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Abstract

A tree in an edge-colored graph is said to be rainbow if no two edges on the

tree share the same color. An edge-coloring of G is called 3-rainbow if for any

three vertices in G, there exists a rainbow tree connecting them. The 3-rainbow

index rx3(G) of G is defined as the minimum number of colors that are needed in

a 3-rainbow coloring of G. This concept, introduced by Chartrand et al., can be

viewed as a generalization of the rainbow connection. In this paper, we study the

3-rainbow index by using connected three-way dominating sets and 3-dominating

sets. We shown that for every connected graph G on n vertices with minimum

degree at least δ (3 ≤ δ ≤ 5), rx3(G) ≤ 3n
δ+1 + 4, and the bound is tight up to an

additive constant; whereas for every connected graph G on n vertices with minimum

degree at least δ (δ ≥ 3), we get that rx3(G) ≤ n
ln(δ+1)
δ+1 (1+ oδ(1)) + 5. In addition,

we obtain some tight upper bounds of the 3-rainbow index for some special graph

classes, including threshold graphs, chain graphs and interval graphs.

Keywords: 3-rainbow index, connected dominating sets, rainbow paths
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1 Introduction

All graphs in this paper are undirected, finite and simple. We follow [1] for graph

theoretical notation and terminology not described here. Let G be a nontrivial connected

∗Supported by NSFC No.11371205 and PCSIRT.
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graph with an edge-coloring c : E(G) → {1, 2, · · · , t}, t ∈ N, where adjacent edges may

be colored the same. A path is said to be a rainbow path if no two edges on the path

have the same color. An edge-colored graph G is called rainbow connected if for every

pair of distinct vertices of G there exists a rainbow path connecting them. The rainbow

connection number of G, denoted by rc(G), is defined as the minimum number of colors

that are needed in order to make G rainbow connected. The rainbow k-connectivity of G,

denoted by rck(G), is defined as the minimum number of colors in an edge-coloring of G

such that every two distinct vertices of G are connected by k internally disjoint rainbow

paths. These concepts were introduced by Chartrand et al. in [9, 10]. Recently, there

have been published a lot of results on the rainbow connections. The interested readers

can see [16, 17] for a survey on this topic.

The (k, ℓ)-rainbow index was also introduced by Chartrand et al. in [11], which can

be viewed as a generalization of the rainbow connection and rainbow connectivity. We

call a tree T of an edge-colored graph G a rainbow tree if no two edges of T have the

same color. For S ⊆ V (G), a rainbow S-tree is a rainbow tree connecting the vertices of

S. Suppose that {T1, T2, · · · , Tℓ} is a set of rainbow S-trees. They are called internally

disjoint if E(Ti)∩E(Tj) = ∅ and V (Ti)
⋂
V (Tj) = S for every pair of distinct integers i, j

with 1 ≤ i, j ≤ ℓ (Note that these trees are vertex-disjoint in G \ S). Given two positive

integers k, ℓ with k ≥ 2, the (k, ℓ)-rainbow index rxk,ℓ(G) of G is the minimum number

of colors needed in an edge-coloring of G such that for any set S of k vertices of G, there

exist ℓ internally disjoint rainbow S-trees. In particular, for ℓ = 1, we often write rxk(G)

rather than rxk,1(G) and call it the k-rainbow index. An edge-coloring of G is called a

k-rainbow coloring if for any set S of k vertices of G, there exists a rainbow S-tree. A

simple result for the k-rainbow index [11] is that k−1 ≤ rxk(G) ≤ n−1. It is easy to see

that rx2,ℓ(G) = rcℓ(G). In the sequel, we always assume k ≥ 3. We refer to [2–4,12,15,18]

for more details about the (k, ℓ)-rainbow index.

Computing the rainbow connection number of a graph is NP-hard [7], so is computing

the (k, ℓ)-rainbow index. For this reason, one of the most important goals for studying

rainbow connection number and rainbow index is to obtain good upper and lower bounds.

In the search toward good upper bounds, an idea that turned out to be successful more

than once is considering the “strengthened” connected dominating set: find a suitable

edge-coloring of the induced graph on such a set, and then extend it to the whole graph

using a constant number of additional colors.

Given a graph G, a set D ⊆ V (G) is called a dominating set if every vertex of V \D

is adjacent to at least one vertex of D. Further, if the subgraph G[D] of G induced by D

is connected, we call D a connected dominating set of G. The domination number γ(G)

is the number of vertices in a minimum dominating set for G. Similarly, the connected

domination number γc(G) is the number of vertices in a minimum connected dominating

set for G.
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Let k be a positive integer. A dominating set D of G is called a k-way dominating

set if d(v) ≥ k for every vertex v ∈ V \ D. In addition, if G[D] is connected, we call

D a connected k-way dominating set. A set D ⊆ V (G) is called a k-dominating set of

G if every vertex of V \D is adjacent to at least k distinct vertices of D. Furthermore,

if G[D] is connected, we call D a connected k-dominating set. Obviously, a (connected)

k-dominating set is also a (connected) k-way dominating set, but the converse is not true.

There have been several results revealing the close relation between the dominating

sets and the rainbow connection number and rainbow index.

Theorem 1. [8] If D is a connected two-way dominating set of a connected graph G,

then rc(G) ≤ rc(G[D]) + 3.

In [8], the authors employed Theorem 1 to get some tight upper bounds for the rainbow

connection number of many special graph classes, which were otherwise difficult to obtain.

Theorem 2. [18] Let G be a connected graph with minimal degree δ(G) ≥ 3. If D is a

connected 2-dominating set of G, then rx3(G) ≤ rx3(G[D]) + 4 and the bound is tight.

From Theorem 2, the authors determined a tight upper bound for the 3-rainbow index

of the complete bipartite graphs Ks,t (3 ≤ s ≤ t).

The proofs of the above two theorems are similar. First color the edges in G[D] using

k different colors (k = rc(G[D]) or rx3(G[D])). Then select a spanning tree in every

connected component of H = G − D. So we construct a spanning forest F of H and

choose X and Y as any one of the bipartitions defined by the forest F . Color the edges

between X and D and the edges between Y and D as well as the edges between X and

Y with suitable colors, which gives an edge-coloring we want. Note that in the process

all the edges in E(H)− E(F ) are ignored.

In this paper, we will take the edges in E(H)−E(F ) into consideration to get a more

subtle coloring strategy. We show that for a connected graph G, rx3(G) ≤ rx3(G[D])+6,

where D is a connected three-way dominating set of G. Moreover, this bound is tight. By

using the results on spanning trees with many leaves, we obtain that rx3(G) ≤ 3n
δ+1

+ 4

for every connected graph G on n vertices with minimum degree at least δ (3 ≤ δ ≤ 5),

and the bound is tight up to an additive constant; whereas for every connected graph G

on n vertices with minimum degree at least δ (δ ≥ 3), we get that rx3(G) ≤ n ln(δ+1)
δ+1

(1 +

oδ(1)) + 5. In addition, when considering a connected 3-dominating set D of G, we prove

that rx3(G) ≤ rx3(G[D]) + 3, and the bound is tight. The farthest we can get with

this idea is some tight upper bounds for some special graph classes, including threshold

graphs, chain graphs and interval graphs.
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2 Preliminaries

For a graph G, we use V (G), E(G), |G|, δ(G), and diam(G) to denote its vertex

set, edge set, order (number of vertices), minimum degree and the diameter (maximum

distance between every pair of vertices) of G, respectively. For D ⊆ V (G), let D =

V (G) \D, and G[D] be the subgraph of G induced on D. For v ∈ V (G), let N(v) denote

the set of neighbors of v. For two disjoint subsets X and Y of V (G), E[X, Y ] denotes the

set of edges of G between X and Y .

Definition 1. BFS (breadth-first search) is a strategy for searching in a graph. It begins

at a root and inspects all its neighbors. Then for each of those neighbors in turn, it

inspects their neighbors which were unvisited, and so on until all the vertices in the graph

are visited.

Definition 2. A BFS-tree (breadth-first search tree) is a spanning rooted tree returned by

BFS. Let T be a BFS-tree with r as its root. For a vertex v, the height of v is the distance

between v and r. All the vertices of height k form the kth level of T . The ancestors of

v are the vertices on the unique {v, r}-path in T . The parent of v is its neighbor on the

unique {v, r}-path in T . Its other neighbors are called the children of v. The siblings of v

are the vertices in the same level as v.

Remark: BFS-trees have a nice property: every edge of the graph joins vertices on the

same or consecutive levels. It is not possible for an edge to skip a level. Thus the neighbor

of a vertex v has three possibilities: (1) a sibling of v; (2) the parent of v or a right sibling

of the parent of v; (3) a child of v or a left sibling of the children of v; see Figure 1.

v

r

Figure 1: The vertices in the dotted circles are the potential neighbors of v.

Definition 3. The Steiner distance d(S) of a set S of vertices in a graph G is the min-

imum size of a tree in G containing S. The k-Steiner diameter sdiamk(G) of G is the

maximum Steiner distance of S among all the sets S with k vertices in G. Obviously,

sdiam2(G) = diam(G) and sdiamk(G) ≤ sdiamk+1(G).
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Definition 4. Let G be a graph, D ⊆ V (G) and v ∈ V (G) \ D. we call a path P =

v0v1 · · · vk is a v-D path if v0 = v and V (P ) ∩ D = {vk}. Two or more paths are called

internally disjoint if none of them contains an inner vertex of another.

Definition 5. An edge-colored graph is rainbow if no two edges in the graph share the

same color.

Definition 6. Let D be a dominating set of a graph G. For v ∈ D, its neighbors in D

are called foots of v, and the corresponding edges are called legs of v.

Definition 7. A graph G is called a threshold graph, if there exists a weight function

w : V (G) → R and a real constant t such that two vertices u, v ∈ V (G) are adjacent if

and only if w(u) + w(v) ≥ t. We call t the threshold for G.

Definition 8. A bipartite graph G(A,B) is called a chain graph, if the vertices of A can

be ordered as A = (a1, a2, . . . , ak) such that N(a1) ⊆ N(a2) ⊆ . . . ⊆ N(ak).

Definition 9. An intersection graph of a family F of sets is a graph whose vertices can

be mapped to the sets in F such that there is an edge between two vertices in the graph if

and only if the corresponding two sets in F have a non-empty intersection. An interval

graph is an intersection graph of intervals on the real line.

3 Main results

Theorem 3. If D is a connected three-way dominating set of a connected graph G, then

rx3(G) ≤ rx3(G[D]) + 6. Moreover, the bound is tight.

The proof of Theorem 3 is given in Section 4. Let us first show how this implies the

following results.

Corollary 4. For every connected graph G with δ(G) ≥ 3, rx3(G) ≤ γc(G) + 5.

Proof. In this case, every connected dominating set ofG is a connected three-way dominat-

ing set. Now take a minimum connected dominating set D in G. Then rx3(G[D]) ≤ |D|−

1 = γc(G)− 1. It follows from Theorem 3 that rx3(G) ≤ rx3(G[D]) + 6 ≤ γc(G) + 5.

From the following lemma, we can get the next corollary.

Lemma 5. (1) [14] Every connected graph on n vertices with minimum degree δ ≥ 3 has

a spanning tree with at least 1
4
n + 2 leaves;

(2) [13] Every connected graph on n vertices with minimum degree δ ≥ 4 has a spanning

tree with at least 2
5
n+ 8

5
leaves;

(3) [13] Every connected graph on n vertices with minimum degree δ ≥ 5 has a spanning

tree with at least 1
2
n+ 2 leaves;
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Corollary 6. (1) For every connected graph G on n vertices with δ(G) ≥ 3, rx3(G) ≤
3
4
n+ 3.

(2) For every connected graph G on n vertices with δ(G) ≥ 4, rx3(G) ≤ 3
5
n+ 17

5
.

(3) For every connected graph G on n vertices with δ(G) ≥ 5, rx3(G) ≤ 1
2
n+ 3.

Moreover, these bounds are tight up to an additive constant.

Proof. We only prove (1); (2) and (3) can be derived by the same arguments.

Clearly, we can take a connected dominating set consisting of all the non-leaves in

the spanning tree. Thus by Lemma 5, for every connected graph G on n vertices with

minimum degree δ(G) ≥ 3, γc(G) ≤ n− (1
4
n+2) = 3

4
n−2. Then it follows from Corollary

4 that rx3(G) ≤ 3
4
n + 3.

On the other hand, the factors in these bounds cannot be improved, since there exist

infinitely many graphs G∗ such that rx3(G
∗) ≥ 3

δ+1
n − δ+7

δ+1
. We construct the graphs

as follows (the construction was also mentioned in [5]): first take m copies of Kδ+1,

denoted by X1, X2, . . . , Xm and label the vertices of Xi with xi,1, . . . , xi,δ+1. Then take

two copies of Kδ+2, denoted by X0 and Xm+1 and similarly label their vertices. Now

join xi,2 and xi+1,1 for i = 0, 1, . . . , m with an edge and delete the edges xi,1xi,2 for

i = 0, 1, . . . , m+ 1. See Figure 2 for δ = 3. It is easy to see that diam(G∗) = 3
δ+1

n− δ+7
δ+1

.

The k-Steiner diameter of a graph is a trivial lower bound for its k-rainbow index [11],

and so rx3(G
∗) ≥ sdiam3(G

∗) ≥ diam(G∗) = 3
δ+1

n− δ+7
δ+1

. For δ = 3, rx3(G
∗) ≥ 3

4
n − 5

2
;

for δ = 4, rx3(G
∗) ≥ 3

5
n − 11

5
; for δ = 5, rx3(G

∗) ≥ 1
2
n − 2. Therefore, all these upper

bounds are tight up to an additive constant.

X0 X1 Xm Xm+1

Figure 2: An example for δ = 3.

As to general δ, Caro et. al. [6] proved that for every connected graph G on n vertices

with minimum degree δ, γc(G) = n ln(δ+1)
δ+1

(1+ oδ(1)). Combining with Corollary 4, we get

the following result.

Corollary 7. For every connected graph G on n vertices with minimum degree δ (δ ≥ 3),

rx3(G) ≤ n ln(δ+1)
δ+1

(1 + oδ(1)) + 5.

The above bound is not believed to be optimal for rx3(G) in terms of δ. We pose the

following conjecture, which has already been proved for δ = 3, 4, 5 in Corollary 6. Note
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that if the conjecture is true, it gives an upper bound tight up to an additive constant by

the construction of the graph G∗.

Conjecture 1. For every connected graph G on n vertices with minimum degree δ

(δ ≥ 3), rx3(G) ≤ 3n
δ+1

+ C, where C is a positive constant.

With regard to the graphs possessing vertices of degree 1 or 2, we obtain the following

result.

Corollary 8. For every connected graph G, rx3(G) ≤ γc(G) + n1 + n2 + 5, where n1 and

n2 denote the number of vertices of degrees 1 and 2 in G, respectively.

Proof. Obviously, adding all the vertices of degrees 1 and 2 into a minimum connected

dominating set forms a connected three-way dominating set in G of size no more than

γc(G) + n1 + n2. Consequently, by Theorem 3, rx3(G) ≤ γc(G) + n1 + n2 + 5.

We proceed with another upper bound for the 3-rainbow index of graphs concerning

the connected 3-dominating set.

Theorem 9. If D is a connected 3-dominating set of a connected graph G with δ(G) ≥ 3,

then rx3(G) ≤ rx3(G[D]) + 3. Moreover, the bound is tight.

Proof. Since D is a connected 3-dominating set, every vertex in D has at least three legs.

Color one of them with 1, one of them with 2, and all the others with 3. Let k = rx3(G[D]).

Then we can color the edges in G[D] with k different colors from {4, 5, . . . , k + 3} such

that for every triple of vertices in D, there exists a rainbow tree in G[D] connecting them.

If there remain uncolored edges in G, we color them with 1.

Next we will show that this edge-coloring is a 3-rainbow coloring of G. For any triple

{u, v, w} of vertices in G, if (u, v, w) ∈ D ×D ×D, then there is already a rainbow tree

connecting them in G[D]. If one of them is in D, say (u, v, w) ∈ D×D×D, join any leg

of u (colored by 1, 2, or 3) with the rainbow tree connecting v, w and the corresponding

foot of u in G[D]. If two of them are in D, say (u, v, w) ∈ D × D × D, join one leg of

u colored by 1, one leg of v colored by 2 with the rainbow tree connecting w and the

corresponding foots of u, v in G[D]. If (u, v, w) ∈ D×D×D, join one leg of u colored by

1, one leg of v colored by 2, one leg of w colored by 3 with the rainbow tree connecting

the corresponding foots of u, v, w in G[D].

The tightness of the bound can be seen from the next Corollary.

As immediate consequences of Theorem 3 and Theorem 9, we get the following:

Corollary 10. Let G be a connected graph with δ(G) ≥ 3.

(1) if G is a threshold graph, then rx3(G) ≤ 5;
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(2) if G is a chain graph, then rx3(G) ≤ 6;

(3) if G is an interval graph, then rx3(G) ≤ diam(G)+4. Thus diam(G) ≤ rx3(G) ≤

diam(G) + 4;

Moreover, all these upper bounds are tight.

Proof. (1) Suppose that V (G) = {v1, v2, . . . , vn} where w(v1) ≥ w(v2) ≥ . . . ≥ w(vn).

Since the minimum degree of G is at least three, vi (1 ≤ i ≤ 3) is adjacent to all the

other vertices in G. Thus D = {v1, v2, v3} consists of a connected 3-dominating set of

G. Note that D induces a K3, so rx3(G[D]) = 2. It follows from Theorem 9 that

rx3(G) ≤ rx3(G[D]) + 3 = 5.

(2) Suppose thatG = G(A,B) and the vertices ofA can be ordered asA = (a1, a2, . . . , ak)

such that N(a1) ⊆ N(a2) ⊆ . . . ⊆ N(ak). Since the minimum degree of G is at least

three, ai (k − 2 ≤ i ≤ k) is adjacent to all the vertices in B, and N(a1) has at least

three vertices, say {b1, b2, b3}. Clearly bi (1 ≤ i ≤ 3) is adjacent to all the vertices in

A. Thus D = {ak−2, ak−1, ak, b1, b2, b3} consists of a connected 3-dominating set of G.

Note that D induces a K3,3, so rx3(G[D]) = 3 (see [12]). It follows from Theorem 9 that

rx3(G) ≤ rx3(G[D]) + 3 = 6.

(3) If G is isomorphic to a complete graph, then rx3(G) = 2 or 3 (see [11]), the

assertion holds trivially. Otherwise, it was showed in [8] that every interval graph G

which is not isomorphic to a complete graph has a dominating path P of length at most

diam(G) − 2. Since δ(G) ≥ 3, P consists of a connected three-way dominating set of G.

It follows from Theorem 3 that rx3(G) ≤ rx3(P ) + 6 ≤ diam(G) + 4. On the other hand,

rx3(G) ≥ sdiam3(G) ≥ diam(G). We conclude that for a connected interval graph G

with δ ≥ 3, diam(G) ≤ rx3(G) ≤ diam(G) + 4

Here we give examples to show the tightness of these upper bounds.

Example 1: A threshold graph G with δ(G) ≥ 3 and rx3(G) = 5.

y1
y2

y3

x1 x2 xt−1 xt

Figure 3: A threshold graph G with δ(G) ≥ 3 and rx3(G) = 5.

Consider the graph in Figure 3, where t ≥ 2 × 43 + 1. It is easy to see that it is a

threshold graph (y1, y2, y3 can be given a weight 1, others a weight 0 and the threshold

1). By contradiction, we assume that G can be colored with 4 colors. Let Si denote the

star with xi as its center and E(Si) = {xiy1, xiy2, xiy3}. Every Si can be colored in 43

8



different ways. Since t ≥ 2 × 43 + 1, there exist three completely identical edge-colored

stars, say S1, S2 and S3. If two of the three edges in Si (1 ≤ i ≤ 3) receive the same color,

then there are no rainbow trees connecting x1, x2, x3, a contradiction. If the three edges

in Si (1 ≤ i ≤ 3) receive distinct colors, then the rainbow tree connecting x1, x2, x3 must

contain the vertices y1, y2, y3. Thus the tree has at least five edges, but only four different

colors, a contradiction.

Example 2: A chain graph G with δ(G) ≥ 3 and rx3(G) = 6.

a1 ak−3 ak−2 ak−1 ak

b1 b2 b3 b4 bt

A

B

Figure 4: A chain graph G with δ(G) ≥ 3 and rx3(G) = 6.

Consider the bipartite graph in Figure 4, where N(a1) = N(a2 = · · · = N(ak−3) =

{b1, b2, b3}, N(ak−2) = N(ak−1) = N(ak) = {b1, b2, · · · , bt}, and t ≥ 2 × 53 + 4. By

contradiction, we assume that G can be colored with 5 colors. Let Si (4 ≤ i ≤ t) denote

the star with bi as its center and E(Si) = {biak−2, biak−1, biak}. Every Si can be colored

in 53 different ways. Since t − 3 ≥ 2 × 53 + 1, among the t − 3 Si
′s there exist three

completely identical edge-colored stars, say S4, S5 and S6. If two of the three edges in Si

(4 ≤ i ≤ 6) receive the same color, then there are no rainbow trees connecting b4, b5, b6,

a contradiction. If the three edges in Si (4 ≤ i ≤ 6) receive distinct colors, then the

rainbow tree connecting b4, b5, b6 must contain ak−2, ak−1, ak and at least one vertex in

B \ {b4, b5, b6} to connect ak−2, ak−1, ak. Thus the tree has at least six edges, but only five

different colors, a contradiction.

Example 3: An interval graph G with δ(G) ≥ 3 and rx3(G) = diam(G) + 4.

u1

v1

w1

ui

vi

wi

ut

vt

wt

v0

B1

Bi

Bt

Figure 5 An interval graph G with δ(G) ≥ 3 and rx3(G) = diam(G) + 4.

Consider the graph in Figure 5 (it is known as a French Windmill), where t ≥ 2×56+1.

It is easy to see that it is an interval graph with diameter 2. It follows from (3) that

9



rx3(G) ≤ diam(G) + 4 = 6. We will show that rx3(G) = 6. By contradiction, we assume

that G can be colored with 5 colors. Let Bi denote the K4 induced by v0, ui, vi, wi.

Obviously, each Bi can be colored in at most 56 different ways. Since t ≥ 2×56+1, there

exist three completely identical edge-colored subgraphs, say B1, B2, B3. If two of the three

edges incident with v0 in Bi (1 ≤ i ≤ 3) receive the same color, say c(v0ui) = c(v0vi) = 1,

then there are no rainbow trees connecting u1, u2, u3, a contradiction. If the three edges

incident with v0 in Bi (1 ≤ i ≤ 3) receive distinct colors, say c(v0ui) = 1, c(v0vi) =

2, c(v0wi) = 3, then c(uivi) 6= c(uiwi) and c(uivi), c(uiwi) ∈ {4, 5} because there exists a

rainbow tree connecting {u1, u2, u3}. Without loss of generality, suppose c(uivi) = 4 and

c(uiwi) = 5 . Since there exists a rainbow tree connecting {v1, v2, v3}, then c(viwi) = 5.

But then there exist no rainbow trees connecting {w1, w2, w3} in G, a contradiction.

4 Proof of Theorem 3

Let D be a connected three-way dominating set of a connected graph G. We want to

show that rx3(G) ≤ rx3(G[D]) + 6.

To start with, we introduce some definitions and notation that are used in the sequel.

A set of rainbow paths {P1, P2, . . . , Pℓ, } is called super-rainbow if their union
⋃ℓ

i=1 Pi is

also rainbow. For a vertex v in D, we call it safe if there are three internally disjoint

super-rainbow v − D paths. Otherwise, we call v dangerous. Let c(e) be the color of an

edge e, c(H) the set of colors appearing on the edges in a graph H . For a vertex v in a

BFS-tree, we denote the height of v by h(v), the parent of v by p(v), the child of v by

ch(v), the ancestor of v in the first level by π(v).

Let us overview our idea: firstly, we aim to color the edges in E[D,D] and E(G[D])

with six different colors. Our coloring strategy has two steps: in the first step, we give

a periodical coloring on some edges in E[D,D] and E(G[D]). And then most vertices

in D become safe; in the second step, we color the carefully chosen uncolored edges and

recolor some colored edges intelligently to ensure that all the vertices in D are safe. Then

we extend the coloring to the whole graph by coloring the edges in G[D] with rx3(G[D])

fresh colors. Finally, we will show that this edge-coloring of G is a 3-rainbow coloring,

which implies rx3(G) ≤ rx3(G[D]) + 6.

4.1 Color the edges in E[D,D] and E(G[D])

4.1.1 First step: a periodical coloring

Assume that C1, C2, . . . , Cq are the connected components of the subgraph G−D.

If Ci (1 ≤ i ≤ q) consists of an isolated vertex v, then v has at least three legs. We

color one of them with 1, one of them with 2, and all the others with 3. Note that now v
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is safe.

If Ci (1 ≤ i ≤ q) consists of an isolated edge uv, then u has at least two legs. We color

one of them with 1, and all the others with 2. Similarly, v has at least two legs. We color

one of them with 2, and all the others with 3. And color uv with 4. Note that now both

u and v are safe.

If Ci (1 ≤ i ≤ q) consists of at least three vertices, then there exists a vertex v0 in

Ci possessing at least two neighbors in Ci. Starting from v0, we construct a BFS-tree

T of Ci. Suppose the neighbors of v0 in Ci are {v1, v2, . . . , vk} (k ≥ 2), which forms the

first level of T . For each vertex v in Ci, let ev be one leg of v (if there are many legs, we

pick one arbitrarily), t(v) the corresponding foot of v, fv the unique edge joining v and

its parent in T .

Now we color the edges ev and fv as follows: c(ev0) = 2; c(fvi) = 4 and c(evi) = 1 for

1 ≤ i ≤ k − 1; c(fvk) = 5 and c(evk) = 3; for each vertex v in V (Ci) \ {v0, v1, . . . , vk},

if π(v) = vk, then set c(fv) = 4 and c(ev) = 2 when h(v) ≡ 0 (mod 3), c(fv) = 5 and

c(ev) = 3 when h(v) ≡ 1 (mod 3), c(fv) = 6 and c(ev) = 1 when h(v) ≡ 2 (mod 3);

otherwise, if π(v) = vi(1 ≤ i ≤ k − 1), then set c(fv) = 6 and c(ev) = 2 when h(v) ≡

0 (mod 3), c(fv) = 4 and c(ev) = 1 when h(v) ≡ 1 (mod 3), c(fv) = 5 and c(ev) = 3 when

h(v) ≡ 2 (mod 3). In fact, this gives a periodical coloring depicted as Figure 6.

We call the subtree of T rooted at vi (1 ≤ i ≤ k − 1) of type I and the subtree of

T rooted at vk of type II. There may be many subtrees of type I, but only one subtree

of type II. The subtrees of the same type are colored in the same way. More precisely,

if two vertices u, v lie in the same level and belong to subtrees of the same type, then

c(eu) = c(ev) and c(fu) = c(fv) after first step.

2

4 5
1 3

5 6
3 1

6 4
2 2

4 5

1 3
5 6

3 1
6 4

2 2

v0

vkvi
fv

ev

Figure 6: The left branch represents the coloring of subtrees of type I and the right

branch represents the coloring of the subtree of type II.

Now each non-leaf vertex in T has three internally disjoint super-rainbow paths con-

necting it to D: for the root v0, P
v0
1 = v0, t(v0); P

v0
2 = v0, v1, t(v1); P

v0
3 = v0, vk, t(vk). for

other non-leaf vertex v in T , P v
1 = v, t(v); P v

2 = v, p(v), t(p(v)); P v
3 = v, ch(v), t(ch(v)).
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(Note that v may have many children u1, u2, . . . , uℓ, but all the eui

′s, fui

′s receive the same

color. So they only contribute one path to the three internally disjoint super-rainbow v−D

paths.) In other words, after first step all the non-leaf vertices in T are safe .

As to each leaf v′ in T , since v′ has no children, it has exactly two internally disjoint

super-rainbow v′ −D paths: P v′

1 = v′, t(v′); P v′

2 = v′, p(v′), t(p(v′)). In other words, after

first step all the leaves in T are dangerous.

Example 4: The root v0 is safe: c(P v0
1 ) = {2}, c(P v0

2 ) = {1, 4}, c(P v0
3 ) = {3, 5}.

If vi (1 ≤ i ≤ k − 1) is not a leaf of T , then vi is safe: c(P vi
1 ) = {1}, c(P vi

2 ) = {2, 4},

c(P vi
3 ) = {3, 5}.

If vk is not a leaf of T , then vk is safe: c(P vk
1 ) = {3}, c(P vk

2 ) = {2, 5}, c(P vk
3 ) = {1, 6}.

Example 5: If v is a leaf of T in the second level with parent vk, then v is dangerous:

c(P v
1 ) = {1}, c(P v

2 ) = {3, 6}.

All the possible color sets of the three internally disjoint super-rainbow paths connect-

ing a non-leaf vertex to D are: (the first part in every brace is the color of P1, the second

is the color of P2, the third is the color of P3)

{1, 24, 35}, {2, 36, 14}, {3, 15, 26}, {1, 36, 24}, {2, 14, 35}, {3, 25, 16}.

Bearing in mind that D is a connected three-way dominating set, each leaf in T is

incident with at least one uncolored edge. In second step, we will color such edges and

recolor some colored edges suitably to ensure that all the vertices in Ci are safe.

4.1.2 Second step: more edges with a more intelligent coloring

Let v be a leaf in T and gv = vv′ be one uncolored edge incident with v.

If gv connects v to D, then we give gv a smallest color from {1, 2, 3, 4, 5, 6} \ (c(P v
1 ) ∪

c(P v
2 )). For instance, c(gv) = 2 for the vertex v in Example 5. Obviously, now v has three

internally disjoint super-rainbow v −D paths P v
1 , P

v
2 , P

v
3 , where P v

1 = v, t(v); P v
2 = v, v′;

P v
3 = v, p(v), t(p(v)). In other words, v is safe after second step. All the possible color

sets of the three internally disjoint super-rainbow paths connecting v to D are: (the first

part in every brace is the color of P1, the second is the color of P2, the third is the color

of P3)

{1, 2, 36}, {1, 3, 24}, {1, 3, 25}, {2, 3, 15}, {2, 3, 14}.

Now it remains to deal with the leaves in T whose incident uncolored edges all lie in

Ci. Let A denote the set of such vertices. First, we flag all the vertices in V (Ci) \ A,

which are already safe. Note that we only flag the safe vertices. Once one vertex gets

flagged, it is always flagged. Next we arrange the vertices in A in a linear order by the

following three rules:

(R1) for u, v ∈ A, let π(u) = vi and π(v) = vj , if i > j, then u is before v in the

ordering;

(R2) if π(u) = π(v) and h(v) > h(u), then u is before v in the ordering.
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(R3) if π(u) = π(v), h(u) = h(v) and u is reached earlier than v in the BFS-algorithm,

then u is before v in the ordering.

Assume the vertices in A are ordered as A = (w1, w2, . . . , ws). We will deal with

them one by one. Suppose that now we go to the vertex wi (w1, w2, . . . , wi−1 have been

processed). If wi is flagged, we go to the next vertex wi+1; otherwise, we distinguish the

following four cases:

Case 1 : π(wi) = vk and there exists at least one uncolored edge connecting wi to

some subtree of type I. Then we choose one such edge wiv such that the height of v is

as small as possible. Since T is a BFS-tree and the subtree of wi is to the right of the

subtree of v, then h(v) = h(wi) or h(wi) + 1.

Fact 1. ev is not recolored.

If v /∈ A, then ev never gets recolored; if v ∈ A, since π(wi) = vk and π(v) = vj
(1 ≤ j ≤ k − 1), we have not dealt with v yet according to R1, thus ev is not recolored.

We distinguish three subcases based on the height of wi.

∗ Subcase 1.1 : h(wi) ≡ 0(mod 3)

If h(v) = h(wi), then color wiv with 5. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {2} ∪

{1, 4} ∪ {3, 5, 6} and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {2} ∪ {3, 6} ∪ {1, 4, 5}.

If h(v) = h(wi) + 1, then color wiv with 5. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) =

{2} ∪ {3, 4, 6} ∪ {1, 5} and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {1} ∪ {3, 4, 6} ∪ {2, 5}.

Now both wi and v become safe. We flag wi and v (if v is not flagged).

∗ Subcase 1.2 : h(wi) ≡ 1(mod 3)

If h(v) = h(wi), then color wiv with 6. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {3} ∪

{2, 5} ∪ {1, 6} and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {1} ∪ {2, 4} ∪ {3, 6}.

If h(v) = h(wi) + 1, then color wiv with 4 and recolor ewi
with 6. In this way,

we ensure that the parent of wi is still safe. Now c(P
p(wi)
1 ) ∪ c(P

p(wi)
2 ) ∪ c(P

p(wi)
3 ) =

{2} ∪ {1, 4} ∪ {5, 6}. Moreover, we have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {6} ∪ {2, 5} ∪ {3, 4}

and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {3} ∪ {1, 5} ∪ {4, 6}.

Now both wi and v become safe. We flag wi and v (if v is not flagged).

∗ Subcase 1.3 : h(wi) ≡ 2(mod 3)

If h(v) = h(wi), then color wiv with 2 and recolor ewi
with 4. In this way, we ensure

that the parent of wi is still safe. Now c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {3}∪{2, 5}∪{4, 6}.

Moreover, we have c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {4}∪ {3, 6}∪ {1, 2, 5} and c(P v
1 )∪ c(P v

2 )∪

c(P v
3 ) = {3} ∪ {1, 5} ∪ {2, 4}.

If h(v) = h(wi) + 1, then color wiv with 5. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) =

{1} ∪ {3, 6} ∪ {2, 5} and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {2} ∪ {3, 6} ∪ {1, 5}.

Now both wi and v become safe. We flag wi and v (if v is not flagged).
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Remarks: 1. When dealing with wi, we just do two operations: (i) coloring wiv; (ii)

recoloring ewi
if necessary. Note that ewi

is the only edge which may be recolored in this

process. Furthermore, we recolor it in such a way that the parent of wi is still safe. In

fact, for that sake, we have no choice but to recolor ewi
(wi /∈ {v1, v2, . . . , vk−1}) with the

unique color which is from {1, 2, 3, 4, 5, 6} but does not appear on the three super-rainbow

paths of p(wi) after the first step. For example, in Subcase 1.2, the color set of the three

super-rainbow paths of p(wi) after first step is {2, 1, 4, 5, 3}, so we recolor ewi
with 6. The

exception that wi ∈ {v1, v2, . . . , vk−1} will be discussed in Subcase 3.2.

2. One may wonder what is the effect of these operations. First of all, after the process,

wi becomes safe and gets flagged, and so does v if v is not flagged. In addition, the process

guarantees that all the safe vertices remain safe. As mentioned above, p(wi) is still safe

after this process. For every other safe vertex in V (Ci) \A, obviously its three internally

disjoint super-rainbow paths do not contain ewi
, so it is still safe after this process. For

each safe vertex v in A, if its three internally disjoint super-rainbow paths contain ewi
,

wi is already safe and gets flagged before dealing with it. Then we go to wi+1 directly

without doing this process. So we claim that the three internally disjoint super-rainbow

paths of v do not contain ewi
, and thus it is still safe after this process.

3. The three internally disjoint super-rainbow paths of wi is one of the following three

cases; see Figure 7.

(i) Pwi

1 = wi, t(wi), P
wi

2 = wi, p(wi), t(p(wi)), P
wi

3 = wi, v, t(v);

(ii) Pwi

1 = wi, t(wi), P
wi

2 = wi, p(wi), t(p(wi)), P
wi

3 = wi, v, p(v), t(p(v));

(iii) Pwi

1 = wi, t(wi), P
wi

2 = wi, p(wi), p(p(wi)), t(p(p(wi))), P
wi

3 = wi, v, t(v).

wi

wi

wi

v

v

v

p(wi)

p(wi) p(v)

p(wi)

p(p(wi))

(i)

(ii)

(iii)

Pwi

1

Pwi

2

Pwi

3

Figure 7: (3) of the Remarks.

Case 2 : π(wi) = vk and all the uncolored edges connect wi to the subtree of type

II. Then we choose one such edge wiv such that the height of v is as small as possible.
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Since T is a BFS−tree, we get h(v) = h(wi)− 1, h(wi), or h(wi) + 1. The following two

facts are easy to see:

Fact 2. If h(v) = h(wi)− 1, then v is already flagged.

If v /∈ A, then v gets flagged at the very beginning; if v ∈ A, since π(v) = π(wi) = vk
and h(v) < h(wi), we have already dealt with v according to R2, thus v is flagged (note

that ev may be recolored).

Fact 3. If h(v) = h(wi) + 1, then ev is not recolored.

If v /∈ A, then ev never gets recolored; if v ∈ A, since π(v) = π(wi) = vk and

h(v) > h(wi), we have not dealt with v yet according to R2, thus ev is not recolored.

We distinguish three subcases based on the height of wi.

∗ Subcase 2.1 : h(wi) ≡ 0 (mod 3)

If h(v) = h(wi)− 1, by Fact 1 we know that v is already flagged. No matter whether

ev is recolored or not, we color wiv with 5. Then c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {2}∪{1, 4}∪

{3, 5, 6}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), then v may be flagged and ev may be recolored. If ev is not recolored

(c(ev) = 2), then color wiv with 6 and recolor ewi
with 5. The parent of wi is still safe. Now

c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {1}∪{3, 6}∪{4, 5}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) =

{5} ∪ {1, 4} ∪ {2, 6} and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {2} ∪ {1, 4} ∪ {5, 6}, i.e. both wi

and v are safe. We flag wi and v (if v is not flagged). If ev is recolored (c(ev) = 5),

it implies v ∈ A has been dealt with and got flagged. Then color wiv with 6. Now

c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {2} ∪ {1, 4} ∪ {5, 6}, i.e. wi becomes safe. We flag wi.

If h(v) = h(wi) + 1, by Fact 2 we know that ev is not recolored (c(ev) = 3). Then

color wiv with 6. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {2} ∪ {1, 4} ∪ {3, 6} and c(P v
1 ) ∪

c(P v
2 ) ∪ c(P v

3 ) = {3} ∪ {2, 5} ∪ {1, 4, 6}, i.e. both wi and v are safe. We flag wi and v (if

v is not flagged).

∗ Subcase 2.2 : h(wi) ≡ 1 (mod 3)

If h(v) = h(wi)− 1, by Fact 1 we know that v is already flagged. No matter whether

ev is recolored or not, we color wiv with 6. Then c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {3}∪{2, 5}∪

{1, 4, 6}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), then v may be flagged and ev may be recolored. If ev is not recolored

(c(ev) = 3), then color wiv with 4 and recolor ewi
with 6. The parent of wi is still safe. Now

c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {2}∪{1, 4}∪{5, 6}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) =

{6} ∪ {2, 5} ∪ {3, 4} and c(P v
1 )∪ c(P v

2 ) ∪ c(P v
3 ) = {3} ∪ {2, 5} ∪ {4, 6}, i.e. both wi and v

are safe. We flag wi and v (if v is not flagged). If ev is recolored (c(ev) = 6), it implies v

is flagged. Then color wiv with 4. Now c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {3} ∪ {2, 5} ∪ {4, 6},

i.e. wi becomes safe. We flag wi.

If h(v) = h(wi) + 1, by Fact 2 we know that ev is not recolored (c(ev) = 1). Then
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color wiv with 4. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {3} ∪ {2, 5} ∪ {1, 4} and c(P v
1 ) ∪

c(P v
2 ) ∪ c(P v

3 ) = {1} ∪ {3, 6} ∪ {2, 4, 5}, i.e. both wi and v are safe. We flag wi and v (if

v is not flagged).

∗ Subcase 2.3 : h(wi) ≡ 2 (mod 3)

If h(v) = h(wi)− 1, by Fact 1 we know that v is already flagged. No matter whether

ev is recolored or not, we color wiv with 4. Then c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {1}∪{3, 6}∪

{2, 4, 5}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), then v may be flagged and ev may be recolored. If ev is not recolored

(c(ev) = 1), then color wiv with 5 and recolor ewi
with 4. The parent of wi is still safe.

Now c(P
p(wi)
1 )∪ c(P

p(wi)
2 )∪ c(P

p(wi)
3 ) = {3}∪{2, 5}∪{1, 4, 6}. Moreover, c(Pwi

1 )∪ c(Pwi

2 )∪

c(Pwi

3 ) = {4}∪{3, 6}∪{1, 5} and c(P v
1 )∪c(P v

2 )∪c(P v
3 ) = {1}∪{3, 6}∪{4, 5}, i.e. both wi

and v are safe. We flag wi and v (if v is not flagged). If ev is recolored (c(ev) = 4), it implies

v is flagged. Then color wiv with 5. Now c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {1}∪ {3, 6}∪ {4, 5},

i.e. wi becomes safe. We flag wi.

If h(v) = h(wi)+1, by Fact 2 we know that ev is not recolored (c(ev) = 2). Then color

wiv with 5. Now c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {1}∪{3, 6}∪{2, 5} and c(P v
1 )∪c(P

v
2 )∪c(P

v
3 ) =

{2} ∪ {1, 4} ∪ {3, 5, 6}, i.e. both wi and v are safe. We flag wi and v (if v is not flagged).

Case 3 : π(wi) = vj(1 ≤ j ≤ k − 1) and there exists at least one uncolored edge

connecting wi to some subtree of type I. Then we choose one such edge wiv such that the

height of v is as small as possible. Since T is a BFS-tree, then h(v) = h(wi)− 1, h(wi),

or h(wi) + 1. We have the following two facts, which are similar to Fact 1 and 2:

Fact 2′. If h(v) = h(wi)− 1, then v is already flagged.

If v /∈ A, then v gets flagged at the very beginning; if v ∈ A, let π(v) = vj′, since

1 ≤ j ≤ j′ ≤ k − 1 and h(v) < h(wi), we have already dealt with v according to R1 and

R2, thus v is flagged (note that ev may be recolored).

Fact 3′. If h(v) = h(wi) + 1, then ev is not recolored.

If v /∈ A, then ev never gets recolored; if v ∈ A, let π(v) = vj′ , since 1 ≤ j′ ≤ j ≤ k−1

and h(v) > h(wi), we have not dealt with v yet according to R1 and R2, thus ev is not

recolored.

We distinguish three subcases based on the height of wi.

∗ Subcase 3.1 : h(wi) ≡ 0 (mod 3)

If h(v) = h(wi)− 1, by Fact 2′ we know that v is already flagged. No matter whether

ev is recolored or not, we color wiv with 4. Then c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {2}∪{3, 6}∪

{1, 4, 5}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), then v may be flagged and ev may be recolored. If ev is not recolored

(c(ev) = 2), then color wiv with 5 and recolor ewi
with 4. The parent of wi is still safe. Now

c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {3}∪{1, 5}∪{4, 6}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) =
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{4} ∪ {3, 6} ∪ {2, 5} and c(P v
1 )∪ c(P v

2 ) ∪ c(P v
3 ) = {2} ∪ {3, 6} ∪ {4, 5}, i.e. both wi and v

are safe. We flag wi and v (if v is not flagged). If ev is recolored (c(ev) = 4), it implies v

is flagged. Then color wiv with 5. Now c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {2} ∪ {3, 6} ∪ {4, 5},

i.e. wi becomes safe. We flag wi.

If h(v) = h(wi)+1, by Fact 3′ we know that ev is not recolored (c(ev) = 1). Then color

wiv with 5. Now c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {2}∪{3, 6}∪{1, 5} and c(P v
1 )∪c(P

v
2 )∪c(P

v
3 ) =

{1} ∪ {2, 4} ∪ {3, 5, 6}, i.e. both wi and v are safe. We flag wi and v (if v is not flagged).

∗ Subcase 3.2 : h(wi) ≡ 1 (mod 3)

If h(v) = h(wi)− 1, by Fact 2′ we know that v is already flagged. No matter whether

ev is recolored or not, we color wiv with 5. Then c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {1}∪{2, 4}∪

{3, 5, 6}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), then v may be flagged and ev may be recolored. If ev is not recolored

(c(ev) = 1), then ev never gets recolored in second step. For wi not in the first level, color

wiv with 6 and recolor ewi
with 5. The parent of wi is still safe. Now c(P

p(wi)
1 )∪c(P

p(wi)
2 )∪

c(P
p(wi)
3 ) = {2}∪{3, 6}∪{4, 5}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {5}∪{2, 4}∪{1, 6}

and c(P v
1 ) ∪ c(P v

2 ) ∪ c(P v
3 ) = {1} ∪ {2, 4} ∪ {5, 6}, i.e. both wi and v are safe. We flag

wi and v (if v is not flagged). For wi in the first level, the parent of wi, namely v0, is

already safe. Its three internally disjoint super-rainbow paths to D are P v0
1 = v0, t(v0),

P v0
2 = v0, v, t(v), P

v0
3 = v0, vk, t(vk), and c(P v0

1 )∪ c(P v0
2 )∪ c(P v0

3 ) = {2}∪{1, 4}∪{3, 5} or

{2}∪ {1, 4}∪ {5, 6}. Since the paths P v0
1 , P v0

2 , P v0
3 do not use ewi

, we can recolor ewi
with

an arbitrary color from {1, 2, 3, 4, 5, 6}. In line with the previous case, we also color wiv

with 6 and recolor ewi
with 5. Then again both wi and v are safe. We flag wi and v (if v

is not flagged). If ev is recolored (c(ev) = 5), it implies v is flagged. Then color wiv with

6. Now c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {1}∪ {2, 4}∪ {5, 6}, i.e. wi becomes safe. We flag wi.

If h(v) = h(wi)+1, by Fact 3′ we know that ev is not recolored (c(ev) = 3). Then color

wiv with 6. Now c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {1}∪{2, 4}∪{3, 6} and c(P v
1 )∪c(P

v
2 )∪c(P

v
3 ) =

{3} ∪ {1, 5} ∪ {2, 4, 6}, i.e. both wi and v are safe. We flag wi and v (if v is not flagged).

∗ Subcase 3.3 : h(wi) ≡ 2 (mod 3)

If h(v) = h(wi)− 1, by Fact 2′ we know that v is already flagged. No matter whether

ev is recolored or not, we color wiv with 6. Then c(Pwi

1 )∪ c(Pwi

2 )∪ c(Pwi

3 ) = {3}∪{1, 5}∪

{2, 4, 6}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), then v may be flagged and ev may be recolored. If ev is not recolored

(c(ev) = 3), then color wiv with 4 and recolor ewi
with 6. The parent of wi is still safe. Now

c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {1}∪{2, 4}∪{5, 6}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) =

{6} ∪ {1, 5} ∪ {3, 4} and c(P v
1 )∪ c(P v

2 ) ∪ c(P v
3 ) = {3} ∪ {1, 5} ∪ {4, 6}, i.e. both wi and v

are safe. We flag wi and v (if v is not flagged). If ev is recolored (c(ev) = 6), it implies v

is flagged. Then color wiv with 4. Now c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {3} ∪ {1, 5} ∪ {4, 6},

i.e. wi becomes safe. We flag wi.

17



If h(v) = h(wi)+1, by Fact 3′ we know that ev is not recolored (c(ev) = 2). Then color

wiv with 4. Now c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {3}∪{1, 5}∪{2, 4} and c(P v
1 )∪c(P

v
2 )∪c(P

v
3 ) =

{2} ∪ {3, 6} ∪ {1, 4, 5}, i.e. both wi and v are safe. We flag wi and v (if v is not flagged).

Case 4 : π(wi) = vj(1 ≤ j ≤ k − 1) and all the uncolored edges connect wi to the

subtree of type II. Then we choose one such edge wiv such that the height of v is as

small as possible. Since T is a BFS-tree and the subtree of wi is to the left of the subtree

of v, then h(v) = h(wi)− 1 or h(wi). We have the following fact:

Fact 4. v is already flagged.

If v /∈ A, then v gets flagged at the very beginning; if v ∈ A, since π(v) = vk and

π(wi) = vj (1 ≤ j ≤ k − 1), we have already dealt with v according to R1, thus v is

flagged (note that ev may be recolored).

We distinguish three subcases based on the height of wi.

∗ Subcase 4.1 : h(wi) ≡ 0 (mod 3)

If h(v) = h(wi)− 1, by Fact 4 we know that v is already flagged. If ev is not recolored

(c(ev) = 1), then color wiv with 5. We have c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {2}∪{3, 6}∪{1, 5}.

If ev is recolored (c(ev) = 4), then color wiv with 5. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) =

{2} ∪ {3, 6} ∪ {4, 5}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), by Fact 4 we know that v is already flagged. If ev is not recolored

(c(ev) = 2), then color wiv with 5. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {2} ∪ {3, 6} ∪

{1, 4, 5}. If ev is recolored (c(ev) = 5), then color wiv with 4. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪

c(Pwi

3 ) = {2} ∪ {3, 6} ∪ {4, 5}. Now wi becomes safe. We flag wi.

∗ Subcase 4.2 : h(wi) ≡ 1 (mod 3)

If h(v) = h(wi)− 1, by Fact 4 we know that v is already flagged. If ev is not recolored

(c(ev) = 2), then color wiv with 5. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {1} ∪ {3, 4, 6} ∪

{2, 5}. If ev is recolored (c(ev) = 5), then color wiv with 6. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪

c(Pwi

3 ) = {1} ∪ {2, 4} ∪ {5, 6}. Now wi becomes safe. We flag wi.

If h(v) = h(wi), by Fact 4 we know that v is already flagged. If ev is not recolored

(c(ev) = 3), then color wiv with 6. We have c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) = {1}∪{2, 4}∪{3, 6}.

If ev is recolored (c(ev) = 6), then color wiv with 3. We have c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) =

{1} ∪ {2, 4} ∪ {3, 6}. Now wi becomes safe. We flag wi.

∗ Subcase 4.3 : h(wi) ≡ 2 (mod 3)

If h(v) = h(wi)− 1, by Fact 4 we know that v is already flagged. If ev is not recolored

(c(ev) = 3), then color wiv with 4 and recolor ewi
with 6. The parent of wi is still safe. Now

c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {1}∪{2, 4}∪{5, 6}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) =

{6} ∪ {1, 5} ∪ {3, 4} , i.e. wi is safe. We flag wi. If ev is recolored (c(ev) = 6), then color

wiv with 4. Now c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {3} ∪ {1, 5} ∪ {4, 6}, i.e. wi becomes safe.

We flag wi.
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If h(v) = h(wi), by Fact 4 we know that v is already flagged. If ev is not recolored

(c(ev) = 1), then color wiv with 3 and recolor ewi
with 6. The parent of wi is still safe. Now

c(P
p(wi)
1 )∪c(P

p(wi)
2 )∪c(P

p(wi)
3 ) = {1}∪{2, 4}∪{5, 6}. Moreover, c(Pwi

1 )∪c(Pwi

2 )∪c(Pwi

3 ) =

{6}∪ {2, 4, 5}∪ {1, 3}, i.e. wi is safe. We flag wi. If ev is recolored (c(ev) = 4), then color

wiv with 6. Now c(Pwi

1 ) ∪ c(Pwi

2 ) ∪ c(Pwi

3 ) = {3} ∪ {1, 5} ∪ {4, 6}, i.e. wi becomes safe.

We flag wi.

Then we go to wi+1 and repeat the process, until all the vertices in A are visited. We

do the same operation to all Ci
′s. If there still exist uncolored edges in E[D,D]∪E(G[D]),

color them with 1. Now we have a coloring of all the edges in E[D,D] ∪ E(G[D]) using

six different colors from {1, 2, 3, 4, 5, 6} such that all the vertices in D are safe.

4.2 Color the edges in E(G[D])

Let d := rx3(G[D]). Then we can color the edges in G[D] with d fresh colors from

{7, 8, . . . , d + 6} such that for each triple of vertices in D, there exists a rainbow tree in

G[D] connecting them. Hereto we obtain an edge-coloring c : E(G) → {1, 2, . . . , d+ 6}.

4.3 Prove c is a 3-rainbow coloring

Next we will prove that this edge-coloring of G is a 3-rainbow coloring, which yields

that rx3(G) ≤ rx3(G[D]) + 6.

Claim 1. Under this coloring, for any three vertices u, v, w in D, there exists a rainbow

u − D path P u, a rainbow v − D path P v and a rainbow w − D path Pw such that

P u ∪ P v ∪ Pw is also rainbow.

Before giving the proof of Claim 1, let us show how it implies our result. Let S =

{u, v, w} ⊆ V (G). If |S ∩ D| = 3, i.e. (u, v, w) ∈ D × D × D, then there is already a

rainbow S-tree in G[D]. If |S ∩D| = 2, say (u, v, w) ∈ D×D×D, then let w′ be the foot

of w. The rainbow tree in G[D] connecting u, v, w′ together with the edge ww′ forms a

rainbow S-tree. If |S∩D| = 1, say (u, v, w) ∈ D×D×D, then by Claim 1, there exists a

rainbow v−D path P v and a rainbow w−D path Pw such that P v ∪Pw is also rainbow.

Assume the endvertex of P v, Pw in D is v′, w′ respectively. Then the rainbow tree in

G[D] connecting u, v′, w′ together with the paths P v and Pw forms a connected rainbow

subgraph of G, denoted by H . Obviously, a spanning tree of H is a rainbow S-tree. If

|S ∩D| = 0, i.e. (u, v, w) ∈ D ×D ×D, then by Claim 1, there exists a rainbow u −D

path P u, a rainbow v−D path P v and a rainbow w−D path Pw such that P u∪P v ∪Pw

is also rainbow. Assume the endvertex of P u, P v, Pw in D is u′, v′, w′ respectively. Then

the rainbow tree in G[D] connecting u′, v′, w′ together with the paths P u, P v and Pw

forms a connected rainbow subgraph of G, denoted by H ′. Obviously, a spanning tree
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of H ′ is a rainbow S-tree. So we come to the conclusion that the edge-coloring c is a

3-rainbow coloring.

Proof of Claim 1 : For any three vertices u, v, w in D, u, v, w are safe under this coloring.

That is, there exist three internally-disjoint super-rainbow u−D paths P u
1 , P

u
2 , P

u
3 , three

internally-disjoint super-rainbow v − D paths P v
1 , P

v
2 , P

v
3 and three internally-disjoint

super-rainbow w−D paths Pw
1 , P

w
2 , P

w
3 . If we can pick out P u

i , P
v
j and Pw

k (1 ≤ i, j, k ≤ 3)

from these paths satisfying P u
i ∪P

v
j ∪P

w
k is also rainbow, we are done. But unfortunately in

some cases, we can not do that. For example, if c(P u
1 )∪c(P

u
2 )∪c(P

u
3 ) = {1}∪{2, 4}∪{5, 6},

c(P v
1 )∪c(P v

2 )∪c(P v
3 ) = {1}∪{2, 5}∪{4, 6}, c(Pw

1 )∪c(Pw
2 )∪c(Pw

3 ) = {1}∪{2, 6}∪{4, 5},

then one can check that P u
i ∪ P v

j ∪ Pw
k is not rainbow for each 1 ≤ i, j, k ≤ 3. Here we

will show a sufficient and necessary condition for the situation in which we can pick out

suitable P u
i , P

v
j and Pw

k . (Note that P u
1 , P

v
1 , P

w
1 contains exactly one edge.)

There exist i, j, k ∈ {1, 2, 3} satisfying P u
i ∪ P v

j ∪ Pw
k is rainbow if and only if

(C1) c(P u
1 ), c(P

v
1 ), c(P

w
1 ) are not the same or

(C2) there exist two distinct vertices x, y ∈ {u, v, w} and two integers s, t ∈ {2, 3} (s

may equal to t) such that c(P x
s ) ∩ c(P y

t ) = ∅.

If (C1) is true, without loss of generality, we assume c(P u
1 ) = 1 and c(P v

1 ) = 2 . If

c(Pw
1 ) ∈ {3, 4, 5, 6}, then P u

1 ∪ P v
1 ∪ Pw

1 is rainbow; If c(Pw
1 ) ∈ {1, 2}, without loss of

generality let c(Pw
1 ) = 1. Since Pw

1 ∪ Pw
2 ∪ Pw

3 is rainbow, both Pw
2 and Pw

3 contain no

edges colored by 1, and at least one of Pw
2 and Pw

3 contains no edges colored by 2, say

Pw
2 . Then P u

1 ∪P v
1 ∪Pw

2 is rainbow. If (C2) is true, without loss of generality, we assume

that c(P u
2 )∩ c(P v

2 ) = ∅. If c(P u
1 ), c(P

v
1 ), c(P

w
1 ) are not the same, then the assertion holds

by (C1); otherwise, without loss of generality let c(P u
1 ) = c(P v

1 ) = c(Pw
1 ) = 1. Then P u

2

and P v
2 contain no edges colored by 1. Bearing in mind that c(P u

2 ) ∩ c(P v
2 ) = ∅, we get

that Pw
1 ∪ P u

2 ∪ P v
2 is rainbow. For the other direction, assume that (C1) is not true, we

will show (C2) holds by contradiction. Suppose that c(P u
1 ) = c(P v

1 ) = c(Pw
1 ), and for any

two distinct vertices x, y ∈ {u, v, w} and any two integers s, t ∈ {2, 3}, c(P x
s )∩ c(P y

t ) 6= ∅.

Since P u
i ∪ P v

j ∪ Pw
k is rainbow, we know that at most one of i, j, k is equal to 1, say

j, k ∈ {2, 3}. Then by hypothesis, c(P v
j ) ∩ c(Pw

k ) 6= ∅, a contradiction to the fact that

P u
i ∪ P v

j ∪ Pw
k is rainbow.

From the above assertion, we can see that the colors of the three internally dis-

joint super-rainbow paths connecting a vertex in D to D plays a crucial role. Here

we list out all the possible color sets of these paths under this coloring. For the sake of

brevity, we write {1, 24, 35} instead of c(P u
1 ) ∪ c(P u

2 ) ∪ c(P u
3 ) = {1} ∪ {2, 4} ∪ {3, 5} and

c(P u
1 ) ∪ c(P u

2 ) ∪ c(P u
3 ) = {1} ∪ {3, 5} ∪ {2, 4}.

Class 0 : {1, 2, 3}, {1, 2, 34}, {1, 2, 36}, {2, 3, 14}, {2, 3, 15},

{1, 3, 24}, {1, 3, 25}
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Class 1 : {1, 24, 35}, {1, 36, 24}, {1, 36, 25}, {1, 24, 56}, {1, 36, 45},

{1, 36, 245}, {1, 24, 356}, {1, 346, 25}.

Class 2 : {2, 36, 14}, {2, 14, 35}, {2, 14, 56}, {2, 36, 15}, {2, 36, 45},

{2, 46, 35}, {2, 36, 145}, {2, 14, 356}, {2, 346, 15}.

Class 3 : {3, 15, 26}, {3, 25, 16}, {3, 15, 46}, {3, 25, 46}, {3, 15, 24},

{3, 25, 14}, {3, 25, 146}, {3, 15, 246}.

Class 4 : {4, 36, 15}, {4, 36, 25}, {4, 36, 125}.

Class 5 : {5, 14, 26}, {5, 24, 16}.

Class 6 : {6, 25, 34}, {6, 15, 34}, {6, 15, 24}, {6, 245, 13}.

For every triple {u, v, w} of vertices in D, if c(P u
1 ), c(P

v
1 ) and c(Pw

1 ) are not the same,

we are done. Now suppose c(P u
1 ) = c(P v

1 ) = c(Pw
1 ). If there exists one vertex satisfying

at least two of its three paths are of length 1, without loss of generality, we assume that

c(P u
1 ) = c(P v

1 ) = c(Pw
1 ) = 1, P u

2 is of length 1, and c(P u
2 ) = 2. Since P v

1 ∪ P v
2 ∪ P v

3 is

rainbow, we can find out one path, say P v
2 , which contains no edges colored by 1 or 2.

Then P u
2 ∪ P v

2 ∪ Pw
1 is rainbow. Again we are done. Thus to prove Claim 1, it suffices

to check whether (C2) holds for every three color sets in Class i (1 ≤ i ≤ 6). Since the

number of color sets in one class is no more than 9, the checking work can be done in a

short time and the answer in turn is affirmative. We complete the proof of Claim 1.

To end the section, we illustrate the tightness of the bound rx3(G) ≤ rx3(G[D]) + 6

with the graph in Figure 5. It is easy to see that D = {v0} is a connected three-way

dominating set. By Theorem 3, rx3(G) ≤ rx3(G[D]) + 6 = 6. On the other hand, we

have already proved that rx3(G) = 6. So the bound is tight.

5 Concluding remarks

To sum up, as for the 3-rainbow index of a graph, we can consider the following three

strengthened connected dominating sets:

Let G be a connected graph and D be a connected dominating set of G.

(a) if every vertex in D is adjacent to at least three distinct vertices of D, then

rx3(G) ≤ rx3(G[D]) + 3 (Theorem 9);

(b) if every vertex in D is of degree at least three and adjacent to at least two distinct

vertices of D, then rx3(G) ≤ rx3(G[D]) + 4 (Theorem 2);

(c) if every vertex in D is of degree at least three, then rx3(G) ≤ rx3(G[D]) + 6

(Theorem 3).

From (a) to (c), we loosen the restrictions on the connected dominating sets, while

the additive constant increases. We cannot tell which bound is the best. For example,
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for a French Windmill in Figure 5, (c) is better than (a) and (b), whereas for a threshold

graph with δ ≥ 3, (a) and (b) which imply rx3(G) ≤ 5 are better than (c) which implies

rx3(G) ≤ 6. Given a connected graph G, we can calculate three upper bounds for the

3-rainbow index of G using (a), (b), (c) respectively (some of them may be the same),

and then choose the smallest one of them.
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