Abstract
In this work, we propose a new way of splitting the flux function of the isentropic compressible Euler equations at low Mach number into stiff and non-stiff parts. Following the IMEX methodology, the latter ones are treated explicitly, while the first ones are treated implicitly. The splitting is based on the incompressible limit solution, which we call reference solution. An analysis concerning the asymptotic consistency and numerical results demonstrate the advantages of this splitting.
Similar content being viewed by others
References
Anderson, J.D.: Fundamentals of Aerodynamics, \(3^{rd}\) edn. McGraw-Hill, New York (2001)
Ascher, U.M., Ruuth, S., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)
Ascher, U.M., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)
Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)
Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2011)
Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: E. Arge, A.M. Bruaset, H.P. Langtangen (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press Boston (1997)
Bispen, G.: IMEX finite volume methods for the shallow water equations. Ph.D. thesis, Johannes Gutenberg-Universität (2015)
Bispen, G., Arun, K., Lukáčová-Medvid’ová, M., Noelle, S.: IMEX large time step finite volume methods for low froude number shallow water flows. Commun. Comput. Phys. 16, 307–347 (2014)
Boscarino, S.: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems. SIAM J.Numer. Anal. 45, 1600–1621 (2007)
Boscarino, S.: On an accurate third order implicit-explicit Runge-Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)
Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)
Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)
Cockburn, B., Lin, S.Y.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113 (1989)
Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1988)
Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(p^1\)-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Math. Model. Numer. Anal. 25, 337–361 (1991)
Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Math. Comput. 141, 199–224 (1998)
Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations. J. Comput. Phys. 231, 5685–5704 (2012)
Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numerische Mathematik 35(3), 257–276 (1980)
Degond, P., Jin, S., Liu, J.G.: Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math. Acad. Sinicia 2(4), 851 (2007)
Degond, P., Tang, M.: All speed scheme for the low mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10, 1–31 (2011)
Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)
Giraldo, F., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier-Stokes equations: application to nonhydrostatic atmospheric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)
Giraldo, F.X., Restelli, M.: High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids 63(9), 1077–1102 (2010)
Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12, 955–980 (2012)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics, Berlin (1991)
Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)
Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)
Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Rivista di Matematica della Universita Parma 3, 177–216 (2012)
Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)
Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003)
Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)
Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low mach number asymptotics I: one-dimensional flow. J. Comput. Phys. 121, 213–237 (1995)
Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics, viii+508 pp. John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart (1997)
Kuepper, K., Frank, M., Jin, S.: An asymptotic preserving 2-d staggered grid method for multiscale transport equations. SIAM J. Numer. Anal. 54, 440–461 (2016)
Müller, A., Behrens, J., Giraldo, F., Wirth, V.: Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2d bubble experiments. J. Comput. Phys. 235, 371–393 (2013)
Noelle, S., Bispen, G., Arun, K., Lukáčová-Medvid’ová, M., Munz, C.D.: A weakly asymptotic preserving low mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36, B989–B1024 (2014)
Pareschi, L., Russo, G.: Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005)
Restelli, M.: Semi-lagrangian and semi-implicit discontinuous Galerkin methods for atmospheric modeling applications. PhD thesis Politecnico di Milano (2007)
Schöberl, J.: Netgen - an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visualization Sci. 1, 41–52 (1997)
Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)
Schütz, J., Kaiser, K.: A new stable splitting for singularly perturbed ODEs. Appl. Numer. Math. 107, 18–33 (2016)
Schütz, J., Kaiser, K., Noelle, S.: The RS-IMEX splitting for the isentropic Euler equations. In: S. Elgeti, J.W. Simon (eds.) Conference Proceedings of the YIC GACM 2015. Publication Server of RWTH Aachen University. urn:nbn:de:hbz:82-rwth-2015-039806. https://publications.rwth-aachen.de/record/480970/files/ProceedingsYIC-GACM-ACCES.pdf (2015)
Schütz, J., Noelle, S.: Flux splitting for stiff equations: a notion on stability. J. Sci. Comput. 64(2), 522–540 (2015)
Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mechanics, vol. 29. Springer, Berlin (2001)
Yelash, L., Müller, A., Lukáčová-Medvid’ová, M., Giraldo, F.X., Wirth, V.: Adaptive discontinuous evolution Galerkin method for dry atmospheric flow. J. Comput. Phys. 268, 106–133 (2014)
Yong, W.A.: A note on the zero Mach number limit of compressible Euler equations. Proc American Math. Soc. 133(10), 3079–3085 (2005)
Zakerzadeh, H., Noelle, S.: A note on the stability of implicit-explicit flux splittings for stiff hyperbolic systems. IGPM Preprint Nr. 449 (2016)
Acknowledgments
The first author has been partially supported by the German Research Foundation (DFG) Project NO 361/3-3, and the University of Hasselt in the framework of the BOF 2016. The authors would like to thank Arun K.R., Georgij Bispen, Rupert Klein, Mária Lukáčová-Medvid’ová, Claus-Dieter Munz and Hamed Zakerzadeh for the discussions and collaborations leading to the RS-IMEX approach.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kaiser, K., Schütz, J., Schöbel, R. et al. A New Stable Splitting for the Isentropic Euler Equations. J Sci Comput 70, 1390–1407 (2017). https://doi.org/10.1007/s10915-016-0286-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0286-6