
Machine Learning (2020) 109:1179–1204
https://doi.org/10.1007/s10994-019-05829-8

Feature ranking for multi-target regression

Matej Petković1,2 · Dragi Kocev1,2 · Sašo Džeroski1,2

Received: 1 July 2018 / Revised: 12 June 2019 / Accepted: 6 July 2019 / Published online: 27 August 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract
In this work, we address the task of feature ranking for multi-target regression (MTR). The
task of MTR concerns problems with multiple continuous dependent/target variables, where
the goal is to learn a model for predicting all of them simultaneously. This task is receiving
an increasing attention from the research community, but performing feature ranking in the
context of MTR has not been studied thus far. Here, we study two groups of feature ranking
scores for MTR: scores (Symbolic, Genie3 and Random Forest score) based on ensembles
(bagging, random forests, extra trees) of predictive clustering trees, and a score derived as an
extension of the RReliefF method. We also propose a generic data-transformation approach
to MTR feature ranking and thus have two versions of each score. For both groups of feature
ranking scores, we analyze their theoretical computational complexity. For the extension of
the RReliefF method, we additionally derive some theoretical properties of the scores. Next,
we extensively evaluate the scores on 24 benchmark MTR datasets, in terms of the quality
of the ranking and the computational complexity of producing it. The results identify the
parameters that influence the quality of the rankings, reveal that both groups of methods
produce relevant feature rankings, and show that the Symbolic and Genie3 score, coupled
with random forest ensembles, yield the best rankings.

Keywords Feature ranking · Multi target regression · Tree based methods · Relief

1 Introduction

Single target regression (STR) is the predictive modeling task of learning a model able to
predict the values of a single numeric target variable. STR can be generalized to multi-target

Editors: Takuya Kida, Takeaki Uno, Tetsuji Kuboyama, Akihiro Yamamoto.

B Matej Petković
matej.petkovic@ijs.si

Dragi Kocev
dragi.kocev@ijs.si

Sašo Džeroski
saso.dzeroski@ijs.si

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05829-8&domain=pdf
http://orcid.org/0000-0002-0495-9046

1180 Machine Learning (2020) 109:1179–1204

regression (MTR), where the goal is to learn a model that predicts several (at least two)
target variables simultaneously. While STR is a well established research topic, MTR is
only recently attracting interest in the research community (Kocev et al. 2013; Spyromitros-
Xioufis et al. 2016; Borchani et al. 2015). MTR is a structured output prediction task with
applications in a wide range of real life problems.

Prominent examples forMTR come from ecology and include predicting the abundance of
different species sharing the same habitat (Džeroski et al. 2000), predicting forest properties
(Kocev et al. 2009), chemometrics to infer concentrations of several analytes frommultivari-
ate calibration using multivariate spectral data (Burnham et al. 1999), real-time prediction of
multiple gas tank levels of the Linz Donawitz converter gas system (Han et al. 2012), simul-
taneous estimation of different biophysical parameters from remote sensing images (Tuia
et al. 2011), channel estimation through the prediction of several received signals (Sanchez-
Fernandez et al. 2004) etc. Many other applications can be found in Sect. 4.2, where the data
used in our experiments are described.

A possible way to approach a MTR problem is problem transformation, which transforms
one MTR problem into several STR problems and builds one predictive model for each
target separately. Another way to approach the problem is by algorithm adaptation, i.e.,
to adapt STR methods to handle several targets simultaneously. For example, regression
trees can be generalized so that the heuristic function used to select splits considers the
multiple targets and the leaves make predictions for all targets. By building a single model,
we benefit regarding time-complexity, and also exploit the potential relations between the
multiple targets: this results inmore interpretable and compactmodels, as demonstratedwhen
predicting communities of different species (Kocev and Džeroski 2013). For an overview of
MTR methods, we refer the reader to Borchani et al. (2015).

The algorithm adaptation approaches, e.g., predictive clustering trees (PCTs) (Blockeel
1998), typically use search heuristics for MTR which aggregate those for different STR
problems. As described later in Sect. 2.1, the most commonly used aggregation is the sim-
ple average. However, if we happen to have some background knowledge about the MTR
problem, PCTs allow for incorporating this knowledge into the tree induction process via
different weights for different problems.

Another important task in machine learning - which is the main topic of this work - is
feature ranking, which is typically seen as a data preprocessing step. By using some scoring
function, the scores importance(xi) of descriptive attributes (features) xi are estimated and
an ordering (ranking) of the features is made, based on their estimated importances. There
are two main reasons for doing this. First, we may want to reduce the dimensionality of the
input space, so that only the features that contain the most information about the target(s)
are kept in the dataset. By doing this, we decrease the amount of memory/time needed to
build a predictive model, while the performance of the model is not degraded. Particularly,
when the dimensionality of the input data is extremely high, the performance of the model
can also increase with the dimensionality reduction, since most of the original features are
expected to be noisy. Second, dimensionality reduction typically results in models that are
easier to understand, which is useful when a machine learning expert works in collaboration
with a domain expert. Predictive models, such as decision trees, are easier to interpret when
a small number of relevant features are used to learn them.

There is a plethora of feature ranking methods for the machine learning tasks of single
target regression and classification (Stańczyk and Jain 2015). However, in the case of MTR,
the task of feature ranking has not been studied to a great extent. To the best of our knowledge,
our earlier work (Petković et al. 2017) is among the first in that direction.

123

Machine Learning (2020) 109:1179–1204 1181

In the field of statistics, few feature ranking methods can be found. In contrast to the
proposed feature ranking methods that can handle both numeric and nominal features, the
main drawback of these methods is that they allow only for numeric features, since they
typically assume a (generalized) linear model that describes the dependence of the targets
y on the features x. One such method is forward selection (Brobbey 2015). It starts with a
constant mapping y = c ∈ R, and repeatedly adds the most significant feature that improves
the model. The sooner a feature is included in the model, the greater its importance is.

In this work, we propose two groups of feature ranking scores. The first group is based on
ensembles of PCTs, which are a generalization of decision trees able to handle various types
of structured output prediction tasks, including MTR. The proposed scores exploit different
properties of the ensemble learning mechanism to estimate feature importances. The second
group contains the score obtained by generalizing RReliefF (Robnik-šikonja and Kononenko
2003) towards the task of MTR. The key observation on which this score is based is that the
distance function on the target space used in RReliefF can be generalized to more complex
spaces than R. We refer to these scores as MTR scores.

Another approach to feature ranking for MTR is to perform data transformation in the
sameway as in binary relevance for multi-label classification (Tsoumakas andKatakis 2007),
where a separate classifier is learned for each label.We employ the same strategy:we calculate
separate importance scores for each target variable, and then aggregate the feature importance
scores into a single score. We thus define an analogue for every MTR score and refer to these
scores as STR scores. The STR scores, e.g., those based on RReliefF, have already been
shown to have state-of-the-art performance in the case of STR problems. Hence, they can
serve as an additional baseline in the evaluation.

The ensemble-based feature ranking methods belong to the class of embedded methods,
where the feature importance estimation is embedded in the decision model. In contrast, the
RReliefF-based feature ranking methods belong to the group of filter methods (Guyon and
Elisseeff 2003). Themain difference between the two groups is that filtermethods do not need
to construct any decision/predictive model in the process of feature importance estimation.
A third group of related methods are wrapper methods, which typically solve the problem of
feature selection directly, i.e., try to find the most useful set of features (for some predictive
model) without constructing a feature ranking.

An initial investigation of the proposed feature rankingmethods forMTRbased on ensem-
ble methods has been presented by Petković et al. (2017). We extend that work along several
major dimensions:

1. We propose an extension of RReliefF for MTR and a STR version of it, giving

(a) Theoretical and empirical computational complexity analysis;
(b) Discussion of the theoretical properties of the scores;
(c) Parametrization of the methods and empirical performance evaluation;

2. We present a theoretical and an empirical computational complexity analysis for the
MTR rankings derived by the ensemble-based scores;

3. We analyze the performance of STR rankings based on ensemble scores, giving

(a) Theoretical and empirical computational complexity analysis;
(b) Empirical performance evaluation;
(c) Comparison of the MTR and STR rankings based on ensemble scores in terms of

time complexity and performance;

123

1182 Machine Learning (2020) 109:1179–1204

Table 1 Notation in the paper

Symbol Meaning

xi , y j i-th feature and j-th target

D, T Numbers of features and targets

Xi ,Y j The domains of the i-th feature and the j-th target

X ⊆ X1 × · · · × XD Descriptive domain

Y ⊆ Y1 × · · · × YT Target domain

x ∈ X , y ∈ Y Descriptive and target part of an example

D ⊆ X × Y A dataset

DTRAIN,DTEST ⊆ D Training and testing part of dataset

M = |DTRAIN| Number of examples in the training set

4. We give a comparison of ensemble-based and Relief-based scores (STR and MTR rank-
ings) in terms of time complexity and performance.

The notation used throughout the paper is given in Table 1. The rest of the paper is
organized as follows. In Sect. 2.1, we define the ensemble-based scoring functions. Next, in
Sect. 2.2, we introduceMTR-Relief and present some novel theoretical results that apply also
to the standard RReliefF. We then describe the STR approaches. Furthermore, we perform
computational complexity analysis of themethods inSect. 3.Next, in Sect. 4, the experimental
design for our extensive evaluation of the proposed methods on benchmark MTR datasets is
presented and the obtained results are discussed in Sect. 5. Finally, we conclude in Sect. 6,
where we also provide some directions for further work.

2 Methods

In this section,wedescribe the proposedmethods and the necessary background.We startwith
the ensemble-based methods (Sect. 2.1), continue with MTR-Relief (Sect. 2.2), and finish
with the generic STR approach (Sect. 2.3). The PCT framework, as well as MTR-Relief
is implemented in the CLUS system (available at http://source.ijs.si/ktclus/clus-public/)
(Table 2).

2.1 Ensemble basedmethods

2.1.1 Predictive clustering trees and ensembles thereof

The PCT framework views a decision tree as a hierarchy of clusters: the root of a PCT corre-
sponds to one cluster containing all data, which is recursively partitioned into smaller clusters
while moving down the tree. The leaves represent the clusters at the lowest level of the hierar-
chy and each leaf is labeledwith its cluster’s prototype (prediction). PCTs generalize decision
trees and can be used for a variety of learning tasks, including clustering and different types
of structured output prediction tasks, e.g., multi-target regression, multi-label classification,
hierarchical multi-label classification, time series prediction etc. (Blockeel 1998; Kocev et al.
2013). The generalization is based on appropriately adapting the heuristic for inducing PCTs
and the prototype function to the given structured output prediction task.

123

http://source.ijs.si/ktclus/clus-public/

Machine Learning (2020) 109:1179–1204 1183

Table 2 The proposed groups of
multi-target regression feature
ranking scores

Symbolic score, computed from random forests, bagging and extra
trees ensemble:

Uses only the depth(s) of nodes at which a feature appears in the
trees in the ensemble

Genie3 score, computed from random forests, bagging and extra
trees ensemble:

Uses the values of the variance reduction function at the nodes at
which a feature appears in the trees in the ensemble

Random Forest score, computed from random forests and bagging
ensemble:

Permutes the values of each feature and measures the resulting
reduction in performance of the ensemble on out-of-bag examples

MTR-Relief score, an extension of RReliefF, builds no predictive
model:

Examines the similarities in feature and output values for randomly
selected instances and their neighbours

The first group consists of the Symbolic, Genie3 and Random Forest
scores, and the second group consists of MTR-Relief score. For every
score, we propose two versions: MTR and STR

PCTs are induced with the standard top-down induction of decision trees algorithm
(Breiman et al. 1984) presented in Algorithm 1. It takes as input a set of examples E and
outputs a tree. The heuristic h that is used for selecting the best test at a node is the weighted
impurity of the subgroups of instances of the partitions (lines 3 and 4), induced by the tests.
By minimizing it (line 5 of the Algorithm 2), the algorithm is guided towards small trees
with good predictive performance. If there are no candidate tests, a leaf is created and the
prototype of the instances belonging to that leaf is computed. The main difference between
the algorithm for learning PCTs and other algorithms for learning decision trees is that the
former considers the impurity function and the prototype function (that computes predictions
in leaves) as parameters that can be instantiated for a given learning task.

Algorithm 1 PCT(E)
1: (t∗, h∗,P∗) = BestTest(E)

2: if t∗ �= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)
5: return node(t∗,

⋃
i {treei })

6: else
7: return leaf(Prototype(E))

Algorithm 2 BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)

2: for each candidate test t do
3: P = partition induced by t on E
4: h = |E |impu(E) − ∑

Ei∈P |Ei |impu(Ei)
5: if h < h∗ then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

123

1184 Machine Learning (2020) 109:1179–1204

In this work, we focus on the task of MTR and define the impurity function using the
variances of the target variables. First, we denote the variance of the target y j over subset of
examples E ⊆ DTRAIN as Var j (E). We then compute the weights w j = Var j (DTRAIN) and
use them as normalization factors in the definition of the impurity function:

impu(E) = 1

T

T∑

j=1

1

w j
Var j (E).

In a leaf L , the prototype function returns a vector with the average values of the target
variables calculated for the examples belonging to L .

Next, we use three types of ensembles to calculate feature importance scores (i.e., feature
rankings). These ensembles have PCTs as their base predictive models (Kocev et al. 2013).
An ensemble is a set of base predictive models constructed with a given algorithm. The
prediction for each new example is made by combining the predictions of the models from
the ensemble. In regression tasks, this is typically achieved by taking the average of the
predictions of the base models.

A necessary condition for an ensemble to be more accurate than any of its individual
members, is that the members are accurate and diverse models (Hansen and Salamon 1990).
There are several ways to introduce diversity among the PCTs in an ensemble. We describe
and make use of three of them.

Random forests (RF) and bagging Instead of being learned from the original dataset
DTRAIN, each tree in the ensemble is built from a different bootstrap replicate B of the
datasetDTRAIN, called bag. The examplesDTRAIN\B are called out-of-bag examples (OOB).
Additionally, the line 2 of the BestTest procedure (see Algorithm 2) is modified to change the
feature set during learning by introducing randomization in the test selection.More precisely,
at each node in a decision tree, a random subset of the input attributes is taken, and the best
test is selected from the splits defined by these attributes. The number of attributes that are
retained is given as a function of the total number of descriptive attributes D, e.g., �√D	,
�log2(D)	, etc. In the special case when we keep all of the attributes, we obtain the bagging
procedure.

Extra trees ensembles (ET)Here, at each node all attributes are considered (as in bagging),
but we do not evaluate all tests that the attributes yield. Rather, we choose randomly only one
per attribute. Among these D tests, we choose the best one. From the bias-variance point of
view, the rationale behind the Extra-Trees method is that the explicit randomization of the
cut-point and attribute combined with ensemble averaging should be able to reduce variance
more strongly than the weaker randomization schemes used by other methods (Geurts et al.
2006). Note that ET uses the initial dataset DTRAIN for learning the base predictive models
and does not make bootstrap replicates.

2.1.2 Ensemble based scores

Feature ranking is obtained by exploiting the ensemble structure of the learning algorithm.
Due to its simplicity, we first describe the Symbolic score. Then, we discuss the Genie3
(Huynh-Thu et al. 2010) and the Random Forest score1 (Breiman 2001).

In the following, we denote a tree as T , whereas N ∈ T denotes a node. Trees form a
forest F . Its size (the number of trees in the forest) is denoted as |F |. The set of all internal
nodes of a tree T in which the attribute xi appears as part of a test is denoted as T (xi).

1 To prevent any confusion, Random Forest score will be always in singular form and capitalized, whereas
the ensemble method random forests will be in plural form and not capitalized.

123

Machine Learning (2020) 109:1179–1204 1185

Symbolic score Let d(N) denote the depth of N ∈ T : if N is the root of T , then
d(N) = 0. Otherwise, d(N) = 1 + d(parent(N)). In the simplest version of the score,
we count how many times a given attribute occurs in the tests in the internal nodes of the
trees. Since the attributes that appear closer to the root are intuitively more important than
those that appear deeper in the trees, we introduce the parameter w ∈ (0, 1] and define the
importance of the feature xi as

importanceSYMB(xi) = 1

|F |
∑

T ∈F

∑

N ∈T (xi)

wd(N). (1)

The symbolic score can be computed from all three types of ensembles that we use. Its
simplest version corresponds to setting w to 1.

Genie3 score The main motivation for the Genie3 ranking is that splitting the current
subset E ⊆ DTRAIN, according to a test where an important attribute appears, should result
in high impurity reduction. The Genie3 importance of the attribute xi is thus defined as

importanceGENIE3(xi) = 1

|F |
∑

T ∈F

∑

N ∈T (xi)

h∗(N),

where h∗(N) is the value of the variance reduction function described in the BestTest pro-
cedure. Since h∗ is proportional to |E |, greater emphasis is again put on the attributes higher
in the tree, where |E | is larger. The Genie3 score is applicable to all three ensemble methods
that we use.

Random Forest (RF) score This feature ranking method tests how much the noise in a
given feature decreases the predictive performance of the trees in the forest. The greater
the performance degradation, the more important the feature is. This score uses the internal
out-of-bag estimates of the error, therefore it cannot be used with ensembles of ET, where
all trees are learned on the whole dataset.

Once a tree T is grown, the algorithm evaluates the performance of the tree by using the
corresponding OOBT examples. This results in the predictive error Err(OOBT) ≥ 0, where
we assume that lower error value corresponds to better predictions. To assess the importance
of the feature xi for the tree T , we randomly permute its values in the set OOBT and obtain
the set OOBi

T . Then, the error Err(OOBi
T) is computed and the importance of the feature

xi for the tree T is defined as the relative increase of error after noising. The final Random
Forest score of the feature is the average of these values across all trees in the forest:

importanceRF(xi) = 1

|F |
∑

T ∈F

Err(OOBi
T) − Err(OOBT)

Err(OOBT)
.

2.2 MTR-Relief

In this section, we describe the proposed extension of the RReliefF method towards MTR
(dubbed MTR-Relief). We provide technical preliminaries, give the description of the score
and discuss some theoretical properties of RReliefF.

2.2.1 MTR-Relief definition

The first member of the Relief family of feature ranking algorithms is Relief, which can
handle only binary targets (Kira and Rendell 1992). ReliefF and RReliefF extend the Relief

123

1186 Machine Learning (2020) 109:1179–1204

family of algorithms for the tasks of multi-class classification (handling nominal target vari-
ables) and regression (handling numeric target variables), respectively (Robnik-šikonja and
Kononenko 2003).

All methods of the Relief family assign to each feature xi a weight wi that is a measure
of its importance. The expected value of wi has a nice probabilistic interpretation in the case
when both the target and xi are nominal (Robnik-šikonja and Kononenko 2003): simplified
to some extent, we have the relation E[wi] = p1 − p2 where

p1 = P(different value of xi | different target value) (2)

p2 = P(different value of xi | same target value) (3)

However, in the case of regression, this relation serves only as a motivation. For a fixed
xi , we first define the events diffFeat/sameFeat (two instances have different/same
value of xi) and diffTarget/sameTarget (two instances have different/same target
value), and the associated probabilities Pevent = P(event) and Pevent1, event2 =
P(event1 ∧ event2). After applying the Bayes rule to Eqs. (2) and (3), we obtain

E[wi] = PdiffFeat, diffTarget
PdiffTarget

− PdiffFeat − PdiffFeat, diffTarget
1 − PdiffTarget

(4)

where the probabilities are modeled as distances

PdiffFeat ≈ di , PdiffTarget ≈ dY and PdiffFeat, diffTarget ≈ didY .

By adapting the distance dY , we can extend the Relief algorithm to address different machine
learning tasks. In our particular case of MTR, the distances are defined as follows. To be
consistent with the RReliefF algorithm, we set

di (x1, x2) =
⎧
⎨

⎩

1[x1i �= x2i] : Xi nominal
|x1i −x2i |

max
x

xi−min
x

xi
: Xi ⊆ R

, (5)

where max and min go over the known examples x. The analogous approach is taken for
the metrics d j on the sets Y j , 1 ≤ j ≤ T , but here only the numeric part of Eq. (5) applies.
The distances on the descriptive domain X and the target domain Y between x1 and x2, and
y1 = y(x1) and y2 = y(x2), respectively, are defined as

dX (x1, x2) = 1

D

D∑

i=1

di (x1, x2) (6)

dY (y1, y2) = 1

T

T∑

j=1

d j (y1, y2) (7)

In Eq. (7), we use the �1 metric to be consistent with the RReliefF definition from Eq. (6),
thus making RReliefF a special instance of MTR-Relief when T = 1.

The calculation of the weights wi = importance(xi) using MTR-Relief is outlined in
Algorithm 3, wherewe generalize the pseudocode of the RReliefF algorithm (Robnik-šikonja
and Kononenko 2003). For each of them iterations, we randomly select an example r fromD
(line 4) and find its k nearest neighbors (line 5), using the distance from Eq. (6). After that, we
use the neighbors to update the estimates of probabilities that appear in the definition of the
weights inEq. (4) for all attributes (lines 8–10). The estimates of probabilities are updatedwith
theweighted average of the distances between r and its neighbors. Theweight δ(�) for the �-th

123

Machine Learning (2020) 109:1179–1204 1187

nearest neighbor is proportional to exp(−(σ�)2), and it is normalized (
∑k

�=1 δ(�) = 1/mk)
to ensure that wi ∈ [−1, 1], when the algorithms finishes. The parameter σ is user defined.
Finally, the weights wi are computed (line 12).

Algorithm 3MTR-Relief(D , m, k, σ)
1: PdiffFeat, diffTarget, PdiffFeat = lists of length D consisting of zeros
2: PdiffTarget = 0.0
3: for ι = 1, 2, . . . ,m do
4: r = random example from D
5: I1, I2, . . . , Ik = k nearest neighbors of r
6: for � = 1, 2, . . . , k do
7: PdiffTarget += δ(�)dY

(
r, I�

)

8: for i = 1, 2, . . . , D do
9: PdiffFeat[i] += δ(�)di

(
r, I�

)

10: PdiffFeat, diffTarget[i] += δ(�)di
(
r, I�

)
dY

(
r, I�

)

11: for i = 1, 2, . . . , D do

12: wi = PdiffFeat, diffTarget[i]
PdiffTarget

− PdiffFeat[i]−PdiffFeat, diffTarget[i]
1−PdiffTarget

As the number of iterations m increases, the estimates of the probabilities are expected to
be more accurate. However, note that we do not need more than M iterations. The value of k
should be small enough to capture the local structure in the data and capture the interactions
between features (Robnik-šikonja and Kononenko 2003). When k gets bigger, we may want
to weight neighbors’ contributions with σ .

2.2.2 Theoretical analysis of relief algorithms

Below we analyze some properties of the algorithms from the Relief family. The motivation
for the definition of Relief is, as mentioned before, an elegant probabilistic interpretation of
the weights in the case when both the feature and the target are nominal. In that case, the
feature xi is rewarded in a particular iteration, i.e., the weight update is positive, if (loosely
speaking) two instances are more probable to have different values of xi if they belong to
different classes as opposed to the case when they are of the same class.

In the following, we fix the feature xi . First, we specify the condition when the weight
wi is positive. As a consequence, we will derive the result indicating the most rewarded
features by the regression versions of Relief. For simplicity, we first assume that k = 1 and
σ = 0. After the proof for this case, we will generalize the results. In the following, r ι is the
randomly chosen instance in the ι-th iteration, and sι is its nearest neighbor.

Theorem 1 The feature xi is rewarded (gets a positive weight update) in the ι-th iteration
if, and only if, the target distance dY (r ι, sι) is not smaller than the average target distance,
computed by the algorithm.

Proof We first take two arbitrary events A and B and simplify the expression P(A | B) −
P(A | ¬B) to

P(AB) − P(A)P(B)

P(B)(1 − P(B))
. (8)

123

1188 Machine Learning (2020) 109:1179–1204

We then set A and B to diffFeat and diffTarget, respectively (defined in Sect. 2.2.1).
The weight wi , computed by Algorithm 3 is a special instance of Eq. (8):

wi =
1
m

∑
ι αιτι − (1

m

∑
ι αι

) (1
m

∑
ι τι

)

(1
m

∑
ι τι

) (
1 − 1

m

∑
ι τι

) , (9)

where we introduced τι = dY (r ι, sι) and αι = di (r ι, sι). If we rearrange the terms in Eq. (9)
and define τ = ∑

ι τι, we obtain

wi = m

τ(m − τ)

∑

ι

(

τι − 1

m
τ

)

αι (10)

Since 0 ≤ τι ≤ 1 and τ/m is the average computed distance in the target space, we have
completed the proof. ��

Note that this theorem also applies for the standard (single target) regression task. In the
case, when k > 1 and σ = 0, we get additional inner sums

∑
� over the neighbors and the

terms τι, αι and aιτι are respectively replaced by
∑k

�=1 τι,�,
∑k

�=1 αι,� and
∑k

�=1 αι,�τι,�.
Here, the terms αι,� and τι,� are defined analogously to αι and τι. The additional index �

specifies the neighbor to which the distance is computed, and instead of Eq. (10) we now
have

wi = mk

τ(mk − τ)

∑

ι

∑

�

(

τι,� − 1

mk
τ

)

αι,�,

where τ = ∑
ι

∑
� τι,�.

If σ �= 0, the generalization of the upper formula is obvious.
As a corollary, we derive the result indicating the most rewarded features by the regression
versions of Relief. Before proceeding to the result, we define the centralization of the random
variable X as the random variable X −E[X]. In the formulation of the next theorem, we treat
the features as random variables.

Theorem 2 For a given feature, it is optimal if its centralization is locally positively linearly
dependent on the target.

Proof The features are sorted with respect to the weights wi , but the order of the features
does not change if we define the weights as

ωi =
∑

ι

(

τι − 1

m
τ

)

αι,

since we have rescaled the weights from Eq. (10) by multiplying them by a positive constant.
If we define the vectors α = (αι)ι and τ = (τι − τ/m)ι and fix their Euclidean norms, then,
by the Cauchy-Schwarz inequality, it follows that ωi ≤ ‖α‖ ‖τ‖. We also know that the
maximum value for ωi is achieved when α = βτ for some β ≥ 0. ��

Note that the locality in the theorem originates from the pairs of instances for which the
distances di and dY are computed. Theorem 1 gives some insight into the Relief procedure
on its own, but it mostly serves as an intermediate step for proving Theorem 2 which actually
characterizes the features that the algorithm may have some bias toward.

123

Machine Learning (2020) 109:1179–1204 1189

2.3 STR approach

If a structured target domain Y can be decomposed into primitive parts, we can compute
a feature ranking (or build a predictive model) for each part separately, and than average
(combine) the results to obtain the final ranking. One of the prominent examples of this
technique from predictive the modeling field is the binary relevance approach for multi-label
classification (Tsoumakas and Katakis 2007).

To the best of our knowledge, there is no previous use of approaches based on binary
relevance for performingMTR feature ranking.We build on this idea and formulate a generic
algorithm for MTR feature ranking in Algorithm 4. For the base feature ranking method F,
we use RReliefF and the three ensemble-based scores from Sect. 2.1.2.

Algorithm 4 STR-ranking(F, D , …)
1: for j = 1, 2, . . . , T do
2: D j = {(x, y j (x)) | (x, y(x)) ∈ D}
3: compute importance j (xi) by F(D j , . . .), for all i
4: for i = 1, 2, . . . , D do
5: importance(xi) = ∑T

j=1 importance j (xi)/T

As stated in the discussion earlier in Sect. 1, simple (non-weighted) averaging is an option
when one does not have any background knowledge of the data. However, some of the targets
can be given a higher importance on the overall ranking if, e.g., a domain expert so desires.

3 Computational complexity

In this section, we analyze the time and space complexity of the proposed algorithms using
the big O notation. The variables that are not explicitly defined here, are listed in Table 1.

3.1 Ensemble scores

To simplify the conclusions, the analysis is carried out under the assumption that the trees
in the forest are balanced (Kocev et al. 2013), i.e., a tree consists of O(M) nodes, has depth
O(log2 M) and MN = O(M/2d(N)) examples reach a node N at depth d(N). We also
assume that all features are numeric, since i) handling them is more time consuming than
handling nominal features and ii) the majority of features in the datasets in our experiments
(see Sect. 4.2) is numeric.

For each considered xi , we first need to sort the examples in the given node
(O(MN logMN)) and then find the best split (O(T MN)). The complexities for inducing
an ensemble of size S are then:O(SDM logM(logM + T)) for bagging,O(S

√
DM logM

(logM+T)) forRF andO(SDT M logM) for ET. The additional cost for updating the impor-
tances of all features isO(SM) for the Symbolic and the Genie3 score, andO(SDM logM)

for the Random Forest score.
If we assume T = 1, we obtain the complexity of growing a single STR ensemble.

Since we have to grow T of them, the complexities are nowO(SDMT log2 M) for bagging,
O(S

√
DTM log2 M) forRF andO(SDT M logM) forET.Hence, the complexity of growing

the ET ensemble stays the same, whereas the other two increase. The additional per-tree cost
for updating importances is the same, thus we have T -times more work with updating the
importances in the STR case.

123

1190 Machine Learning (2020) 109:1179–1204

We draw the following conclusions. First, the cost of updating importances is negligible
in the case of Symbolic and Genie3 scores. Second, growing a STR ensemble is by factor
min{T , logM} more time consuming that growing a MTR ensemble. However, STR trees
are usually bigger than their MTR analogues and thus tend to take longer to grow in practice.
Third, since it is not much more time consuming to evaluate all splits that a feature yields, as
compared to evaluating a single split, random forests and bagging ensembles time complexity
is (also in practice) comparable to the time complexity of extra trees ensembles.

3.2 Relief scores

First, we analyze the time complexity for MTR-Relief. Since the space-partitioning data
structures, such as kD trees (Friedman et al. 1977) do not perform well when the dimension
D is high, we use a brute-force method for finding the nearest neighbors. Finding k nearest
neighbors takes O(MD) steps, assuming that an update of the heap of the current k nearest
neighbors (O(log k)) is negligible in comparison to a distance computation (O(D)).

Before we start updating the probabilities, we compute the distances in the target space
between r and its neighbors, which takes O(kT) time. Updating the probabilities now takes
only O(kD) time.

Computation of the weights takesO(D) time. Thus, the overall time taken byMTR-Relief
isO(m[MD+kT +kD]+D) = O(m[MD+kT]). Since usually kT < MD, this amounts
to O(mMD).

Hence, the time needed for computing importance j (xi), for all i and a fixed j , in the
STR-Relief isO(mMD), hence the overall time needed here isO(TmMD), which is higher
than the time complexity of MTR-Relief by a factor of T .

However, note that the nearest neighbors do not depend on the target space, hence we can
make the naive implementation of STR-Relief more efficient, if we update the probabilities
in parallel, for each target. This comes with the cost of a larger memory consumption. The
additional space that is needed in MTR-Relief is O(D): the lists PdiffFeat, diffTarget, PdiffFeat

and the list storing the wi s. In the case of parallel updates for STR-Relief, we need O(T D)

memory, which might be a considerable amount if the numbers for features and targets
are large. The same time-space consumption relation holds when we want to compute the
rankings for different values of parameters: either time or space consumption increases by a
factor of the number of combinations we want to study.

4 Experimental design

In this section, we present in detail the experimental design used to evaluate the performance
of the proposed methods. We begin by stating the experimental questions. We then briefly
summarize the MTR datasets used in this study. Next, we present the evaluation procedure.
Finally, we give the specific parameters instantiations for each of the methods.

4.1 Experimental questions

We design the experimental evaluation focusing on several research questions referring to
the parametrization of the proposed methods, the relevance of the obtained feature rankings,
and their (relative) performance:

123

Machine Learning (2020) 109:1179–1204 1191

1. Which ensemblemethod is themost appropriate for a given importance score in ensemble-
based feature ranking?

2. How do the number of neighbors k, the number of iterationsm and the weighting param-
eter σ influence the rankings obtained with MTR-Relief?

3. How do the MTR rankings compare to their single target (STR) counterparts?
4. Can the knowledge of feature importance (scores) lead to better predictive performance

of a regressor, i.e., are the obtained feature rankings relevant?
5. Which ranking method yields the best feature rankings overall?

4.2 Datasets

Weuse 24MTRbenchmark problems. Table 3 presents the basic statistics of the datasets. The
number of features ranges from 6 to 576 and the features are mainly numeric. The number of
targets ranges from 2 to 16, while the number of examples is in the range between 103 and
60607. The datasets come from different domains: the ATP datasets concern the prediction of
airline tickets prices. The collembola, forestry, soil quality, and vegetation condition datasets

Table 3 Description of the benchmark problems in terms of the number of nominal and numeric descriptive
attribute, the number of targets, and the number of examples

Dataset Nominal Numeric Targets Examples

ATP1d (Spyromitros-Xioufis et al. 2016) 0 411 6 337

ATP7d (Spyromitros-Xioufis et al. 2016) 0 411 6 296

collembola (Kampichler et al. 2000) 8 39 3 393

EDM (Karalič and Bratko 1997) 0 16 2 154

ENB (Tsanas and Xifara 2012) 0 8 2 768

Forestry Kras (Stojanova et al. 2010) 0 160 11 60,607

Forestry LIDAR IRS (Stojanova 2009) 0 29 2 2730

Forestry LIDAR Landsat (Stojanova 2009) 0 150 2 6218

Forestry LIDAR Spot (Stojanova 2009) 0 49 2 2730

jura (Goovaerts 1997) 0 15 3 359

OES10 (Spyromitros-Xioufis et al. 2016) 0 298 16 403

OES97 (Spyromitros-Xioufis et al. 2016) 0 263 16 334

osales (Kaggle 2012) 0 401 12 639

RF1 (Spyromitros-Xioufis et al. 2016) 0 64 8 9125

RF2 (Spyromitros-Xioufis et al. 2016) 0 576 8 9125

SCM1d (Spyromitros-Xioufis et al. 2016) 0 280 16 9803

SCM20d (Spyromitros-Xioufis et al. 2016) 0 61 16 8966

scpf (Kaggle 2013) 0 23 3 1137

sigmeareal (Demšar et al. 2005) 0 6 2 817

sigmeasim (Demšar et al. 2005) 2 9 2 10,368

slump (Yeh 2007) 0 7 3 103

soil quality (Demšar 2006) 0 156 3 1944

vegetation condition (Kocev et al. 2009) 1 39 7 16,967

water quality (Džeroski et al. 2000) 0 16 14 1060

123

1192 Machine Learning (2020) 109:1179–1204

contain environmental data, EDM stands for electrical discharge machining, ENB and water
quality originate from studies of water quality. Jura contains measurements of heavy met-
als concentrations. OES stands for occupational employment survey. The datasets osales
(online product sales) and scpf (see-click-predict fix) originate from two Kaggle competi-
tions, TheRF1 andRF2 datasets describe river flows. The SCM1d and SCM20d datasets were
constructed for a competition in the domain of supply chain management. The sigmeareal
and sigmeasim datasets describe GMO (herbicide resistant) crops. Finally, the slump dataset
concerns prediction of properties of concrete slump.

4.3 Evaluationmethodology

We adopted the following evaluation methodology to answer the above research questions
and to properly assess the performance of the proposed methods. First, we randomly divide
each dataset D into 2/3 for training (DTRAIN) and 1/3 for testing (DTEST). A ranking is
computed from the training part only, and evaluated on the testing part. This is repeated 10
times and the performance measures are averaged at the end.

The quality of a ranking is assessed by using the kNN algorithm where instead of the
standard Euclidean distance, its weighted version was used. For two input vectors x1 in x2,
the distance d between them is defined as

d(x1, x2) =
√
√
√
√

D∑

i=1

wi d2i (x1i , x
2
i), (11)

where di is defined by Eq. (5). The weights are set to wi = max{importance(xi), 0}, since
they need to be made non-negative to ensure that d is well defined, and also to ignore the
attributes that are of lower importance than a randomly generated attribute would be.

The evaluation through a kNN predictive model was chosen because of two main reasons.
First, this is a distance basedmodel, hence, it can easilymake use of the information contained
in the feature importances in the learning phase. Second, kNN is simple: its only parame-
ter is the number of neighbors, which we set to 5. In the prediction stage, the neighbors’
contributions to the predicted value are equally weighted, so we do not introduce additional
parameters that would influence the performance.

A further argument for using kNN as an evaluationmodel is as follows. If a feature ranking
is meaningful, then when the feature importances are used as weights in the calculation of the
distances kNN should produce better predictions as compared to kNN without using these
weights (Cunningham and Delany 2007; Wettschereck 1994).

We assess the predictive performance with the average relative root mean squared error
RRMSE. If we denote the predicted value of the target y j by ŷ j (x) and the variance of the
target y j on DTRAIN by Var j (DTRAIN), then the RRMSE for this target is defined as

RRMSE(y j) =
√
√
√
√

1

|DTEST|
∑

(x, y)∈DTEST

(y j (x) − ŷ j (x))2

Var j (DTRAIN)
,

where y j (x) is the true value of the y j for the example x. From this, we compute RRMSE =
1
T

∑T
j=1 RRMSE(y j).

123

Machine Learning (2020) 109:1179–1204 1193

4.4 Statistical analysis of the results

For comparing two algorithms, we use the Wilcoxon’s test, and for comparing more than
two algorithms, we use the Friedman’s test. In both cases, the null hypothesis H0 is that all
considered algorithms have the same performance. If H0 is rejected by the Friedman’s test,
we additionally applyNemenyi’s post-hoc test to investigatewhere the statistically significant
differences between any two algorithms occur. A detailed description of all tests is available
in Demšar (2006).

When performing more than one Wilcoxon’s test for a given hypothesis, we control the
false discovery rate by the Benjamini–Hochberg procedure (Benjamini and Hochberg 1995):
let pi be the i-th smallest among the obtained p values, and t the number of tests. Let i0 be
the largest i , such that

pi ≤ i

t
α =: α̂i . (12)

Then, we can reject the hypotheses that correspond to p values pi , for 1 ≤ i ≤ i0.
The results of the Nemenyi tests are presented through average ranks diagrams. Each

diagram shows the average rank of the algorithm over the considered datasets, and the critical
distance, i.e., the distance bywhich the average ranks of two considered algorithmsmust differ
to be considered statistically significantly different. Additionally, the groups of algorithms
among which no statistically significant differences occur are connected with a line.

Before proceedingwith the statistical analysis,we round the performances to three decimal
points. In the analysis, the significance level was set to α = 0.05.

4.5 Parameter instantiation for the ensemble scores

The algorithm for inducing an ensemble of PCTs for MTR takes as input the following
parameters: the number of base predictive models in the forest (all ensemble types), minimal
number of examples in a leaf of a tree (all ensemble types), and the feature subset size
(random forests only). In all cases, we grow 100 trees, whose leaves must contain at least
two examples each. Additionally, the feature subset size in the case of random forests is set
to �√D	.

Next, recall that the Symbolic score requires selecting a value for w. In a preliminary
study of the MTR versions of the scores, we investigated the influence of several values of
w, i.e., w ∈ {0.25, 0.5, 0.75, 1}, on the performance of the produced feature rankings. We
performed Friedman’s test and it turns out that the differences among the rankings are not
statistically significant in the case of bagging (p value is 0.379) and ET (p value is 0.441),
whereas in the case of RF, they are (p value is 0.0148). In the RF case, we can proceed to
Nemenyi’s test, whose results are shown in Fig. 1.

The diagram reveals that only the Symbolic score with weight w = 1.0 is statistically
significantly worse than the rankings with weights w = 0.5 and w = 0.25. This can be

Fig. 1 The average ranks diagram
for Nemenyi’s test, comparing
different values of the parameter
w, w ∈ {0.25, 0.5, 0.75, 1.0}, for
the Symbolic score computed
from the RF ensemble 1 2 3 4

Symb50RfMTR
Symb25RfMTR

Symb100RfMTR
Symb75RfMTR

critical distance: 0.9574

123

1194 Machine Learning (2020) 109:1179–1204

Fig. 2 The influence for the
neighbors k in the range
1 ≤ k ≤ 40 for the Relief score
when σ = 0.05. The weights are
normalized so that the weight of
the nearest neighbor equals 1

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

explained by Eq. (1): the value of 1.0 for the weight is the only one where the depth of the
node where an attribute appears is not taken into account when computing the relevance.

Since the average ranks of the ranking methods with w = 0.25, w = 0.5, w = 0.75 and
w = 1.0 are respectively 2.31, 2.27, 2.56 and 2.85 for bagging, and 2.40, 2.40, 2.35 and
2.88 for ET, the ranking Symb50 is a reasonable choice for all three ensembles, since it is
always ranked at least second. The reason for this is less obvious, but we hypothesize that it
could be an artifact of the algorithm for inducing ensembles. Namely, the splits in the nodes
of the trees are binary. If we assume that the best test in an internal node N ∈ T partitions
the examples approximately in half, then the attribute in N ’s test influences one half of the
instances that arrive to its parent; hence, the parent should receive twice as large a reward as
each of its two children. The value w = 0.5 was, for this same reason, selected also in the
STR versions of the scores.

4.6 Parameter instantiation for the relief score

Since the sizes of datasets range over different orders of magnitude, the number of iter-
ations m is specified as a proportion of the size of DTRAIN. The considered values are
m ∈ {1%, 5%, 10%, 25%, 50%, 100%}. On the other hand, since the number of neighbors k
controls the level of locality, it is better given in absolute values. Our choice is to consider
the values k ∈ {1, 5, 10, 15, 20, 25, 30, 40}.

The influence of weighting is investigated with two values of the weighting parameter
that result in two extreme weighting schemes: σ = 0 corresponds to no weighting, i.e., all
neighbors have equal influence, and σ = 0.05, that results in a weighting scheme where the
possible 40th nearest neighbor has only ∼ 2% of the influence of the nearest neighbor, see
Fig. 2.

5 Results and discussion

In this section, we present and discuss the results of the comprehensive experimental eval-
uation. First, we discuss the results for the ensemble-based scores. Next, we present the
parametrization of MTR-Relief. At the end, we compare the performance of the proposed
ensemble-based and Relief-based feature ranking methods.

123

Machine Learning (2020) 109:1179–1204 1195

1 2 3

Genie3RfMTR Genie3EtMTR
Genie3BaggingMTR

critical distance: 0.6764

MTR Genie3

1 2 3

Genie3RfSTR Genie3EtSTR
Genie3BaggingSTR

critical distance: 0.6764

STR Genie3(a) (b)

Fig. 3 The average ranks diagrams from Nemenyi’s post-hoc test, applied to the times needed to compute
feature rankings with different ensemble methods for the MTR (a) and the STR (b) version of the Genie3
score

5.1 Ensemble-based feature ranking

5.1.1 Which ensemble method is the most appropriate

For a given fixed score (Genie3, Symb50 or RF) and ranking type (MTRor STR), we compare
the performance of the different ensemble methods in terms of RRMSE to select the most
suitable one for a given score.

For the MTR rankings, the outcome can be summarized as follows. The Friedman test
for Genie3 and Symb50 scores did not reject the null hypotheses, with p values of 0.476 and
0.877, respectively. The Wilcoxon test for the RF score rejected the null hypotheses with
p = 0.0170 and indicated that the bagging method is statistically significantly better than
the RF ensemble method.

If methods perform equally well, then the most efficient should be preferred. Hence,
we compare the different ensemble methods for the scores Genie3 and Symb50 in terms
of time. The differences are significant: the p values are 1.00 × 10−15 and 3.12 × 10−14

respectively. Thus, we can proceed to Nemenyi’s post-hoc tests that reveal that, in both cases,
the RF ensemble method is significantly faster than the other two methods. This means that it
suffices to consider

√
D features in a tree node to obtain a good split (hence, RF is faster than

bagging), but only D test candidates for ET do not suffice (since the trees in ET ensemble
must be considerably bigger than the trees in a RF). Since the average ranks diagrams are
qualitatively the same, we show only the one for the Genie3 score in Fig. 3a.

For the STR rankings, there are no statistically significant differences regarding the quality
of the ranking, i.e., the Friedman tests (for Genie3 and Symb50 scores) and the Wilcoxon
test (RF score) do not reject the null hypotheses. Conversely, all three null hypotheses for
the time complexity analysis are rejected with p values of 0.0, 0.0 and 1.82 × 10−5 for the
scores Genie3, Symb50 and RF, respectively. The differences are now it the case of Genie3
and Symb50 even more profound. In addition to the RF ensemble method being faster than
the other two methods, bagging is now also significantly faster than the ET method. The
average ranks diagram for the Genie3 score is shown in Fig. 3b.

5.1.2 Comparison of MTR and STR rankings

For each of the 8 combinations of ranking score and ensemble method, we compare the
quality of MTR and STR rankings with the Wilcoxon test. The smallest of the eight p values
is p1 = 0.0298 in the case of the Genie3 score, coupled with bagging. Since this is not
smaller than Benjamini–Hochberg correction α̂1 = 0.00625 from Eq. (12), we cannot reject
any hypothesis. On the other hand, every MTR ranking is significantly faster than its STR

123

1196 Machine Learning (2020) 109:1179–1204

Table 4 The results of the
Wilcoxon tests that compare the
performance of standard 5NN to
its weighted-distance version

Score-ensemble-version pi α̂i

Genie3-RF-STR 7.59× 10−5 8.33 × 10−3

Genie3-RF-MTR 2.28× 10−4 1.00 × 10−2

Symb50-RF-MTR 3.40× 10−3 1.25 × 10−2

Symb50-RF-STR 9.71× 10−3 1.67 × 10−2

RF-Bagging-MTR 2.49× 10−3 2.50 × 10−2

RF-RF-STR 8.64 × 10−2 5.00 × 10−2

The i th row contains the name of the score-ensemble-version triplet that
provided the feature importances used in the tests of weighted 5NNs
against standard 5NN; the p value pi ; and the corrected value α̂i
Statistically significant results are shown in bold

counterpart: all p values now equal 1.8×10−5 and all null hypotheses can be rejected. Thus,
the MTR rankings should be preferred.

5.1.3 Are the obtained feature rankings relevant?

Here, we investigate whether 5NN prediction can benefit from using the additional informa-
tion from the feature importances. To this end, we compare the performance of 5NN without
and with feature importances. We test the relevance of both the MTR and the STR version of
each score, coupled with the most suitable ensemble method, as determined in Sect. 5.1.1.
Hence, six comparisons are made by using the Wilcoxon’s test, where we test the standard
5NN against the weighted 5NN whose feature weights are defined via feature importances
as in Eq. (11)

Table 4 gives the results of the statistical evaluation. It shows that the hypotheses are
rejected in the case of the Genie3 and the Symb50 scores (in favor of the weighted 5NN).
This holds for both the MTR and the STR versions of the scores. The hypothesis was also
rejected in the case of the MTR version of the Random Forest score, again in favor of the
weighted 5NN. Therefore, we can conclude that using feature ranking is beneficial in these
five cases, i.e., the obtained feature importances are relevant and meaningful.

5.2 Relief feature ranking

5.2.1 Influence of the neighbor weighting �

For both proposed methods (MTR-Relief and STR-Relief), we performed 48 Wilcoxon’s
tests comparing the weighted variant of the algorithm (σ = 0.05) to its non-weighted variant
(σ = 0). The other two parameters, i.e., m and k were fixed. Here, we will report only the
lowest p values for each of the versions. In the case of MTR-Relief, the lowest one was
p1 = 0.0653, while in the case of STR-Relief, the lowest one was p1 = 0.0864. Thus, the
differences are not statistically significant, even before we apply the Benjamini–Hochberg
procedure. Since the two quite extreme weighting schemes result in rankings with only
minor differences in quality, we conclude that the influence of the weighting parameter is
limited. Therefore,we consider only the non-weighted variants of the algorithms in the further
analysis.

123

Machine Learning (2020) 109:1179–1204 1197

1 2 3 4 5 6 7 8

It1Neigh25MTR
It1Neigh40MTR
It1Neigh30MTR
It1Neigh20MTR

It1Neigh1MTR
It1Neigh5MTR
It1Neigh10MTR
It1Neigh15MTR

critical distance: 2.1432

m = 1%

1 2 3 4 5 6 7 8

It100Neigh25MTR
It100Neigh30MTR
It100Neigh15MTR
It100Neigh40MTR

It100Neigh1MTR
It100Neigh5MTR
It100Neigh20MTR
It100Neigh10MTR

critical distance: 2.1432

m = 100%(a) (b)

Fig. 4 The influence of the number of neighbors (k): the average ranks diagrams from Nemenyi’s post-hoc
test for MTR-Relief with m = 1% (a) and m = 100% (b)

5.2.2 Influence of the number of neighbors k

To assess the influence of the number of neighbors, we compare the quality of the rankings
obtained by varying the values of k, while the number of iterations (value of m) and ranking
type (MTR or STR) are fixed. This is done by applying Friedman tests to the described
groups of algorithms. The obtained p values corresponding to the 10 groups with m ≤ 50%
are all smaller than 10−10. The remaining two p values are p = 0.00438 (MTR ranking) and
p = 1.26 × 10−4 (STR ranking), hence all null hypotheses can be rejected and we can say
that the number of neighbors has considerable influence on the quality of the feature ranking.

We proceed to Nemenyi’s post-hoc tests. In Fig. 4, we show average ranks diagrams for
the two extreme values of m: m ∈ {1%, 100%}, for the MTR rankings. The diagrams for
STR rankings (and other values of m) are similar. Using more neighbors is obviously better
when m = 1% (Fig. 4a). In this case, only a small portion of DTRAIN gets to influence
the ranking, thus the ranking overfits to the structure of DTRAIN in the neighborhood of the
chosen instances. We can mitigate this by examining larger neighborhoods, i.e., choosing
more neighbors whose influence is then averaged. In the case of m = 1%, this is the only
mechanism that reduces overfitting, hence the strong influence on the performance. In the
results with m = 100% (Fig. 4b), we get to examine the whole DTRAIN, so the algorithm
does not overfit to the extent observed before. However, the diagrams reveal that choosing
only one neighbor is still not sufficient, but we do not need more than 10 neighbors to obtain
good performance.

5.2.3 Influence of the number of iterationsm

We perform analogous experiments to the ones described in the previous section, where the
number of neighbors k and ranking type are fixed, while the values of the parameter m vary.

The p values from Friedman tests are all smaller than 2.0 × 10−6, hence in all of the
cases, the number of iterations influences the ranking quality. We then perform the follow-up
Nemenyi’s post-hoc tests and show the resulting average ranks diagrams for the two most
extreme cases: k ∈ {1, 40}, but now for the STR rankings (Fig. 5).

When k = 1 (Fig. 5a), the general more-is-better trend is obvious. This can be again
explained by a slightly modified overfitting argument. Since the datasets originate from real-
world domains, they must contain some (random) noise. In the case of k = 1, its influence
can be diminished only by taking into account more and more instances. Approximately
the same holds for k = 40 (Fig. 5b), but in this case, the average ranks of the scores for
m ≥ 10 are closer. Furthermore, they show that the only values of m that are always part

123

1198 Machine Learning (2020) 109:1179–1204

1 2 3 4 5 6

It100Neigh1STR
It50Neigh1STR
It25Neigh1STR

It1Neigh1STR
It5Neigh1STR
It10Neigh1STR

critical distance: 1.5392

k = 1

1 2 3 4 5 6

It25Neigh40STR
It100Neigh40STR
It50Neigh40STR

It1Neigh40STR
It5Neigh40STR
It10Neigh40STR

critical distance: 1.5392

k = 40(a) (b)

Fig. 5 The influence of the number of iterations (m): the average ranks diagrams from Nemenyi’s post-hoc
test for STR-Relief with k = 1 (a) and k = 40 (b)

Fig. 6 Heat map of the average ranks of different options for the value pairs (m, k). The background of the
map corresponds to the average rank of the non-weighted 5NN, whereas each square with coordinates (m,
k) represents the average ranks of the regressor which uses the MTR-Relief (the left part of the square) or
STR-Relief (the right part of the square) ranking, computed with these parameter values

of the top-performing group of scores, are 25%, 50% and 100%. Similar conclusions can be
made by inspecting the other diagrams.

5.2.4 Comparison of MTR and STR rankings

We first compare MTR ans STR rankings based on the Relief score graphically by showing
a heat map, where the color corresponds to the average rank of the corresponding regressor.
In Fig. 6, there are 48 squares, each of them corresponding to a (m, k) pair of values. Addi-
tionally, each square is divided in half. Its left and right part correspond to MTR-Relief and
STR-Relief, respectively. The background of the heat map is of the color that corresponds
to the performance of the non-weighted 5NN regressor. An inspection of the graph reveals
that no differences are to be expected between the MTR and STR versions, since most of the
time a difference is not visible between the left and right part of each square. The smallest
among the 48 p values from the Wilcoxon tests, where we compare MTR and STR rankings
is p = 0.0163 and is obtained when m = 10% and k = 25. However, if we apply the
Benjamini–Hochberg correction, there are no statistically significant differences.

5.2.5 Are the obtained feature rankings relevant?

In Fig. 6, we can additionally see that some parameter settings clearly lead to irrelevant
rankings, e.g., m = 1% and k = 1, for which the average ranks for the MTR and STR
weighted 5NNpredictive performance are 89.4 and 90.1, whereas the baseline 5NN regressor

123

Machine Learning (2020) 109:1179–1204 1199

Table 5 The results of the
Wilcoxon’s tests that compare the
performance of standard 5NN to
its weighted-distance version

m-k-version pi α̂i

It100Neigh15MTR 0.00664 0.00833

It50Neigh15STR 0.0119 0.01

It25Neigh40STR 0.0975 0.0125

It25Neigh40MTR 0.100 0.0167

It100Neigh30STR 0.145 0.025

It100Neigh40MTR 0.153 0.05

The i th row contains the values of the parameters of the Relief ranking
that provided the feature importances and was tested against standard
5NN; the p value pi ; and the corrected value α̂i
Statistically significant result is shown in bold

1 2 3 4 5 6 7 8 9 10 11 12

Genie3RfSTR
Genie3RfMTR
It100Neigh15MTR
Symb50RfMTR
Symb50RfSTR
It50Neigh15STR

RfRfSTR
RfBaggingMTR

It100Neigh30STR
It25Neigh40STR
It25Neigh40MTR
It100Neigh40MTR

critical distance: 3.4014

RRMSE

1 2 3 4 5 6 7 8 9

It25
It50
Genie3RfMTR
Symb50RfMTR

RfRfSTR
RfBaggingMTR
Genie3RfSTR
Symb50RfSTR

It100

critical distance: 2.4523

time(a) (b)

Fig. 7 Comparison of the 12 ranking scores: the average ranks diagrams from Nemenyi’s post-hoc test for
RRMSE (a) and time (b). Due to the implementation of Relief, the running times for Relief depend only on
the number of iterations

has the average rank of 48.5. Hence, we take a similar approach to that in Sect. 5.1.3, where
we tested for the relevance of ensemble scores.We determine the best three parameter settings
for each of the rankings (MTR and STR) and then apply the Wilcoxon tests for the weighted
5NN against the non-weighted 5NN baseline. The results are given in Table 5.

In contrast to the ensemble scores relevance analysis, now only one ranking performs
statistically significantly better than the baseline. This is the MTR version of the score when
m = 100% and k = 15.

5.3 Which rankingmethod yields the best feature rankings?

In this section, we compare the six candidates from the Ensemble-based rankings and the
six candidates from the Relief-based rankings. The comparison is made in terms of RRMSE
and time, by applying Friedman’s test. The corresponding p values are pRRMSE = 0.117
and ptime = 0.0. The follow-up Nemenyi’s test produced the average ranks diagrams shown
in Fig. 7. Note that the critical distance in the RRMSE-based diagram should be ignored
(pRRMSE > 0.05) and we focus only on the average ranks. It seems that the quality of
different scores is quite similar: most of them are grouped together with the exception of the
STR rankings of Genie3 and RF score as two outliers.

On the other hand, when we compare how much time is needed to compute the rankings
(Fig. 7b), we can identify more groups. For example, the fastest group is formed by the Relief
scores withm ∈ {25%, 50%} and theMTR rankings of the Genie3 and Symbolic scores. The

123

1200 Machine Learning (2020) 109:1179–1204

Fig. 8 The PCT constructed from
the meta dataset, where Y and N
denote Yes and No branches. In
every leaf node, the majority
target statistics are shown, e.g., in
the leaf Relief (4/6), there are 6
examples. On 4 of them, Relief
performs better

attributes > 30

Relief (8/8)targets > 8

Ensemble (9/10)Relief (4/6)
Y N

Y N

Table 6 Cross-validated
performance of the meta decision
tree, where y denotes true values
and ŷ denotes predicted values

slowest ones are the STR rankings from the ensemble-based scores, together with the MTR
ranking of the RF score where bagging is used.

Since our efficient implementation allows for computing all Relief scores at once, the
induction time for these scores depends only on the number of iterations, hence the shortened
descriptions of theMTRand STR rankings (only the number of iterations is shown in Fig. 7b).

We next perform a meta-learning analysis of the obtained results. If we want to get a
recommendation on using an appropriate feature algorithm for a given new dataset, the
average ranks in Fig. 7a do not provide a unique recommendation, since there are too many
candidates. Also, we want to understand when the ensemble-based rankings perform better
than the Relief-based rankings, considering some basic properties of the datasets. To do so,
we describe each dataset as a (x, y) pair, where the descriptive part x consists of the basic
dataset statistics shown in Table 3: number of examples, features and targets. The target part
for a particular dataset was y = Ensemble if an ensemble method performed better on this
dataset, and y = Relief if a Relief method was better. From this meta dataset, we build a
single PCT, which is shown in Fig. 8. It seems that the number of examples does not influence
the better performing score. We can conclude that the Ensemble group of rankings performs
better for datasets that have a higher descriptive dimension D > 30 and a lower number of
targets (T ≤ 8).

The accuracy of the tree is 79.2% and was estimated via tenfold cross validation. The
corresponding confusion matrix is shown in Table 6.

5.4 Absolute performance of rankings

So far, the statistical analysis shownoperated onlywith the ranks of the algorithmsondifferent
datasets and we have not shown yet any actual performance figures in terms of RRMSE. The
purpose of analysis of these results is twofold: we can explore (i) whether the previously
discovered statistically significant differences are also practically relevant, and (ii) which
datasets represent harder and which datasets represent easier feature ranking (and predictive
modelling) problems.

Inspecting Fig. 7a, we can see that the best average rank among the ensemble-based scores
belongs to the STR-Genie3 rankings, computed from the random forest ensemble. The best
ranked score from Relief group is MTR-Relief ranking, computed withm = 100% iterations

123

Machine Learning (2020) 109:1179–1204 1201

Table 7 The performance (in terms of RRMSE) of the baseline 5NN model and the weighted models that
correspond to the best rankings from the ensemble and the Relief group of scores

Baseline Best ensemble score Best relief score
5NN Genie3-RF-STR It100Neigh15MTR

ATP1d 0.467 0.45 0.452

ATP7d 0.664 0.653 0.678

collembola 1.006 0.992 1.006

EDM 0.784 0.776 0.759

ENB 0.306 0.155 0.148

Forestry Kras 0.588 0.59 0.587

Forestry LIDAR IRS 0.425 0.347 0.404

Forestry LIDAR Landsat 0.535 0.49 0.528

Forestry LIDAR Spot 0.414 0.367 0.402

jura 0.836 0.749 0.762

OES10 0.6 0.588 0.598

OES97 0.535 0.532 0.534

osales 0.946 0.868 0.932

RF1 0.239 0.228 0.251

RF2 0.509 0.313 0.529

SCM1d 0.306 0.302 0.301

SCM20d 0.318 0.32 0.317

scpf 1.059 0.989 0.934

sigmeareal 0.977 0.906 0.912

sigmeasim 0.141 0.116 0.052

slump 0.795 0.766 0.756

soil quality 0.732 0.731 0.729

vegetation condition 0.662 0.665 0.68

water quality 0.985 0.983 0.98

and k = 15 neighbors. We present performance figures for these two rankings, together with
the baseline non-weighted 5NN in Table 7.

We can see that sometimes, the baseline 5NN performs considerably worse than at least
one of the other two predictivemodels. For example, this is the case for the ENB, RF2 and sig-
measim datasets. Interestingly, ENB and sigmeasim have only 8 and 11 features respectively.
For the consideredmethods, these datasets present not that hard feature ranking problems. On
the other hand, the statistically significant differences are sometimes not practically relevant,
e.g., the relative decrease of the RRMSE after computing the ranking on the SCM datasets
is quite small. These datasets present harder feature ranking problems. However, as evident
from the statistical tests, the baseline is quite consistently the worst performing of the three
predictive models.

6 Conclusion

In this work, we focus on the task of feature ranking for multi-target regression. More specif-
ically, we propose methods for feature ranking that exploit the potential relatedness among

123

1202 Machine Learning (2020) 109:1179–1204

multiple targets to produce a single feature ranking valid for all of the targets. Namely, we
propose methods for feature ranking that are based on ensemble learning and on the Relief
family of feature ranking algorithms. In the former group of methods, we consider three
ensemble learning methods (bagging, random forests and extremely randomized trees) cou-
pled with three scores (Genie3, Random Forest and Symbolic). The ensemble methods use
predictive clustering trees for MTR as base predictive models. The latter group considers an
extension of RReliefF towards the task of MTR (MTR-Relief). We have also proposed to use
the ’single’ target variants of the proposed methods in the context of MTR by averaging the
importance scores obtained for each of the targets.

We analyze the proposed methods along several dimensions. First, we perform a theo-
retical computational complexity analysis of all of the methods. Next, we complement the
computational complexity analysis with runtime comparisons. Furthermore, we parametrize
the proposed methods. Finally, we benchmark the performance of the proposed methods
on 24 datasets by using the feature importances as weights in 5-nearest neighbors (5NN)
prediction.

The comprehensive experimental evaluation reveals the following. First, five out of the
six ensemble-based ranking methods yield relevant feature rankings when they are com-
puted using the most appropriate tree ensemble, the only exception being the STR ranking
with Random Forest score. The evaluation identified two best ranking methods (in terms of
performance and efficiency): Genie3 and Symbolic scores coupled with random forests.

Second, with the Relief rankings, only a single setting was found yielding statistically
significant differences in performance: the MTR version of Relief with m = 100% and
k = 15. When we compared the top 12 ranking algorithms, there were no statistically
significant differences among them. However, further analysis revealed that this is due to
the properties of datasets, since we can rather accurately determine which of the two groups
(ensemble-based or Relief-based) of algorithms will perform better on a given dataset.

Third, the analysis shows that the MTR versions of ensemble-based rankings are statis-
tically significantly faster than their STR counterparts, but not worse in terms of quality. In
the case of Relief, there are no differences. All in all, we would suggest using the Genie3 and
the Symbolic scoring coupled with random forest ensemble method, since they both yield
relevant rankings and are fast enough.

There are several directions for the future work. First, we plan to consider a different
approach to defining the distance measure in MTR-Relief (or even in RReliefF). We could
use a distance based on the probability densities f (xi) and f (y j), since this is the usual
continuous analogue of the probabilities P(xi = x) in the discrete case. Next, we will
extend the proposed methods to other structured output prediction tasks, such as multi-label
classification, and hierarchical multi-label classification. Furthermore, we will investigate
the influence of the ensemble size on the produced feature rankings (thus further reducing
the computational cost). Finally, we will develop similar approaches for learning feature
rankings for MTR tasks on data streams and for semi/un-supervised MTR tasks.

Acknowledgements We acknowledge the financial support of the Slovenian Research Agency via the Grants
P2-0103 and a young researcher Grant to MP, as well as the European Commission, through the Grants
MAESTRA (Learning from Massive, Incompletely annotated, and Structured Data) and HBP (The Human
Brain Project), SGA1 and SGA2. SD also acknowledges support by Slovenian Research Agency (via Grants
J4-7362, L2-7509, and N2-0056), the European Commission (Project LANDMARK) and ARVALIS (Project
BIODIV). The computational experiments presented here were executed on a computing infrastructure from
the Slovenian Grid (SLING) initiative.

123

Machine Learning (2020) 109:1179–1204 1203

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.

Blockeel, H. (1998). Top-down induction of first order logical decision trees. Ph.D. thesis, Katholieke Uni-
versiteit Leuven, Leuven, Belgium.

Borchani, H., Varando, G., Bielza, C., & Larrañaga, P. (2015). A survey on multi-output regression. Data
Mining and Knowledge Discovery, 5(5), 216–233.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and regression trees. Boca Raton:

Chapman & Hall/CRC.
Brobbey,A. (2015).Variable selection inmultivariatemultiple regression.Master’s thesis,MemorialUniversity

of Newfoundland, St John’s, NL, Canada.
Burnham, A. J., MacGregor, J. F., & Viveros, R. (1999). Latent variable multivariate regression modeling.

Chemometrics and Intelligent Laboratory Systems, 48(2), 167–180.
Cunningham, P., & Delany, S. J. (2007). k-Nearest Neighbour Classifiers. Technical report, University College

Dublin, Dublin, Ireland.
Demšar, D., Debeljak, M., Džeroski, S., & Lavigne, C. (2005). Modelling pollen dispersal of genetically

modified oilseedrape within the field. In Proceedings of annual meeting of the Ecological Society of
America.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Džeroski, S., Demšar, D., & Grbović, J. (2000). Predicting chemical parameters of river water quality from
bioindicator data. Applied Intelligence, 13, 7–17.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3(3), 209–226.

Geurts, P., Erns, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 36(1), 3–42.
Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine

Learning Research, 3, 1157–1182.
Han, Z., Liu, Y., Zhao, J., & Wang, W. (2012). Real time prediction for converter gas tank levels based on

multi-output least square support vector regressor. Control Engineering Practice, 20(12), 1400–1409.
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12, 993–1001.
Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring regulatory networks from expres-

sion data using tree-based methods. PLoS One, 5(9), 1–10.
Kaggle. (2012). Kaggle: Online product sales. https://www.kaggle.com/c/online-sales. Accessed June 12,

2018.
Kaggle. (2013). Kaggle: See click predict fix. https://www.kaggle.com/c/see-click-predict-fix. Accessed June

12, 2018.
Kampichler, C., Džeroski, S., & Wieland, R. (2000). Application of machine learning techniques to the

analysis of soil ecological data bases:Relationships betweenhabitat features andCollembolan community
characteristics. Soil Biology and Biochemistry, 32(2), 197–209.

Karalič, A., & Bratko, I. (1997). First order regression. Machine Learning, 26(2–3), 147–176.
Kira, K., & Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new algorithm. In

Proceedings of the tenth national conference on artificial intelligence (pp. 129–134). AAAI Press, San
Jose, California.

Kocev, D., & Džeroski, S. (2013). Habitat modeling with single- and multi-target trees and ensembles. Eco-
logical Informatics, 18, 79–92.

Kocev,D.,Džeroski, S.,White,M.,Newell, G.,&Griffioen, P. (2009).Using single- andmulti-target regression
trees and ensembles to model a compound index of vegetation condition. Ecological Modelling, 220(8),
1159–1168.

Kocev, D., Vens, C., Struyf, J., &Džeroski, S. (2013). Tree ensembles for predicting structured outputs.Pattern
Recognition, 46(3), 817–833.

Petković, M., Džeroski, S., & Kocev, D. (2017). Feature ranking for multi-target regression with tree ensemble
methods. In Yamamoto, A., Kida, T., Uno, T., & Kuboyama, T. (Eds.), Discovery science (pp. 171–185).
Berlin: Springer.

Robnik-šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF.
Machine Learning Journal, 55, 23–69.

123

https://www.kaggle.com/c/online-sales
https://www.kaggle.com/c/see-click-predict-fix

1204 Machine Learning (2020) 109:1179–1204

Sanchez-Fernandez, M., de-Prado-Cumplido, M., Arenas-Garcia, J., & Perez-Cruz, F. (2004). Svm multire-
gression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Transactions
on Signal Processing, 52(8), 2298–2307.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., & Vlahavas, I. (2016). Multi-target regression via input
space expansion: treating targets as inputs. Machine Learning, 104(1), 55–98.

Stańczyk, U., & Jain, L. C. (Eds.). (2015). Feature selection for data and pattern recognition. Studies in
computational intelligence. Berlin: Springer.

Stojanova, D. (2009). Estimating forest properties from remotely sensed data by using machine learning.
Master’s thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.

Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S. (2010). Estimating vegetation height and
canopy cover from remotely sensed data with machine learning. Ecological Informatics, 5(4), 256–266.

Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential build-
ings using statistical machine learning tools. Energy and Buildings, 49, 560–567.

Tsoumakas, G., & Katakis, I. (2007). Multi label classification: An overview. International Journal of Data
Warehouse and Mining, 3(3), 1–13.

Tuia, D., Verrelst, J., Alonso, L., Perez-Cruz, F., & Camps-Valls, G. (2011). Multioutput support vector
regression for remote sensing biophysical parameter estimation. IEEE Geoscience and Remote Sensing
Letters, 8(4), 804–808.

Wettschereck,D. (1994).A study of distance based algorithms. Ph.D. thesis,OregonStateUniversity, Corvallis,
OR.

Yeh, I.-C. (2007). Modeling slump flow of concrete using second-order regressions and artificial neural net-
works. Cement and Concrete Composites, 29, 474–480.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Feature ranking for multi-target regression
	Abstract
	1 Introduction
	2 Methods
	2.1 Ensemble based methods
	2.1.1 Predictive clustering trees and ensembles thereof
	2.1.2 Ensemble based scores

	2.2 MTR-Relief
	2.2.1 MTR-Relief definition
	2.2.2 Theoretical analysis of relief algorithms

	2.3 overlineSTR approach

	3 Computational complexity
	3.1 Ensemble scores
	3.2 Relief scores

	4 Experimental design
	4.1 Experimental questions
	4.2 Datasets
	4.3 Evaluation methodology
	4.4 Statistical analysis of the results
	4.5 Parameter instantiation for the ensemble scores
	4.6 Parameter instantiation for the relief score

	5 Results and discussion
	5.1 Ensemble-based feature ranking
	5.1.1 Which ensemble method is the most appropriate
	5.1.2 Comparison of MTR and overlineSTR rankings
	5.1.3 Are the obtained feature rankings relevant?

	5.2 Relief feature ranking
	5.2.1 Influence of the neighbor weighting σ
	5.2.2 Influence of the number of neighbors k
	5.2.3 Influence of the number of iterations m
	5.2.4 Comparison of MTR and overlineSTR rankings
	5.2.5 Are the obtained feature rankings relevant?

	5.3 Which ranking method yields the best feature rankings?
	5.4 Absolute performance of rankings

	6 Conclusion
	Acknowledgements
	References

