of the work lie in the following aspects. We specifically look into the 
DNN models with ReLU activation functions when developing the theory of sparsity and 
robustness. The theory may be applied on general DNN models as experimental evidence 
supports it in Sect. 5. Meanwhile, due to a lack of specific sparsity methods directly opti-
mizing model norm by Thm.  1, we only apply model pruning and fine-tuning as such 
approaches achieve sparsity intuitively.

Our results may trigger some interesting future studies. First, experimental observation 
shows that applying different sparsity methods on the same network structure leads to dif-
ferent weights sparsity, consequently affecting model robustness. Our findings and expla-
nations may support research on how to design approaches to better manipulate weights 
distribution, and therefore form principled adversarial defences. Also, the relation of 
robustness, generalization, and pruning is a popular topic in many studies (Xu and Mannor 
2012; Morcos et al. 2019; Arora et al. 2018). The discussion on whether and how our work 
on sparsity and robustness will improve model generalization capability would be mean-
ingful to that line of research. In addition, as adversarial attacks emerge on deep learning 
tasks such as NLP (Miyato et  al. 2017; Alzantot et  al. 2018), it offers the possibility to 
extend our theory and experiments to other types of data and models for further exploring 
the relation between sparsity and robustness.

Appendix

Proofs

Proof of Thm. 1

Let us denote layer-wise activation output as a0 = x and aj = �

(
WT

j
aj−1

)
 for 0 ≤ j ≤ d − 1 . 

We also define Dj as

which is a diagonal matrix whose entries will take value one when the activation is 
nonzero within j-th layer. Note that if for any x and any j ∈ {1, ..., d − 2} , Dj(x) = 0nj×nj , 

(4)Dj(x) ∶= diag
(
1Wj[∶,1]

Taj−1>0
, ..., 1Wj[∶,nj]

Taj−1>0

)
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Dd−1(x) = 0nd−1×nd−1 must hold. In this setting, we have Lemma  1 proved by (Guo et  al. 
2018).

Lemma 1 (A local Lipschitz constant for ReLU networks (Guo et  al. 2018)) Letting 
1

p
+

1

q
= 1 , for any x ∈ ℝ

n , k ∈ {1, ..., c} and q ∈ {1, 2} , the local Lipschitz constant of 
functiongŷ(x) − gk(x) satisfies

where all the matrix norms are induced norms.

In our settings, the network is pruned to avoid layer removal and thereby for any 
j ∈ [0, d − 1] , Wj cannot be all-zero matrices. Then we assert that, for any j ∈ [0, d − 1] , 
there must be at least one aj which is not an all-zero matrix. We prove by contradiction. 
Assume for some layer j, aj is an all-zero matrix. Then Dj(x) = 0nd−1×nd−1 which yields 
Dd−1(x) = 0nd−1×nd−1 and the prediction score gk(x) will be all-zero for any k since

For a well-trained network that make valid predictions, it is impossible to have all-zero 
prediction scores. Hence the assumption is not true for the network in our settings and 
aj,∀j ∈ [0, d − 1] cannot be an all-zero matrix. The conclusion implies that, for any 
j ∈ [0, d − 1] , there must be at least one entry in Dj(x) taking the value 1. By the definition 
of matrix induced norms, we have that for any x and particular values of p,

where ‖‖‖Dj(x)
‖‖‖2 is the spectral norm, the greatest singular value of Dj(x) . Then for p = 2 

and ∞ , the right side of Eqn. (5) is independent of input x and we have the relation between 
the Lipschitz constant and weight sparsity described by Thm. 1.

Experiments of One‑Shot Pruning

Pruned Networks Without Retraining

See Table 5
In this section, we report the testing accuracy on clean and adversarial samples of net-

works after they are pruned and without retraining. The corresponding results to Table 1 
on CIFAR-10 and Tiny-ImageNet of PGD-10 attack are shown in Table 5. Compared to 
performance on the base network (marked under the model name), the pruned network 
only moderately suffers from accuracy loss when the pruning ratio is not very high, and 
the pruning methods are automatic, i.e., LUP, GUP, and NS. Note that those methods 

(5)Lk
q,x

≤
‖‖‖wŷ − wk

‖‖‖q sup
x�∈Bp(x,R)

d−1∏

j=1

(‖‖‖Dj

(
x�
)‖‖‖p

‖‖‖Wj
‖‖‖p
)

(6)gk
(
xi
)
= wT

k
�
(
WT

d−1
�
(
...�

(
WT

1
xi
)))

.

(7)
‖‖‖Dj(x)

‖‖‖2 ∶=�max(Dj) = 1

(8)‖‖‖Dj(x)
‖‖‖∞ ∶= max

1≤i≤nj

nj∑

m=1

|Dj[i,m]| = 1
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automatically extract a subnetwork without altering the weights, resulting in a higher L0 
sparsity compared to base models. Considering pruning reduces model capacity, the mild 
performance loss is reasonable.

Complete Results of One‑Shot Pruning

See Table 6
We extend Table  1 to additionally include results on three different datasets, i.e., 

CIFAR-10, CIFAR-100, and Tiny-ImageNet, and their corresponding models. We evaluate 
the adversarial robustness by PGD of 10, 50, and 100 iteration steps. The complete testing 
accuracies are shown in Table 6. We conclude from the results that most of our observa-
tions in the paper hold true for different evaluation metrics, in particular under the strong 
attack of PGD-100.

Trade‑off between Accuracy and Robustness

As it has been pointed out that a trade-off exists between accuracy and robustness (Zhang 
et al. 2019), we report results when the sum of the clean testing accuracy plus the adver-
sarial testing accuracy is the highest. This is because by the conclusion of Zhang et  al. 
(2019), the sum of risks on both natural examples and adversarial examples is bounded. 
Throughout our experiments, we have observed this trade-off. For a better view, we depict 
all the adversarial accuracy-clean accuracy result pairs near the end of training where the 
models nearly or already converge. We observe three typical accuracy distributions shown 
in Fig. 8. Note that all results in the figure are consistent with that of Table 2 in the paper.

Fig. 8a displays the cases where the pruning method fails to retain the performance of 
the base network, where we observe both clean and adversarial accuracy decline as the 

Table 5  Clean testing accuracy/adversarial testing accuracy (in %) of pruned networks without retraining

p% denotes the pruning ratio. The accuracy of base networks by adversarial training are besides the model 
name. Accuracy higher than the base model is in bold

Network p% LUP GUP FP NS

(a) One-Shot Pruning on CIFAR-10 w/o Retraining
 ResNet18 (82.84/50.87) 30 79.58/50.21 82.83/50.83 21.05/15.30 80.39/39.38

60 59.10/33.17 82.89/50.63 12.28/8.47 10.00/10.00
90 10.00/10.00 54.18/28.62 10.00/10.00 –

 VGG16 (78.57/48.04) 30 77.59/47.75 78.58/48.03 10.00/10.00 78.57/48.33
60 66.59/38.63 78.69/48.50 10.00/10.00 76.95/47.92
90 10.00/10.00 58.41/36.26 10.00/10.00 10.00/10.00

(b) One-Shot Pruning on Tiny-ImageNet w/o Retraining
 ResNet18 (41.94/16.04) 30 33.44/15.36 41.32/17.57 0.73/0.46 0.61/0.31

60 6.59/2.56 38.67/16.13 0.61/0.60 0.50/0.50
90 0.50/0.50 0.97/0.56 0.50/0.50 –

 VGG16 (49.48/19.90) 30 43.71/18.51 47.95/20.12 – 46.43/20.57
60 6.35/2.21 42.39/16.78 – 40.82/17.43
90 0.58/0.53 1.11/0.51 – –



703Machine Learning (2022) 111:685–711 

1 3

Ta
bl

e 
6 

 C
le

an
/P

G
D

-1
0/

PG
D

-5
0/

PG
D

-1
00

 te
st

in
g 

ac
cu

ra
cy

 (i
n 

%
) o

f p
ru

ne
d 

ne
tw

or
ks

 w
ith

 a
dv

er
sa

ria
l r

et
ra

in
in

g

N
et

w
or

k
p
%

LU
P

G
U

P
FP

N
S

(a
)  

O
ne

-S
ho

t P
ru

ni
ng

 o
n 

C
IF

A
R-

10
 w

/ S
to

p-
E

 R
es

N
et

18
 8

2.
84

/5
0.

87
/4

9.
50

/4
9.

40
30

82
.1

3/
51

.0
9/

49
.1

6/
49

.9
0

84
.2

0/
49

.6
4/

46
.7

7/
46

.5
6

83
.6

2/
50

.0
0/

46
.6

5/
46

.6
1

84
.1

8/
49

.4
4/

50
.0

8/
49

.9
2

60
82

.2
1/

50
.6

4/
48

.4
7/

48
.4

4
84

.7
3/

49
.2

8/
49

.7
7/

49
.6

4
82

.6
1/

49
.3

7/
48

.1
9/

48
.0

8
83

.5
7/

49
.3

2/
49

.5
1/

49
.4

6
70

83
.4

1/
49

.5
2/

47
.6

8/
47

.5
4

84
.1

6/
49

.9
4/

47
.0

8/
47

.0
2

82
.1

2/
49

.1
1/

47
.9

2/
47

.8
2

82
.3

1/
47

.7
3/

45
.5

3/
45

.6
1

80
82

.4
8/

48
.7

6/
46

.9
1/

46
.7

8
83

.9
1/

49
.8

7/
49

.8
0/

49
.6

2
81

.2
2/

48
.1

0/
47

.7
1/

47
.6

7
73

.2
9/

43
.2

7/
42

.7
4/

42
.6

4
90

80
.0

9/
47

.0
3/

46
.7

8/
46

.7
6

83
.8

9/
49

.7
4/

47
.2

2/
47

.0
9

78
.8

7/
46

.6
5/

46
.3

6/
46

.2
4

-
 V

G
G

16
 7

8.
57

/4
8.

40
/4

4.
77

/4
4.

68
30

79
.8

1/
46

.5
4/

43
.3

0/
43

.1
7

80
.4

3/
45

.5
3/

44
.3

0/
44

.2
4

77
.0

5/
45

.1
7/

44
.0

0/
43

.9
1

80
.1

0/
46

.3
1/

43
.8

4/
43

.8
1

60
78

.7
8/

45
.6

6/
43

.5
0/

43
.3

0
80

.2
6/

46
.3

3/
43

.4
8/

43
.5

1
77

.1
3/

45
.1

8/
44

.3
3/

44
.2

1
79

.5
6/

46
.2

4/
44

.3
4/

44
.2

9
70

78
.2

0/
45

.3
7/

43
.0

3/
42

.9
3

79
.8

6/
46

.4
3/

43
.9

9/
43

.9
4

75
.2

2/
45

.0
6/

43
.8

0/
43

.8
7

79
.5

6/
46

.7
4/

44
.8

5/
44

.7
0

80
77

.0
3/

44
.5

5/
43

.2
6/

43
.2

5
79

.7
2/

46
.9

6/
43

.8
0/

43
.7

5
73

.5
3/

43
.7

4/
43

.0
2/

42
.8

9
79

.3
8/

46
.0

6/
43

.3
7/

43
.3

6
90

72
.1

0/
42

.5
3/

42
.0

8/
41

.9
8

79
.8

3/
46

.4
3/

44
.4

4/
44

.3
6

69
.3

8/
42

.5
0/

41
.2

1/
41

.2
0

79
.5

4/
45

.6
6/

43
.8

0/
43

.7
6

 D
en

se
N

et
-B

C
 7

6.
01

/4
5.

23
/4

4.
26

/4
4.

26
30

74
.4

2/
44

.7
2/

43
.7

5/
43

.7
6

74
.6

8/
44

.3
7/

43
.5

7/
43

.4
0

-
73

.8
6/

43
.9

5/
43

.0
4/

43
.0

8
60

73
.1

6/
43

.7
7/

42
.8

4/
42

.7
0

73
.2

4/
44

.0
0/

42
.9

7/
42

.8
8

-
66

.3
3/

38
.1

5/
37

.5
7/

37
.5

4
90

63
.1

5/
37

.1
0/

36
.6

8/
36

.6
8

65
.1

9/
37

.5
5/

36
.8

5/
36

.8
5

-
-

(b
)  

O
ne

-S
ho

t P
ru

ni
ng

 o
n 

C
IF

A
R-

10
0 

w
/ S

to
p-

E
 R

es
N

et
18

 5
0.

50
/2

1.
71

/2
1.

10
/2

1.
10

30
52

.3
1/

22
.1

0/
21

.5
0/

21
.4

6
52

.5
5/

22
.2

5/
21

.7
0/

21
.7

5
52

.3
4/

22
.2

2/
21

.5
4/

21
.5

5
52

.2
3/

21
.9

2/
21

.4
0/

21
.4

1
60

51
.9

8/
22

.1
6/

21
.4

1/
21

.3
1

50
.1

8/
22

.0
5/

21
.5

9/
21

.5
3

51
.2

3/
21

.7
0/

21
.0

6/
21

.0
4

46
.0

2/
19

.5
6/

18
.7

3/
18

.7
5

70
51

.6
9/

21
.7

8/
21

.2
9/

21
.3

2
49

.8
7/

21
.6

9/
20

.9
6/

20
.9

7
49

.4
9/

21
.3

0/
20

.6
1/

20
.5

6
-

80
51

.2
5/

21
.3

6/
20

.9
4/

20
.8

2
52

.5
4/

21
.6

0/
20

.8
7/

20
.6

7
48

.0
5/

21
.0

8/
20

.1
9/

20
.2

5
-

90
47

.6
5/

20
.5

4/
19

.8
6/

19
.6

8
51

.7
6/

21
.9

2/
21

.3
4/

21
.3

1
44

.3
9/

20
.4

1/
19

.9
4/

19
.8

0
-

 V
G

G
16

 4
4.

44
/1

9.
29

/1
8.

81
/1

8.
84

30
46

.4
6/

19
.5

1/
19

.1
1/

19
.0

1
45

.9
1/

19
.7

7/
19

.2
1/

19
.2

1
44

.5
8/

18
.8

4/
18

.3
9/

18
.3

5
46

.4
9/

19
.3

0/
18

.8
5/

18
.7

9
60

46
.3

8/
19

.6
4/

19
.1

6/
19

.1
0

46
.7

2/
19

.5
8/

19
.1

5/
19

.1
5

42
.7

1/
18

.0
5/

17
.2

9/
17

.3
1

45
.5

6/
19

.1
2/

18
.5

7/
18

.6
0

70
46

.1
6/

19
.4

6/
18

.8
8/

18
.8

6
47

.0
4/

19
.7

8/
19

.0
8/

19
.0

9
40

.9
4/

18
.1

2/
17

.5
3/

17
.5

1
44

.3
3/

18
.7

9/
18

.3
9/

18
.3

6
80

44
.7

4/
19

.5
3/

18
.8

1/
18

.7
2

46
.5

4/
19

.5
3/

18
.9

2/
18

.8
6

38
.6

1/
17

.9
4/

17
.3

8/
17

.4
5

39
.5

9/
17

.8
0/

17
.2

9/
17

.1
7

90
42

.4
2/

18
.6

1/
18

.3
0/

18
.2

1
45

.7
3/

18
.6

1/
18

.8
0/

18
.8

7
33

.9
6/

16
.6

8/
16

.3
8/

16
.3

4
26

.5
5/

14
.5

9/
14

.3
4/

14
.3

2



704 Machine Learning (2022) 111:685–711

1 3

A
cc

ur
ac

y 
hi

gh
er

 th
an

 th
e 

ba
se

 m
od

el
 is

 in
 b

ol
d

Ta
bl

e 
6 

 (c
on

tin
ue

d)

N
et

w
or

k
p
%

LU
P

G
U

P
FP

N
S

(c
)  

O
ne

-S
ho

t P
ru

ni
ng

 o
n 

Ti
ny

-I
m

ag
eN

et
 w

/ S
to

p-
C

 R
es

N
et

18
 4

1.
94

/1
6.

04
/1

7.
10

/1
4.

43
30

42
.7

2/
15

.5
6/

14
.9

6/
14

.8
7

43
.1

8/
16

.7
0/

15
.8

3/
15

.8
2

42
.6

8/
15

.7
4/

14
.9

4/
14

.9
1

41
.8

9/
15

.8
4/

15
.2

8/
15

.2
3

60
42

.2
8/

15
.9

8/
15

.5
0/

15
.5

1
42

.8
0/

16
.8

4/
16

.1
0/

16
.1

2
40

.8
8/

16
.3

4/
15

.9
1/

15
.8

7
37

.9
2/

14
.3

9/
14

.1
0/

14
.1

1
90

40
.3

2/
16

.4
3/

16
.1

4/
16

.1
1

42
.2

1/
18

.1
1/

17
.3

2/
17

.2
6

36
.7

9/
15

.1
3/

14
.3

9/
14

.4
3

-
 D

en
se

N
et

12
1 

49
.4

8/
19

.9
0/

19
.7

0/
19

.6
5

30
48

.8
6/

20
.8

3/
20

.1
1/

20
.0

3
48

.1
9/

21
.3

0/
20

.5
1/

20
.5

2
-

46
.4

3/
20

.5
7/

19
.7

6/
19

.7
1

60
48

.6
3/

20
.9

0/
20

.0
1/

19
.9

8
48

.9
6/

20
.7

8/
19

.9
5/

19
.9

2
-

40
.8

2/
17

.4
3/

16
.4

8/
16

.5
1

90
45

.7
2/

20
.6

1/
18

.8
4/

18
.7

5
46

.9
9/

18
.9

9/
18

.6
5/

18
.6

5
-

-



705Machine Learning (2022) 111:685–711 

1 3

pruning ratio increases. FP in general cannot preserve model performance, whereas NS 
cannot retain performance at high pruning ratios. DenseNet-BC is too small with limited 
capacity, and thus its performance significantly decreases after pruning.

Fig.  8b shows successful pruning cases where both accuracies barely decrease as the 
pruning ratio increases. Fig.  8c shows an interesting phenomenon that, as the pruning 
ratio gets higher, the clean accuracy decreases while the adversarial accuracy increases, 

Fig. 8  Trade-off between clean and adversarial accuracy of pruned robust networks at the final phase of 
adversarial retraining
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but the sum accuracy does not decrease at all. The phenomenon is particularly notable on 
Tiny-ImageNet when trained on ResNet18, as shown in the figure. We think it is because 
ResNet18 has limited capacity to express a robust decision boundary on a complicated 
dataset like Tiny-ImageNet. Therefore with adversarial training, the adversarial accuracy 
increases at the sacrifice of clean accuracy.

Hence we argue that when discussing model robustness, it is not fair to only state adver-
sarial accuracies. Clean and adversarial accuracies are two sides of a coin, the combination 
of which together describe the model performance.

Experiments of L
2
‑regularization

See Table 7 and Fig. 9
We also tried other means to impose sparser weights distribution in a large network in 

the hope of enhancing robustness, such as imposing L2-regularization during adversarial 
training. The method is also known as weight decay. In the default setting of the paper, we 
use an SGD optimizer with weight decay = 5 × 10−4 . In the supplementary experiments, 
we conduct adversarial training with weigh decay = � × 5 × 10−4 respectively.

The results and weights distribution under different weight decays are shown in Table 7 
and Fig. 9. From Fig. 9, we can tell weight decay indeed results in sparser weights distri-
butions. Note that different from adversarial pruning methods in the paper, weight decay 
does not actually yield smaller networks as most parameters are not zeros. Although the 
weights distributions are close to zero, the models trained by L2-regularization do not have 
improved robustness, sharing a similar conclusion with (Goodfellow et al. 2015). Hence L2
-regularization is not a successful pruning method for robust networks.

Table 7  Clean testing accuracy/
PGD-10 adversarial testing 
accuracy (in %) of adversarially 
trained networks with weight 
decay

The higher the weight decay, the lower the robustness. Highest accu-
racy is in bold

Adversarially Trained w/ Weight Decay on CIFAR-10

Weight Decay � 1 2 3 4 5

ResNet18 clean acc 82.84 80.94 82.91 82.03 80.49
adv acc 50.87 48.84 49.10 49.24 48.45

VGG16 clean acc 78.57 79.74 78.77 77.31 75.80
adv acc 48.04 46.16 45.94 45.73 44.66

Fig. 9  Weights distribution of 
adversarially trained networks 
with different weight decays



707Machine Learning (2022) 111:685–711 

1 3

Experiments of Adversarial Lottery Ticket

Training Hyperparameters Search

See Fig. 10

To decide the hyperparameters in validating the lottery ticket hypothesis on robust net-
works, we employ grid search and investigate the effect of pruning iterations and re-train-
ing epochs at each iteration on the performance of the ‘winning ticket’ found after pruning. 
Fig. 10 shows a typical case of a network pruned for a variety of numbers of iterations and 
re-training for different numbers of epochs.

From the middle of Fig. 10, we can tell that one-shot pruning leads to lower robustness, 
which is not recognized in (Li et al. 2020). But a large iteration number ( > 3 ) along with 
large re-training epochs ( > 10 ) would also hurt the model’s performance. We found that 1 
epoch of re-training per iteration for 3 or 4 iterations would lead to a small network with 
better performance. Hence we choose these hyperparameters to search for ‘winning tickets’ 
in our experiments. We actually use less re-training epochs than searching the ‘winning 
tickets’ in a natural setting (Frankle and Carbin 2019). Since adversarial training is costly, 
it is beneficial to prune the network at an early stage. 

Experiments of Inverse Weight Inheritance

Training Acceleration

See Table 8

Fig. 10  Influence of pruning iterations and re-training epochs on ResNet18. Left to right figures show the 
accuracies on the clean testing set, adversarial testing set and both, after adversarially training ‘winning 
ticket’ for a total of 120 epochs (with iterative pruning process included)
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Beyond performance enhancement, inverse weights inheritance also accelerates the 
adversarial training process, mainly due to the lower expense of adversarially training a 
small network and less training epochs required after the large network obtaining inher-
ited weights. Crafting adversarial examples and re-training the model are costly on large 
networks, for both the forward and backward propagation are quite expensive. If such a 
process can be substituted by small networks, it will reduce a great deal of computation 
overhead.

To verify that inverse weights inheritance indeed accelerates adversarial training, we 
calculate the computation budget of the overall training process by floating-point opera-
tions (FLOPs). Both the forward and backward propagation are considered. We compute 
the FLOPs for adversarially training the base network from scratch, and the FLOPs using 
inverse weights inheritance for training, and report the relative ratios of the latter to the 
former. From Table 8, we can tell our method saves computation cost while improving the 
overall performance, and the higher the pruning ratio, the more computation cost saved.

Weights Distribution

See Fig. 11
For weights distribution of networks trained by IWI, we provide Fig. 11 as a supplement 

for Fig.  4 of the paper of different pruning ratio. The conclusion is consistent with that 
in the paper that IWI finds sparse weights distribution for large networks with improved 
performance.

Table 8  FLOPs ratios of inverse 
weights inheritance (IWI) to 
adversarially training from 
scratch

A lower ratio indicates the model is trained with less computation 
cost. p% denotes the parameter pruning ratio of the ‘winning ticket’ 
in IWI

Inverse Weights Inheritance: FLOPs w/ Stop-E

Network p% CIFAR-10 p% CIFAR-100

ResNet18 80 77.48% 60 74.19%
90 67.38% 80 57.54%
95 59.10% 90 49.01%

VGG16 80 73.50% 60 87.32%
90 66.84% 80 66.80%
95 59.73% 90 54.40%

Fig. 11  Weights distribution of large networks trained by inverse weights inheritance (IWI) and adversari-
ally trained with random initialization (Baseline). Net XX% denotes a large network trained by inheriting 
the weights of a ‘winning ticket’ with XX% weights pruned
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