Abstract
In this paper, some local and parallel finite element methods based on two-grid methods are presented for the non-stationary Navier-Stokes/Darcy model. Based on two-grid methods for spatial discretizations, both semi-discrete scheme and fully-discrete scheme with backward Euler method for the temporal discretization are proposed. Some local a priori estimate, which is crucial for the theoretical analysis, is obtained. The motivation of these local and parallel methods is that by utilizing decoupled method based on interface approximation via temporal extrapolation, low frequency could be obtained on the whole domain with a coarse grid, then solve some residual equations on some overlapped subdomains with a finer gird by some local and parallel procedures at each time step to catch high frequency. The interface coupling term on the subdomains with fine grid is approximated by the coarse-grid approximations on the previous time step. To overcome the global discontinuity of the numerical solution generated by the local and parallel finite element algorithms, a new parallel algorithm based on the partition of unity is developed. In the end, some numerical experiments are constructed to prove the effectiveness of our algorithms.
Similar content being viewed by others
Data Availability
This manuscript has no associated data.
References
Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)
Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)
Du, G., Li, Q., Zhang, Y.: A two-grid method with backtracking for the mixed Navier-Stokes/Darcy model. Numer. Meth. Part. D. E. 36, 1601–1610 (2020)
Du, G., Zuo, L.: A two-grid method with backtracking for the mixed Stokes/Darcy model. J. Numer. Math. 29, 39–46 (2021)
Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)
Qin, Y., Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy Model. Acta. Math. Sci. 38B, 1361–1369 (2018)
Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)
Zuo, L., Du, G.: A multi-grid technique for coupling fluid flow with porous media flow. Comput. Math. Appl. 75, 4012–4021 (2018)
Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)
Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows, Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (2004)
Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)
Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with Beaver-Joseph interface condition. Numer. Math. 117, 601–629 (2011)
He, X., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)
Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Engrg. 268, 264–283 (2014)
Sun, Y., Sun, W., Zheng, H.: Domain decomposition method for the fully-mixed Stokes-Darcy coupled problem. Comput. Methods Appl. Engrg. 374, 113578 (2021)
Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)
Gatica, G., Oyarzúa, R., Sayas, F.J.: A conforming mixed finite element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)
Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron T. Numer. Ana. 26, 350–384 (2007)
Du, G., Zuo, L.: Local and parallel finite element methods for the coupled Stokes/Darcy model. Numer. Algorithms 87, 1593–1611 (2021)
Du, G., Zuo, L.: Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Math. Sci. 37, 1331–1347 (2017)
Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal. Appl. 435, 1129–1145 (2016)
Wang, X., Du, G., Zuo, L.: A novel local and parallel finite element method for the mixed Navier-Stokes-Darcy problem. Comput. Math. Appl. 90, 73–79 (2021)
Zuo, L., Du, G.: A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. Numer. Algor. 77, 151–165 (2018)
Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comp. 79, 707–731 (2010)
Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)
Li, J., Li, R., Zhao, X., Chen, Z.: A second-order fractional time-stepping method for a coupled Stokes/Darcy system. J. Comput. Appl. Math. 390, 113329 (2021)
Qin, Y., Hou, Y., Huang, P., Wang, Y.: Numerical analysis of two grad-div stabilization methods for the time-dependent Stokes/Darcy model. Comput. Math. Appl. 79, 817–832 (2020)
Shan, L., Zhang, Y.: Error estimates of the partitioned time stepping method for the evolutionary Stokes-Darcy flows. Comput. Math. Appl. 73, 713–726 (2017)
Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time steps for the nonstationary stokes-darcy model. Numer. Meth. Part. D. E. 29, 549–583 (2013)
Li, Y., Hou, Y., Layton, W., Zhao, Ha.: Adaptive Partitioned method for the Time-Accurate Approximation of the Evolutionary Stokes-Darcy System. Comput. Method. Appl. M. 364, 112923 (2020)
Xue, D., Hou, Y.: Numerical Analysis of a Second Order Algorithm for a Non-stationary Navier-Stokes/Darcy Model. J. Comput. Appl. Math. 369, 112579 (2020)
Cao, L., He, Y., Li, J., Yang, D.: Decoupled modified characteristic FEMs for fully evolutionary Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. J. Comput. Appl. Math. 38, 113128 (2021)
Du, G., Zuo, L.: A two-grid parallel partition of unity finite element scheme. Numer. Algorithms. 80, 429–445 (2019)
Du, G.: Expandable parallel finite element methods for linear elliptic problems. Acta Math. Sci. 40B, 572–588 (2020)
Du, G., Zuo, L.: A Parallel Iterative Finite Element Method for the Linear Elliptic Equations. J. Sci. Comput. 85, 35 (2020)
Hou, Y., Du, G.: An expandable local and parallel two-grid finite element scheme. Comput. Math. Appl. 71, 2541–2556 (2016)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (1999)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14, 293–327 (2001)
Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73, 129–140 (2017)
He, Y., Xu, J., Zhou, A., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)
Yu, J., Shi, F., Zheng, H.: Local and Parallel Finite Element Algorithms Based on the Partition of Unity for the Stokes Problem. SIAM. J. Sci. Comput. 36, C547–C567 (2014)
Du, G., Zuo, L.: A Parallel Partition of Unity Scheme Based on Two-Grid Discretizations for the Navier-Stokes Problem. J. Sci. Comput. 75, 1445–1462 (2018)
Ran, H., Zheng, B., Shang, Y.: A parallel finite element variational multiscale method for the Navier-Stokes equations with nonlinear slip boundary conditions. Appl. Numer. Math. 168, 274–292 (2021)
Shang, Y., He, Y.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations. Appl. Numer. Math. 60, 719–737 (2010)
Zheng, B., Shang, Y.: A parallel stabilized finite element variational multiscale method based on fully overlapping domain decomposition for the incompressible Navier-Stokes equations. Appl. Numer. Math. 159, 138–158 (2021)
Zheng, H., Yu, J., Shi, F.: Local and parallel finite element method based on the partition of unity for incompressible flow. J. Sci. Comput. 65, 512–532 (2015)
Xu, F., Huang, Q.: Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems. J. Sci. Comput. 82, 20 (2020)
Zhang, Y., Hou, Y., Shan, L., Dong, X.: Local and Parallel Finite Element Algorithm for Stationary Incompressible Magnetohydrodynamics. Numer. Meth. Part. D. E. 33, 1513–1539 (2017)
Li, Q., Du, G.: Local and parallel finite element methods based on two-grid discretizations for unsteady convection-diffusion problem. Numer. Meth. Part. D. E. 37, 3023–3041 (2021)
Liu, Q., Hou, Y.: Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Appl. Math. Mech. -Engl. Ed. 30, 787–794 (2009)
Shang, Y., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algor. 54, 195–218 (2010)
Li, Q., Du, G.: Local and parallel finite element methods based on two-grid discretizations for the nonstationary Navier-Stokes equations. Numer. Algor. 88, 1915–1936 (2021)
Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)
Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)
Jäger, W., Mikelić, A., Neuss, N.: Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22, 2006–2028 (2001)
Payne, L., Straughan, B.: Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modeling questions. J. Math. Pure Appl. 77, 317–354 (1998)
Saffman, P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)
Girault, V., Raviart, P.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1981)
Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)
Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem III: smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25, 489–512 (1988)
Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM. J. Numer. Anal. 27, 353–384 (1990)
He, Y.: A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations II: time discretization. J. Comput. Math. 22, 33–54 (2004)
He, Y.: Two-level method baesd on finite element and crank-nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM. J. Numer. Anal. 41, 1263–1285 (2006)
He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)
Funding
This work is subsidized by NSFC (Grant No. 12172202, 11701343), the Natural Science Foundation of Shandong Province (Grant No. ZR2021MA063), the Natural Science Foundation of Shaanxi Province (2021JQ-426) and the Scientific Research Program of Shaanxi Provincial Education Department (21JK0935).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, Q., Du, G. Local and Parallel Finite Element Methods Based on Two-grid Discretizations for a Transient Coupled Navier-Stokes/Darcy Model. J Sci Comput 92, 76 (2022). https://doi.org/10.1007/s10915-022-01946-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01946-0