Abstract
This paper studies the Galerkin finite element approximation of time-fractional Navier–Stokes equations. The discretization in space is done by the mixed finite element method. The time Caputo-fractional derivative is discretized by a finite difference method. The stability and convergence properties related to the time discretization are discussed and theoretically proven. Under some certain conditions that the solution and initial value satisfy, we give the error estimates for both semidiscrete and fully discrete schemes. Finally, a numerical example is presented to demonstrate the effectiveness of our numerical methods.
Similar content being viewed by others
References
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Pani, A.K., Yuan, J.Y.: Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model. IMA J. Numer. Anal. 25(4), 750–782 (2005)
Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)
Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2012)
Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)
Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 33, 691–698 (2015)
Guo, B.Y., Jiao, Y.J.: Spectral method for Navier–Stokes equations with slip boundary conditions. J. Sci. Comput. 58, 249–274 (2014)
Bernardi, C., Raugel, G.: A conforming finite element method for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 22(3), 455–473 (1985)
Févrière, C., Laminie, J., Poullet, P., Poullet, P.: On the penalty-projection method for the Navier-Stokes equations with the MAC mesh. J. Comput. Appl. Math. 226, 228–245 (2009)
Min, C.H., Gibou, F.: A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids. J. Comput. Phys. 219, 912–929 (2006)
Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3), 855–875 (2011)
Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)
Goswami, D., Damázio, P. D.: A two-level finite element method for time-dependent incompressible Navier–Stokes equations with non-smooth initial data. arXiv:1211.3342 [math.NA]
Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes and Darcys problem. Numer. Methods Partial Differ. Equ. 24, 127–143 (2008)
Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, 55–78 (2015)
Tone, F.: Error analysis for a second order scheme for the Navier–Stokes equations. Appl. Numer. Math. 50(1), 93–119 (2004)
Baker, G.A.: Galerkin Approximations for the Navier–Stokes Equations. Harvard University, Cambridge (1976)
Johnston, H., Liu, J.G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199(1), 221–259 (2004)
Okamoto, H.: On the semi-discrete finite element approximation for the nonstationary Navier–Stokes equation. J. Fac. Sci. Univ. Tokyo Sect. A Math. 29(3), 613–651 (1982)
Frutos, J.D., Garca-Archilla, B., Novo, J.: Optimal error bounds for two-grid schemes applied to the Navier–Stokes equations. Appl. Math. Comput. 218(13), 7034–7051 (2012)
Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)
Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: second order schemes. Math. Comput. 65, 1039–1065 (1996)
Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)
Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)
Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)
Shan, L., Hou, Y.: A fully discrete stabilized finite element method for the time-dependent Navier–Stokes equations. Appl. Math. Comput. 215(1), 85–99 (2009)
Huang, P., Feng, X., Liu, D.: A stabilized finite element method for the time-dependent stokes equations based on Crank–Nicolson scheme. Appl. Math. Model. 37(4), 1910–1919 (2013)
Carvalho-Neto, P.M.D., Planas, G.: Mild solutions to the time fractional Navier–Stokes equations in \(\mathbf{R}^N\). J. Differ. Equ. 259(7), 2948–2980 (2015)
Liu, Q., Hou, Y.: A two-level finite element method for the Navier–Stokes equations based on a new projection. Appl. Math. Model. 34(2), 383–399 (2010)
Nochetto, R.H., Pyo, J.H.: The gauge–uzawa finite element method. Part I. SIAM J. Numer. Anal. 43, 1043–1068 (2005)
Rannacher, R.: Numerical analysis of the Navier–Stokes equations. Appl. Math. 38, 361–380 (1993)
Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)
Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)
Chacón Rebollo, T., Gómez, T., Mármol, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier–Stokes equations. J. Sci. Comput. 63, 885–912 (2015)
Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg (1986)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Spriger Series in Computational Mathematics, vol. 25. Springer-Verlag, Berlin, Heidelberg (1997)
Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)
Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)
He, Y.N., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)
He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007)
He, Y., Huang, P., Feng, X.: \(H^2\)-stability of the first order fully discrete schemes for the time-dependent Navier–Stokes equations. J. Sci. Comput. 62(1), 230–264 (2015)
Luo, Z.D.: A new finite volume element formulation for the non-stationary Navier–Stokes equations. Adv. Appl. Math. Mech. 6, 615–636 (2014)
Giga, Y.: Analyticity of the semigroup generated by the stokes operator in \(L_r\) spaces. Math. Z. 178(3), 297–329 (1981)
Rui, A.C., Ferreira, R.: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 140(5), 1605–1612 (2012)
Acknowledgments
The authors want to thank Prof. Yang Liu, Inner Mongolia University, China, for his kindness and help with the numerical example. The authors would like to express their sincere gratitude to the anonymous reviewers for their careful reading of the manuscript, as well as their comments that lead to a considerable improvement of the original manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research is supported by the National Natural Science Foundation of China under Grant 61271010 and by Beijing Natural Science Foundation under Grant 4152029.
Rights and permissions
About this article
Cite this article
Li, X., Yang, X. & Zhang, Y. Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier–Stokes Equations. J Sci Comput 70, 500–515 (2017). https://doi.org/10.1007/s10915-016-0252-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0252-3