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incidence, hospitalisation, and mortality. Early detection 
of these factors and appropriate interventions are recom-
mended approaches for decreasing CVD burden and impact. 
Various multivariable prediction models exist for early 
detection of CVD risk [2], including the latest risk estima-
tion tools like pooled cohort equations (PCE) [3], System-
atic COronary Risk Evaluations (SCORE, SCORE2, and 
SCORE2 for older people) [4, 5], and Predicting Risk of 
cardiovascular disease EVENTs (PREVENT) [6].

However, due to the availability of big data and advanc-
ing technology, machine learning (ML) and deep learn-
ing (DL) prediction models, the two subfields of artificial 
intelligence (AI), have increasingly being utilised. Several 
studies have indicated that ML and DL models surpass tra-
ditional multivariable models in predicting CVD risk and 
specific events such as stroke [7]. These AI models exhibit 
enhanced discrimination and risk stratification abilities.

ML uses algorithms and statistical models to analyse and 
draw inferences from patterns in the data. DL is a subset 
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Abstract
Artificial intelligence (AI) based predictive models for early detection of cardiovascular disease (CVD) risk are increas-
ingly being utilised. However, AI based risk prediction models that account for right-censored data have been overlooked. 
This systematic review (PROSPERO protocol CRD42023492655) includes 33 studies that utilised machine learning (ML) 
and deep learning (DL) models for survival outcome in CVD prediction. We provided details on the employed ML and 
DL models, eXplainable AI (XAI) techniques, and type of included variables, with a focus on social determinants of 
health (SDoH) and gender-stratification. Approximately half of the studies were published in 2023 with the majority from 
the United States. Random Survival Forest (RSF), Survival Gradient Boosting models, and Penalised Cox models were 
the most frequently employed ML models. DeepSurv was the most frequently employed DL model. DL models were 
better at predicting CVD outcomes than ML models. Permutation-based feature importance and Shapley values were the 
most utilised XAI methods for explaining AI models. Moreover, only one in five studies performed gender-stratification 
analysis and very few incorporate the wide range of SDoH factors in their prediction model. In conclusion, the evidence 
indicates that RSF and DeepSurv models are currently the optimal models for predicting CVD outcomes. This study also 
highlights the better predictive ability of DL survival models, compared to ML models. Future research should ensure 
the appropriate interpretation of AI models, accounting for SDoH, and gender stratification, as gender plays a significant 
role in CVD occurrence.
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of ML that uses artificial neural networks. As illustrated in 
Fig. 1, there are primarily four types of ML and DL [8, 9]; 
supervised, unsupervised, semi-supervised, and reinforce-
ment learning (RL). Supervised ML algorithms have been 
utilised for future risk prediction. They require training 
using labelled data, that is data that contains inputs and cor-
rect corresponding outputs. Depending on the type of the 
outcome variable that is available for the learning phase, 
regression and classification algorithms (including binary, 
multi-class, multi-level, and imbalanced classification) are 
commonly employed. Regression algorithms predict con-
tinuous variables while classification algorithms determine 
the likelihood that a certain event will occur. Unsupervised 
ML algorithms (such as anomaly detection, clustering) use 
unlabelled data and are intended to find groups/clusters of 
similar characteristics without human supervision. Semi-
supervised ML combines the features of supervised and 
unsupervised ML approaches, i.e., utilises both labelled and 
unlabelled data. RL algorithms interact with an environ-
ment to learn the optimal behaviour to maximise the overall 
reward.

ML models have been in existence since 1957. The 
perceptron, which laid the foundation for supervised ML 
models and artificial neural networks, was one of the ear-
liest neural network models. Since then, ML has passed 
several important milestones: the development of decision 
trees in the 1960s, support vector machines (SVM) in the 
1990s, random forest in 2001, DL models in the 2010s, 

large language models such as ChatGPT in 2022, and many 
others recently [10]. These models are supervised ML algo-
rithms for classification and regression, and are applied for 
predicting or forecasting chronic diseases, including CVD 
risk [11]. However, ML and DL algorithms for survival pre-
diction were not widely used until Random Survival Forest 
(RSF) was developed by Ishwaran et al. in 2008 [12]. In par-
ticular, survival AI prediction algorithms, which estimate 
the time until a health outcome occurs, have not received 
as much attention as classification and regression ML algo-
rithms [13]. Currently, various AI models for right-censored 
data are gaining popularity, even though they are predomi-
nantly used for predicting cancer patient survival outcomes 
[14–17]. Survival forest models [16, 17], NonLinear Cox 
proportional hazard (Cox PH) model (also known as Deep-
Surv model), and Neural Multi-Task Logistic Regression 
(NMTLR) [14–16] are among the commonly utilised mod-
els. Some studies have also employed algorithms such as 
CoxTime and Cox-CC [14].

Numerous systematic reviews on AI-based CVD predic-
tion have been conducted [18–21]; yet they primarily focus 
on classification-based models. For instance, Baashar et 
al.‘s research assessed the effectiveness of ML and DL in 
CVD prediction through network meta-analysis [20], cover-
ing 17 studies from 2016 to 2021 and suggesting that DL 
might yield better results than ML. Nonetheless, a system-
atic review that succinctly summarise ML and DL models 
for right-censored data is still lacking. The justification for 

Fig. 1 Overview of machine learning and deep learning models
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exploring AI models for right-censored data stems from 
the unique nature of survival outcomes. Unlike regression 
and classification problems, survival outcome must account 
for two components during model training: the follow-up 
time, which is continuous, and the event status, indicating 
whether a specific event has occurred, such as CVD, repre-
sented as a binary outcome.

Additionally, previous risk prediction models, includ-
ing the latest multivariable prediction models and AI-based 
models mentioned above, primarily focus on standard mod-
ifiable risk factors of CVD, demographics (age and sex/
gender), and lifestyle factors (particularly smoking). This 
means that social determinants of health (SDoH), defined as 
the social and environmental circumstances in which people 
grow, live, work, worship, and age, have been overlooked 
in disease prediction models [22], including CVD [18, 23]. 
For example, only race in the PCE [3] and social deprivation 
in the PREVENT tool [6] are incorporated when predicting 
CVD. Similarly, AI-based risk prediction models consider 
only a limited number of SDoH variables, like race, income, 
and occupation [18]. SDoH are detailed in the Healthy 
People 2030 framework using five domains, namely, eco-
nomic stability, education quality and access, social and 
community context, neighborhood and built environment, 
and healthcare access and quality [24]. Using the Healthy 
People framework as a foundation, our umbrella review 
[25] demonstrated that SDoH have a major role in devel-
opment of CVD. In general, disparities in SDoH give rise 

to health inequalities, which are systematic discrepancies in 
the opportunities people need to attain optimal health.

It is also important to focus on the explainability of the 
AI models to improve confidence in their application. These 
are called eXplainable AI (XAI) techniques and, as shown 
in Fig. 2, these can be model-specific (use the structure of 
the model itself, e.g., built in feature importance measures 
in ensemble models) or model-agnostic (provide post-
hoc explanations e.g., Local Interpretable Model-agnostic 
Explanations (LIME), Shapley Additive exPlanations 
(SHAP)) [26]. However, these techniques have limited 
application for survival ML and DL methods. New XAI 
techniques for survival models such as Survival SHAP 
(SurvSHAP), survival neural additive model (SurvNAM), 
and survival LIME (SurvLIME) are currently gaining atten-
tion but are only used for explaining some algorithms [27, 
28]. XAI in general, aims to increase user trust in a model to 
different stakeholders: (1) those with model expertise (e.g., 
ML experts, researchers); and (2) those without (clinicians, 
patients). However, the explainability of time to event AI 
models has been less explored.

Moreover, various systematic reviews have been con-
ducted on AI-based CVD prediction [18–21]; however, they 
have all focused-on classification-based models (models 
designed for classification problems). For example, research 
conducted by Baashar et al. evaluated the efficacy of ML 
and DL in the prediction of CVD through network meta-
analysis [20]. The study encompassed 17 studies spanning 

Fig. 2 Overview of eXplainable AI approaches
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(including conference abstracts), case reports, letters, edi-
torials, and reviews were not eligible. AI models based on 
simulation and imaging/text data are ineligible as they do 
not use structured population-level data.

Information Sources and Search Strategy

We carried out a comprehensive search using five electronic 
databases, from their inception to December 21, 2023: 
Embase via Ovid, Scopus, Web of Science, IEEE Xplore, 
and Ovid Medline. Further studies were identified by a man-
ual search using Google Scholar, and through backward and 
forward reference searching using Web of Science. Various 
terms related to CVD, AI methods, and risk prediction were 
utilised (Table 2), linked through Boolean and adjacency 
(or proximity) operators. The comprehensive search terms 
used in Ovid Medline are available in the supplementary 
file (Table S2).

Study Selection and Data Extraction

Identified records from databases were exported to End-
note Version 20 and then to ASReview [30] and Covidence 
[31]. Following deduplication, eligible articles at the title 
and abstract stage were selected using ASReview. Full text 

from 2016 to 2021, concluding that DL may offer more 
favorable outcomes than ML in predicting CVD.

Therefore, this systematic review aims to (1) investigate 
AI models for survival prediction employed in predicting 
CVD; (2) indicate whether XAI is applied for interpreting 
the models; and (3) examine whether the identified AI mod-
els account for SDoH as well as gender stratification.

Methods

Registration and Reporting

The study protocol was registered in the International Pro-
spective Register of Systematic Reviews (PROSPERO 
CRD42023492655). The Preferred Reporting Items for a 
Systematic Review and Meta-analysis (PRISMA) statement 
is used for reporting [29] (Table S1).

Eligibility Criteria

Studies were deemed eligible if they intended to predict 
CVD outcomes using AI methods for survival prediction. 
There were no restrictions based on country, study design, 
language, and study period (Table 1). Grey literature 

Table 1 Key items for framing the aim, search strategy, and study inclusion and exclusion criteria
Domain Description
Population Adult population (age ≥ 18 years)
Intervention (Models) Machine learning and deep learning predictive models for time to event 

outcome
Comparator Not applicable
Outcomes One or more of the following cardiovascular disease outcomes; (1) car-

diovascular disease or major adverse cardiovascular event (MACE); (2) 
cardiovascular disease subtypes such as coronary heart disease, angina, 
myocardial infarction, heart failure, cerebrovascular disease (hemorrhagic 
and ischemic stroke), heart disease; or (3) hospitalisation or mortality due 
to cardiovascular disease or subtypes of cardiovascular diseases.

Time No restriction
Setting Both community and institution (e.g., hospital).

Table 2 Summary of keywords/search terms per each concept
No. Categories Keyword
1. Cardiovascular disease 

(including mortality or 
hospitalisation)

Cardiovascular disease, coronary heart disease, ischemic heart disease, angina, atrial fibrillation, 
major cardiovascular event, myocardial infarction, heart failure, congestive heart failure, heart 
disease, cerebrovascular disease/event, stroke, ischemic stroke, hemorrhagic stroke, and peripheral 
arterial disease

2. Artificial intelligence Artificial intelligence, machine learning, deep learning, random survival forest, Extra Survival 
Trees, survival ensembles, survival support vector machine, Multi-Task Logistic Regression, Deep-
Surv, Non-Linear Cox proportional hazard model, CoxTime, CoxCC, probability mass function, 
Nnet-survival, DeepHit, DeepHitSingle, Piecewise Constant Hazard model, Discrete-Time Models, 
Continuous-Time Models, Neural network, survival neural network, deep neural survival networks

3. Risk prediction Prediction, risk assessment, prognosis, predict, predictive modeling, detect, identify, identification, 
detection, risk stratification

4. Right censored time to 
event out come

Time to event, right censored, survival analysis, survival data, censoring
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Assessment of Risk of Bias

To evaluate the risk of bias (RoB), we used the Prediction 
Model Risk of Bias Assessment Tool (PROBAST) [32] with 
four domains: participant selection; predictors; outcome; and 
analysis, and different signaling questions per each domain. 
Using the PROBAST, we also assessed applicability using 
three domains: participant, predictors, and outcome. Two 
authors (ABT and HLH) assessed RoB independently and 
any disagreements were resolved by discussion.

Results

Screening Result

Out of a total of 4,739 studies retrieved through database 
searching, 86 were eligible for a full-text review. Thirty-
three studies in total, 30 studies [33–62] from database 
searching and three studies [63–65] from other sources, 
qualified for inclusion in this study (Fig. 3). The studies that 
were excluded during the full-text review are provided in 
the supplementary file (Table S3).

screening was done using Covidence. Using the data extrac-
tion sheet prepared based on the 11 CHecklist for critical 
Appraisal and data extraction for systematic Reviews of pre-
diction Modelling Studies (CHARMS) domains [32], data 
were extracted. Two reviewers (ABT and HLH) selected 
eligible studies and undertook data extraction, resolving 
conflicts through discussion (full-text review: proportionate 
agreement = 96%, Cohen’s κ = 0.92).

Data Synthesis

Characteristics of studies were summarised based on items 
from the CHARMS statement and our specific aims. If a 
study used more than one ML or DL algorithm, we reported 
the prediction performance measure for the best performing 
algorithm. ML and DL models were compared with each 
other and with the standard Cox PH model. Utilised SDoH 
variables, based on the Healthy People 2030 framework, 
were reported. XAI methods employed were described. 
However, due to variations in the study population, the end-
point description, the different ML and DL algorithms uti-
lised, and the variety in the types and numbers of variables, 
the prediction performance of the models was not pooled 
(i.e., meta-analysis was not conducted).

Fig. 3 PRISMA flow diagram showing the study selection process
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Model Related Characteristics

Employed ML and DL Models

Eight ML and nine DL models were utilised, with Fig. 5 pre-
senting the names of each model and the number of studies 
that employed them, and Table S5 providing further details.

Best Performing ML and DL Models

To evaluate the predictive performance, studies utilised 
C-index, area under the curve (AUC), and Brier score or 
calibration plot. In addition, some studies also explored 
other measures such as decision curve analysis. These per-
formance evaluation metrics are presented in Table S5. The 
mean C-index (standard deviation) was 0.79 (0.069) for ML 
models, 0.82 (0.061) for DL models, 0.81 (0.144) for Penal-
ised Cox, 0.80 (0.058) for RSF, 0.79 (0.032) for DeepSurv, 
and 0.77 (0.055) for survival Gradient Boosting Models 
(GBM) (Table 3).

Eight studies only used one ML [35, 37, 39, 41, 47, 50, 
57, 58] and four studies only used one DL [34, 36, 43, 59] 
algorithm to predict CVD. The 26 studies [33–37, 39–46, 
48, 49, 52–57, 59, 62–65] that compared ML and DL mod-
els with the Cox PH model revealed that ML and DL models 
were better in predicting CVD. Nine studies [33, 38, 51–53, 
55, 60, 62, 65] among 18 studies [33, 38, 42, 44, 46, 48, 49, 
51–55, 60–65] that compared the RSF with other models, 
selected RSF as the best performing model. Six studies [35, 
37, 39, 41, 50, 57] used RSF without comparison with other 
ML or DL models. Among the seven studies [38, 44, 55, 56, 
63–65] that compared the survival GBM with other models, 
the boosting models were better in two studies [56, 64]. In 
another two studies [47, 58], the boosting method was used 
to predict CVD without comparing with other models. All 
of the five studies [38, 44, 45, 56, 63] that evaluated Elastic 
Net Cox compared the model with other models, and in the 
two studies [45, 63] Elastic Net Cox was the best perform-
ing model for CVD prediction. In the nine studies [33, 45, 
49, 52, 53, 60–62, 65] that evaluated LASSO-Cox, all com-
pared the model with other models, it was in only one study 
[61] that LASSO-Cox was selected as the best performing 
model. As for the DL models, the DeepSurv model was the 
best performing model in all the five studies [34, 40, 43, 46, 
48, 49, 54] that compared the model with other models. In 
the other two studies [34, 40], DeepSurv was not compared 
with other ML or DL models. Some studies also selected 
NMTLR [42, 46], DeepHit [51, 52], and denoising autoen-
coder survival network [44] as best performing models in 
predicting CVD. Others [36, 59] examined Recurrent Neu-
ral Network Long Short-Term Memory and Deep Survival 

Characteristics of the Included Studies

The majority of studies were published in 2023 (n = 16/33; 
48.5%) and originated from the United States (n = 13/32; 
40.6%; one study did not report the country). Approxi-
mately, 39.4% (n = 13/33) of the studies used a sample size 
of 10,000 or more. Two studies focused exclusively on one 
gender (one on men and the other on women), whilst the 
majority of studies analysing both genders had a higher per-
centage of women (50% and above) (Table S4).

Follow-up Time and Incidence of Cardiovascular 
Diseases

The mean or median follow-up time ranges from 4.4 years 
to 25.03 years in studies of community-dwelling people, 
and 4.3 months to 8.05 years in studies of institutionalised-
people (Table S4). Various CVD outcomes, with their defi-
nitions and corresponding ICD codes detailed in Table S4, 
were identified (Fig. 4). The incidence of CVD outcomes 
ranged from 2.1% (CVD-related mortality) to 43.7% 
(MACE) (Table S4).

Fig. 4 Number of studies based on predicted cardiovascular diseases 
outcomes. ASCVD: Atherosclerotic cardiovascular disease; CHD: 
Coronary heart disease; CVD: Cardiovascular disease; HF: Heart fail-
ure; and MACE; Major adverse cardiovascular events. Note: Since one 
study can incorporate more than one outcome, the sum total reported 
here exceeds the total number of included studies
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Table 3 Descriptive statistics of predictive performance (C-index/area under the curve) by ML and DL algorithms
Machine learning and deep learning models (number 
of studiesf)

Mean C-index (Stan-
dard deviation)g

Median C-indexg Min Max Inter 
Quartile 
Range

Random survival forest (n = 23) 0.80 (0.058) 0.80 0.65 0.92 0.77-0.0.83
DeepSurv (n = 10) 0.79 (0.032) 0.79 0.74 0.85 0.77–0.81
Survival Gradient Boosting Models (n = 7) 0.77 (0.055) 0.75 0.72 0.87 0.72–0.81
Other deep learning modelsa (n = 6) 0.85 (0.081) 0.83 0.76 0.96 0.79–0.94
Penalised Coxb (n = 4) 0.81 (0.144) 0.81 0.66 0.93 0.69–0.93
Machine learning modelsc (n = 34) 0.79 (0.069) 0.79 0.65 0.96 0.75–0.83
Deep learning modelsd (n = 16) 0.82 (0.061) 0.80 0.74 0.96 0.78–0.84
aIncludes DeepHit, Neural Multi-Task Logistic Regression, Recurrent Neural Network Long Short-Term Memory, and deep survival conven-
tional neural network
bIncludes LASSO and Elastic Net Cox models
cIncludes Random Survival Forest, survival Gradient Boosting Models, and Penalised Cox models
dIncludes Deepsurv, Neural Multi-Task Logistic Regression, Recurrent Neural Network Long Short-Term Memory, and Deep Survival Con-
ventional Neural Network
fTotal number of models may differ from total number of included studies, because some studies reported for men and women separately or 
fitted a model based on race and studies may not report the C-index or area under the curve quantitatively
gArea under the curve if the study did not report C-index

Fig. 5 Identified ML and DL models. Since a single study could utilise multiple ML and/or DL models, the total number of studies presented here 
exceeds 33 (the total number of studies included)
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found this model to be the best for predicting CVD out-
comes (Table 4 and Table S5).

Utilised XAI Techniques

The 25 studies interpreted their model using different 
approaches (Table 5 and Table S5). Out of those studies, 
four [49, 52, 63, 64] used more than one method. Eight 
studies [33, 34, 37, 40, 42, 44, 58, 60] provided no model 
interpretation.

Conventional Neural Network, however, without compar-
ing with any other ML or DL models (Fig. 6 and Table S5).

Comparison of ML and DL Models

Among the eight studies [42, 44, 46, 48, 49, 51, 52, 54] that 
compared ML and DL models together, DL models were 
better in predicting CVD risk in seven studies [42, 44, 46, 
48, 49, 51, 54]. Four studies [46, 48, 49, 54] compared the 
DeepSurv model with other ML and DL models and all four 

Table 4 Selected models, based on their performance, among studies that compared machine learning and deep learning models together
Author and year Selected best model Deep Learning models Machine learning models
Feng 2022 [42] Neural Multi-Task Logistic Regression Neural Multi-Task Logistic Regression Random survival forest and Linear 

Multi-Task Logistic Regression
Gao 2023 [44] Denoising autoencoder Survival 

network
Denoising autoencoder Survival 
network

Elastic Net Cox, Gradient Boosted 
Survival, Support Vector Machine, and 
Random survival forest

Hathaway 2021 
[46]

DeepSurv/NonLinear CoxPH model Deepsurv/NonLinear CoxPH model and 
Neural Multi-Task Logistic Regression

Random survival forest and Support 
Vector Machine

Kim 2023 [48] DeepSurv/NonLinear CoxPH model Deepsurv/NonLinear CoxPH model and 
Deep Survival Machines (DeepSM)

Random survival forest

Lin 2023 [49] DeepSurv/NonLinear CoxPH model Deepsurv/NonLinear CoxPH model LASSO-Cox and Random survival forest
Ren 2022 [54] DeepSurv/NonLinear CoxPH model Deepsurv/NonLinear CoxPH model Random survival forest
Morris 2023 [51] DeepHit DeepHit Random survival forest and Penalised 

cox proportional hazards
Nguyen 2023 
[52]

Random Survival Forest DeepHit Random survival forest and LASSO-Cox

Fig. 6 Number of studies that evaluated the prediction model and used it for their final prediction
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candidate variable. Of these 20 studies, all except for two 
[53, 57] incorporated at least one SDoH as a final predic-
tor to train the model. However, only two studies [51, 58] 
employed a wide range of SDoH variables from the Healthy 
People 2030 framework. The most frequently considered 
SDoH variables were race/ethnicity, level of education, and 
income (Fig. 7 and Table S5).

Models Based on Population

Eighteen studies [33, 34, 36, 37, 39, 40, 46, 50–53, 55, 56, 
59, 61–63, 65] were conducted among the general popula-
tion (relatively healthy adults) (Table S4). Half of the stud-
ies [33, 37, 39, 50, 52, 53, 55, 62, 65] employed RSF, after 
comparison [33, 52, 53, 55, 62, 65] or used RSF as the only 
model [37, 39, 50]. Six studies [34, 36, 40, 46, 51, 59] used 
DL models in which three used DeepSurv [34, 40, 46], three 
did comparison with other models [40, 46, 51], and three did 
not do comparison [34, 36, 59]. In three studies, Elastic Net 
Cox [63], LASSO-Cox [61], and Survival GBM [56] were 
the best performing models (Table S5).

The remaining 15 studies [35, 38, 41–45, 47–49, 54, 57, 
58, 60, 64] were conducted among institutionalised popula-
tions or individuals with specific medical conditions (Table 
S4). Nine studies [35, 38, 41, 45, 47, 57, 58, 60, 64] used 
ML models, five studies [35, 38, 41, 57, 60] utilised RSF 
(after comparison [38, 60] or as the only model [35, 41, 
57]), three studies [47, 58, 64] survival GBM (after com-
parison [64] or as the only model [47, 58]), and one study 
[45] utilised Elastic Net Cox (after comparison with other 
models) for their final prediction. Six studies [42–44, 48, 49, 
54], all after comparison with other models, used DL mod-
els. Four of the studies [43, 48, 49, 54] used the DeepSurv 
model and the other two used NMTLR [42] and denoising 
autoencoder survival network [44] (Table S5).

Models Based on Types of Variables

Models Incorporated Imaging Features 11 studies [33, 35, 
38, 44, 46, 48, 50, 56, 57, 62, 65] included image features, 

Model Validation

All studies internally validated their prediction model using 
either train-test splitting or using resampling methods such 
as k-fold cross-validation and Bootstrapping. However, 
only six studies [40, 46, 56, 57, 59, 65] externally validated 
their prediction model. The commonly employed models 
were RSF and DeepSurv (Table S5).

Gender Stratification

Of 31 studies that used gender in their prediction models, 
only six studies [34, 36, 39, 40, 53, 59] performed gender-
stratified prediction. RSF and DL models such as DeepSurv 
were most popular (Table S5).

Number of Predictors and Feature Selection 
Methods

The number of candidate predictors ranged from 7 to 950. 
Mostly the number of candidate predictors was greater than 
50 (n = 13/33; 39.4%). The number of final predictors used 
ranged from 3 to 613, with the majority (n = 13/33; 39.4%) 
incorporating 21 to 50 variables (Table S5). In 22 studies, 
variable selection was not performed. Of those studies that 
performed variable selection prior to training, two used 
RSF, two used LASSO-Cox, one used stepwise forward 
selection, and one used Elastic Net Cox. Additionally, five 
studies used more than one variable selection method (Table 
S5).

Types of Predictors

Included studies used a wide range of risk factors such as 
standard modifiable cardiovascular risk factors, demo-
graphic factors, imaging features, biomarkers, variables 
related to sleep and diet, environmental chemicals, and 
SDoH variables (Table S5). Regarding our study’s interest 
in SDoH, at least one SDoH was included by 20 studies [33, 
34, 38–40, 42, 46, 47, 50–53, 55, 57, 58, 60–63, 65] as a 

Table 5 Model interpretation methods
Model interpretation technique utilised Number of studies
Feature importance (e.g., permutation (majority), Mean Decrease Gini, mean of the minimal depth of the maximal 
subtree)

14 [35, 39, 41, 46, 
48–50, 52–54, 56, 62, 
65]

Shapley Additive exPlanations (SHAP) 6 [47, 51, 52, 61, 63, 64]
Partial dependence plots (PDPs) 4 [43, 55, 63, 64]
Machine learning derived/simplified risk score (including nomogram) 3 [45, 49, 57]
Temporal Importance Model Explanation (TIME) 1 [52]
Layer-wise Relevance Propagation (LRP) 1 [59]
Component wise gradient boosting coefficients 1 [38]
Contribution of features using weighted ratio (WR) 1 [36]
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with other ML models (mostly with RSF) and/or other DL 
models.

Software and Related Information

Twelve studies [33, 41, 44, 45, 50, 53, 55, 57, 58, 60, 62, 65] 
used R software (packages: glmnet, ranger, randomForest-
SRC, mlr3, mlr3proba). Meanwhile, nine studies [34, 36, 
38, 47, 48, 51, 56, 61, 64] utilised Python software (pack-
ages: scikit-survival, PySurvival, pycox). Studies also used 
more than one software, for instance, 11 studies [35, 37, 
39, 40, 42, 43, 46, 49, 52, 54, 63] used R and Python. The 
specifics of the missing data management and hyperparam-
eter tuning methods, along with the libraries and packages 
(including source codes) utilised in the studies are presented 
in Table S6.

Risk of Bias

Among all 33 studies, 15 [33, 38, 45, 49–51, 53, 54, 57–59, 
61, 62, 64, 65] had low (RoB); 14 [34–37, 39–42, 44, 46, 
52, 55, 56, 63] had high RoB; and four [43, 47, 48, 60] had 
uncertain RoB. As for applicability, 19 studies [34, 38–40, 
42, 43, 45, 47, 49, 53, 55–58, 60–62, 64, 65] had low appli-
cability concerns and 14 [33, 35–37, 41, 44, 46, 48, 50–52, 
54, 59, 63] had high applicability concerns (Table 6).

with standard modifiable risk factors, SDoH factors, or other 
factors, in their prediction models (Table S5). Seven of them 
[33, 38, 50, 57, 62, 65] utilised RSF, after comparing with 
other models [33, 38, 62, 65] or as the only model [35, 50, 
65]. No studies compared RSF with DL models; instead, 
they compared RSF with other ML models. One study [56] 
selected survival GBM, after comparing with other ML 
models. Three studies utilised DL models, two DeepSurv 
[46, 48] and one denoising autoencoder survival network 
[44]. These three models were compared with ML learning 
models (such as RSF) and DL models (such as NMTLR).

Models Accounted for SDoH Among the 18 studies that 
included at least one SDoH (detailed above) as their final 
predictor (Table S5), nine studies utilised RSF, because RSF 
was the best performing model in seven studies [33, 38, 52, 
55, 60, 62, 65] or used as the only model [39, 50]. Two stud-
ies employed Elastic Net Cox [63] and LASSO-Cox [61] 
since they were the best performing models as compared to 
other models. Two studies [47, 58] utilised survival GBM 
without comparing the model with other ML or DL models. 
Five models utilised DL models; three studies used Deep-
Surv [34, 40, 46], two studies NMTLR [42], and one study 
DeepHit [51]. All these studies compared their DL model 

Fig. 7 Number of studies that incorporated social determinants of health variables for predicting cardiovascular disease
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the models that were utilised most frequently were Deep-
Surv, NMTLR, and DeepHit. These three DL models had 
better performance, compared with other DL or ML mod-
els. Permutation based feature importance and SHAP values 
were the predominant XAI methods utilised for explaining 
the models. While a variety of variables were incorporated 
to predict CVD, there was a noticeable lack of consideration 
for a wide range of SDoH variables. Additionally, prediction 
modeling with gender stratification was rarely explored.

Discussion

Main Findings

To enhance clarity, our principal findings are depicted in 
Fig. 8. A variety of ML and DL models for survival predic-
tion in CVD were identified. The popular ML methods were 
RSF, survival GBM, and Penalised Cox models. These three 
ML models also performed best at predicting time to CVD 
occurrence, when compared to numerous other ML models 
considered in the included studies. Regarding DL models, 

Table 6 Risk of bias and applicability assessment
Author, Year Risk of Bias Applicability Overall

1. Participants 2. Predictors 3. 
Outcome

4. Analysis 1. Participants 2. Predictors 3. 
Outcome

Risk 
of 
Bias

Appli-
cabil-
ity

Ambale-Venkatesh, 2017 + + + + + - + + -
Barbieri, 2022 + + + - + + + - +
Bauer, 2023 + + + - + - + - -
Blanchard, 2022 + + + - + - + - -
Brester, 2023 + + + - + - + - -
Chhoa, 2023 + + + + + + + + +
Chun, 2021 + + + - + + + - +
Deng, 2023 + + + - + + + - +
Duan, 2024* - + + + - + + - -
Farhadian, 2021 ? + + - + + - - -
Feng, 2022 + + + - + + + - +
Gandin, 2023 ? + + ? + + + ? +
Gao, 2023 + + + - + + - - -
Garcia-Carretero, 2019 + + + + + + + + +
Hathaway, 2021 + + + + + - + - -
Jain, 2021 + + + ? + + + ? +
Kim, 2023 + + + ? + + - ? -
Lin, 2023 + + + + + + + + +
Mauger, 2023 + + + + + + - + -
Moreno-Sánchez, 2023 + + + + + + + + +
Morris, 2023 + + + + + + - + -
Nguyen, 2023 + + + - + + - - -
Qian, 2023 + + + + + + + + +
Ren, 2022 + + + + + + - + -
Rigdon, 2019 - + + - + + + - +
Sabovcik, 2022 + + + - + + + - +
Segar, 2019 + + + + + + + + +
Segar, 2021 + + + + + + + + +
Stabellini, 2023 + + + + + + + + +
Sung, 2019 + + + + + + - + -
Turchin, 2023 + + ? + + + + ? +
Wang, 2023 + + + + + + + + +
Zhuang, 2022 + + + + + + + + +
* The accepted manuscript (pre-proof) was found during the search and was published in January 2024
+ indicates low risk of bias/low concern regarding applicability
- indicates high risk of bias/high concern regarding applicability
? indicates unclear risk of bias/unclear concern regarding applicability
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The next commonly applied ML models were survival 
GBM and Penalised Cox models. This may be at least partly 
explained by survival GBM considers non-linear interac-
tions, has a high reported prediction accuracy, has greater 
ease of interpretability, and has automatic variable selection 
[71]. The availability of packages in R and Python (effec-
tively open-source) makes the model easily trainable and 
accessible. For instance, survival GBM can be efficiently 
trained using the newly developed Python package, scikit-
survival [69]. Both the RSF model and survival GBM are 
ensemble models that combine the decisions from several 
baseline models to improve the overall performance and 
robustness [72]. The Penalised Cox models are commonly 
used because they are important for penalising and provide 
a parsimonious model [73]. They are easier to apply (hav-
ing a few, maximum two, parameters to tune). Finally, a 
few studies also utilised survival SVM, Linear Multi-Task 
Logistic Regression (LMTLR), and Extra survival trees in 
predicting CVD.

DL Models for Survival Outcome in CVD Prediction

Different DL models were also utilised to predict CVD. 
The DeepSurv model was mostly utilised. The other mod-
els were the NMTLR and DeepHit. These models are also 

AI Models for Survival Prediction and Year of 
Publication

Our systematic review revealed ML and DL models for sur-
vival prediction are increasingly gaining attention, while 
nearly all studies were published in 2019 or afterwards, 
half were published in 2023. This is not surprising since 
the packages in R and Python (e.g., mlr3proba package in 
R, and pycox, scikit-survival, PySurvival Python packages) 
for survival prediction using AI models became available in 
2019 or later [66–69].

ML Models for Survival Outcome in CVD Prediction

The most utilised ML model was RSF. Our finding corrobo-
rate a scoping review on applications of ML in predicting 
survival outcomes, which identified RSF as the most fre-
quently utilised model [13]. RSF has become a well-devel-
oped and user-friendly model, since its introduction by 
Ishwaran et al. in 2008 [12]. RSF is effective at handling 
complex interactions, has built-in variable importance mea-
sures, and is robust to overfitting [70]. The other plausible 
explanation is due to the availability of numerous open-
source packages in standard software such as R and Python 
for appropriate training of RSF [66–69].

Fig. 8 Summary of the principal findings
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together, DL models outperformed in seven, whereas ML 
models excelled in only one study. This is because DL mod-
els can improve prediction by (1) enhancing discrimination 
and calibration, (2) leveraging large datasets effectively, and 
(3) autonomously learning complex representations for bet-
ter risk stratification [80].

XAI Techniques Utilised

All studies included black-box ML models (except Penal-
ised Cox models) and DL models. Black-box models are 
not explainable unless XAIs are utilised, which means that 
humans cannot understand how predictions are made [81]. 
Despite the included studies considering the black-box 
models, not all studies interpreted their models. Studies that 
interpreted their models mostly used permutation-based 
feature importance followed by SHAP value. Using XAIs, 
studies identified key factors driving predictions and pro-
vide transparency in model decision-making. However, 
feature importance alone cannot ensure a responsible and 
effective translation of the model into clinical practice.

SDoH Variables Accounted for in ML and DL Models 
for Survival Outcome in CVD Prediction

All studies evaluated the standard modifiable cardiovascu-
lar risk factors. Biomarkers, imaging features, and variables 
related to sleep and diet were also considered. However, 
despite recent studies revealing the major role of SDoH in 
CVD [25, 82], only a handful of prediction models incorpo-
rated a wide range of SDoH variables. Our findings expand 
on another systematic review aimed at identifying SDoH in 
ML based CVD prediction models, which also reported that 
included models did not give much emphasis to SDoH [83]. 
In this systematic review, most studies considered certain 
SDoH variables, such as race, education level, and income. 
However, the use of specific SDoH variables such as race in 
deploying ML models is controversial [84, 85]. For exam-
ple, there is a notion that race is a biological construct, rather 
than a social one, and the race-aware ML model deployment 
could perpetuate existing biases and discrimination [86, 87]. 
While we agree that poorly implemented race-conscious 
models might perpetuate existing biases, including race in 
ML models’ deployment is helpful for accurate predictions 
and addressing racial disparities in health outcomes [87, 
88]. Additionally, by incorporating race, models can help 
tailor interventions and allocate resources more effectively 
to communities in need. Therefore, rather than simply omit-
ting race in the deployment of ML models, it is essential to 
implement race-aware models with nuanced considerations 
tailored to the specific context, purpose, and application of 
the model [88].

commonly applied in oncologic studies [15, 74–76]. Most 
of these models can be well-trained using the two important 
Python packages, PySurvival and Pycox, which have been 
popular since 2019 [66–68]. Denoising autoencoder sur-
vival network, Recurrent Neural Network Long Short-Term 
Memory, and Deep Survival Conventional Neural Network 
[66, 68] were also utilised by some of the studies.

Best Performing ML and DL Models for Survival 
Outcome in CVD Prediction

Compared to the standard Cox proportional hazards model, 
both ML and DL models have demonstrated superior per-
formance, in terms of discriminative ability and calibration. 
Another review has also shown that ML models outperform 
conventional methods in predicting health outcomes [13]. 
This may be due to the limited capability of the standard 
Cox model to handle high-dimensional datasets and its reli-
ance on a linear relationship assumption, which are often 
not met.

The most frequently selected ML models (based on their 
prediction performance) were ensemble methods (RSF and 
survival GBM). RSF and survival GBM are ensemble mod-
els that are known to have superior prediction performance 
because they are drawn from several baseline learners 
[72]. However, this finding might also be a result of RSF 
and survival GBM models being considered in many of the 
included studies. In three studies, Penalised Cox-models 
were also selected as the best preforming. Penalised Cox 
models reduce overfitting, handle multicollinearity (par-
ticularly the Elastic Net Cox), enhance interpretability, and 
automate variable selection by shrinking less important pre-
dictors’ coefficients to zero [77].

As for DL models, in almost all studies, DeepSurv was 
selected as the best performing model. Our finding corrobo-
rates multiple individual studies on the survival prediction 
of cancer patients, demonstrating that DeepSurv surpasses 
alternative methods in predictive accuracy [14, 15, 76]. 
DeepSurv computes complex and non-linear features with-
out a priori selection or domain expertise and is helpful for 
personalised risk prediction, even better than other linear 
and non-linear survival methods [78]. Notably, DeepSurv 
was also popular and, therefore, available for comparison.

Comparison of ML and DL Models for Survival 
Outcome in CVD Prediction

Consistent with studies that have examined both ML and DL 
models in the context of predicting the survival of cancer 
patients [76, 79], our study found that DL models surpass 
ML models in predicting time to CVD occurrence. That is, 
among the eight studies that compared ML and DL models 
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is also imperative to consider the nature of the dataset. For 
example, when considering longitudinal data with available 
follow-up time classification-based ML methods should 
not be used. Right-censoring should be accounted for, 
since excluding those who lost to follow-up, may result in 
a biased estimate. ML models for right-censored data have 
been utilised since 2008 and have recently flourished. Since 
2018/19 numerous new models (particularly DL models) 
for right-censored data with their respective open-source 
coding packages have become available [66–69]. While it 
is encouraging that survival ML and DL models are gain-
ing more focus and the development of cutting-edge models 
is accelerating, their interpretability still poses a challenge. 
There are open-source XAI methods such as SurvSHAP 
and SurvLIME for interpreting ML and DL models for 
right-censored data [27, 28]. However, it is noted that mod-
els trained using the PySurvival package, for instance, are 
not yet supported. Therefore, it is crucial to also focus on 
their XAI, whether it is model-agnostic or model-specific. 
In this systematic review, the quality assessment tool PRO-
BAST, typically used for standard prediction models, was 
employed. However, its application to AI-based prediction 
models was not direct, leading to the omission or alteration 
of some signaling questions to evaluate the studies’ qual-
ity. Notably, PROBAST + AI tools are currently in develop-
ment [98, 99], but at this stage, they remain as protocols 
and should be made available to researchers and decision-
makers soon.

Additionally, a standardised measuring tool for most 
SDoH variables is lacking. SDoH are complex and specific 
to context and setting, necessitating tailored approaches. 
Taking these factors into account when measuring SDoH 
could aid in the creation of effective, context-specific strate-
gies that precisely reflect the impact of SDoH on health out-
comes. Inadequately designed SDoH (e.g., race)-sensitive 
models have the potential to exacerbate existing biases and 
discrimination within healthcare systems [86, 87]. Conse-
quently, it is imperative to apply nuanced considerations 
that are specific to the context, purpose, and application of 
the predictive model. In this systematic review, despite hav-
ing not differentiated between gender and sex, we found that 
a common limitation in CVD risk prediction studies is the 
rarity of gender-specific analysis. Future prediction studies 
should focus on gender-stratification while incorporating a 
range of SDoH in the AI prediction models for enhanced 
prediction and wise decision making.

Strengths and Limitations

The strengths of this systematic review are its novelty in 
concisely summarising the ML and DL models utilised 
for time to CVD outcomes, the applied interpretation 

Gender Stratification in CVD Prediction

In 80% of the studies, gender-stratified prediction was 
overlooked despite gender playing a role in CVD presenta-
tion, diagnosis, and survival [89, 90]. Moreover, the role of 
gender is a critical determinant of CVD as it shapes one’s 
norms, roles, social relations, and behaviors [91]. Due to the 
challenges in distinguishing gender and sex from the stud-
ies, we used the general term “gender”. Additionally, it is 
important to acknowledge the following when considering 
gender versus sex in the deployment of ML models [92, 93]: 
(1) Viewing gender strictly as a binary biological construct 
fails to account for the intricate social factors that shape 
gender identity and expression, (2) Inferring gender solely 
based on biological sex characteristics can lead to discrimi-
nation against transgender and non-binary individuals. Gen-
erally, gender-stratified prediction models are beneficial for 
pinpointing gender-specific predictive factors for tailored 
and potentially more effective interventions [94]. However, 
we recommend that gender-stratified prediction models be 
undertaken after meticulous attention to the representative-
ness of data, potential biases, and the fundamental factors 
driving gender disparities in health outcomes.

Model Validation

Almost all studies internally validated their models. How-
ever, a few studies did external validation. Another review 
also highlighted that most studies did not perform external 
validation of their ML models [13]. Although external vali-
dation is commonly viewed as a critical step in transitioning 
clinical prediction models from development to implemen-
tation, it should not be seen as an automatic green light for 
model deployment. Moreover, there is no single recom-
mended validation design, external validation is not always 
essential, and at times, multiple external validations may 
be required. Generally, the necessity and scope of external 
validations are contingent upon the intended application of 
the model and the justification for conducting an external 
validation study [95].

Implications for Clinical Practice and 
Recommendations

AI-based risk prediction models have an increased discrimi-
nation ability and accuracy as compared to the conventional 
multivariable models [96]. However, there are misconcep-
tions that ML requires large amounts of data [97]. Despite 
ML models often benefiting from large datasets, they can 
still be effectively applied to smaller health-related datas-
ets as long as the right balance between data quantity and 
quality is ensured and interpretability is prioritised [97]. It 
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