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Abstract
Successful computer-based assessments for learning greatly rely on an effective 
learner modeling approach to analyze learner data and evaluate learner behaviors. 
In addition to explicit learning performance (i.e., product data), the process data 
logged by computer-based assessments provide a treasure trove of information about 
how learners solve assessment questions. Unfortunately, how to make the best use 
of both product and process data to sequentially model learning behaviors is still 
under investigation. This study proposes a novel deep learning-based approach for 
enhanced learner modeling that can sequentially predict learners’ future learning 
performance (i.e., item responses) based on modeling their history learning behav-
iors. The evaluation results show that the proposed model outperforms another pop-
ular deep learning-based learner model, and process data learning of the model con-
tributes to improved prediction performance. In addition, the model can be used to 
discover the mapping of items to skills from scratch without prior expert knowledge. 
Our study showcases how product and process data can be modelled under the same 
framework for enhanced learner modeling. It offers a novel approach for learning 
evaluation in the context of computer-based assessments.
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1  Introduction

Analytics of big data in education for enhanced teaching and learning has gained 
increasing attention over the past years. Advanced by the rapid evolution in infor-
mation and communication technologies, integrating big data and adaptive learn-
ing systems has given rise to a growing personalized learning movement that can 
tackle conventional educational challenges (Dishon, 2017). Personalized learning 
benefits learners in multiple ways — learning can be customized, gamified, self-
directed, collaborative, and, notably, much more accessible and affordable than 
traditional learning.

In a personalized learning system, customized learning plans are typically 
created for learners based on what they know, what they lack, and how they 
learn best. This requires that data on learning behaviors can be tracked, logged, 
retrieved, and modelled by digital learning environments. A typical scenario 
where personalized learning is situated is computer-based assessments (CBAs) 
for learning, widely used to evaluate and promote learning performance in vari-
ous learning contexts (Shute & Rahimi, 2017). The popularity and effectiveness 
of CBAs for personalized learning are attributable to their capacities to evalu-
ate higher-level learner competencies and their flexibility in assessment admin-
istration. Moreover, from the data perspective, compared with standardized 
paper–pencil assessments, CBAs can elicit and collect much more information 
about how learners perform on and solve each learning task. This enables edu-
cation practitioners to better evaluate and validate an assessment and to provide 
learners with finer-grained feedback. Therefore, this study situates the proposed 
model in the context of CBA for learning.

Making inferences about learners’ knowledge states or skill levels based on 
learners’ interactions with learning resources and assessment questions, or 
learner modeling, is indispensable for an effective CBA. Research on analyt-
ics of the two forms of learner data— product and process data—from learners’ 
interactions with CBAs has received increasing attention from communities of 
educational data mining and educational assessment (Mislevy et al., 2012; Rupp 
et  al., 2012). Product data mainly include final work products interacting with 
CBAs (e.g., success or failure on assessment tasks and scores of assessment 
questions). Process data, often represented by log file entries, store the informa-
tion on learners’ problem-solving processes relevant to their final work products 
(Rupp et al., 2012). Over the past decades, to make the best use of learner prod-
uct data, tremendous research efforts have been devoted to developing various 
models and analytic approaches for learner modeling. For example, Bayesian 
knowledge tracing (BKT; Corbett & Anderson, 1994) is a popular learner model 
to evaluate and track learners’ cognitive states in intelligent tutoring systems 
(Psotka et  al., 1988). In educational measurement, item response theory (IRT; 
Lord, 1952) models and cognitive diagnosis models (CDM; Tatsuoka, 1990) are 
two representative families of modern psychometric techniques analyzing learn-
ers’ item responses to infer their latent skill levels. Despite their popularity, these 
mainstream approaches are mainly applicable to product data and are limited in 
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addressing learner process data. Unlike product data, which are often explicit and 
structured, process data are inherently unstructured with much noise. However, 
process data is of great potential to reveal a wealth of information on how learn-
ers interact with assessments and what contributes to their final working prod-
ucts. As such, in the communities of educational assessment and educational data 
mining, in recent years, utilizing process data to profile, evaluate and facilitate 
learning has been an emerging research topic. For example, analytics of process 
data in the context of CBAs has been used to predict learners’ problem-solving 
outcomes (Chen et al., 2019), probe learners’ problem-solving strategies (Greiff 
et al., 2015), and assess learners’ latent skills (Liu et al., 2018). These pioneering 
studies have shed light on the potential of process data to promote our under-
standing of how learners approach complex assessment tasks. Nevertheless, the 
existing approaches are often not generalizable to other CBA settings since they 
were primarily developed for case studies. There is an urgent need for generic 
approaches for learner modeling with process data in the context of CBAs.

In recent years, machine learning advances, especially deep learning techniques, 
have fostered new paradigms of learner data analytics. Machine learning-based 
approaches for learner modeling are highly scalable and strongly predictive, which 
greatly benefit large-scale applications of CBAs (e.g., Bergner et al., 2012; Cheng 
et  al., 2019; Lan et  al., 2014). Compared with conventional approaches, they are 
more capable of handling unstructured and incomplete learner data and addressing 
tremendous amounts of items and learners in large-scale settings. For example, due 
to their personalized learning nature, most CBAs allow learners access to subsets of 
assessment items from the item bank. As such, learner data logged by such CBAs 
are often of large volume and extreme sparseness. To address this, for example, 
collaborative filtering (CF), a technique widely used for recommender systems, is 
exceptionally effective for inferring learners’ cognitive states or skill levels based on 
sparse learner data (e.g., Chen et al., 2023). Moreover, to capture a higher degree of 
complexity of learner data, informed by research from other domains (e.g., He et al., 
2017; Zhang et al., 2016), deep learning techniques can be used for enhanced learner 
modeling through exploiting additional learner and item information or improving 
the intricacy of model architectures. Unfortunately, to our best knowledge, despite 
existing deep learning-based approaches (e.g., deep knowledge tracing [DKT]; 
Piech et al., 2015), theoretical and empirical studies on deep learning approaches for 
learner modeling applicable to process data in the context of CBAs remain sparse. 
Considering their modeling flexibility and predictive capacity evidenced by existing 
studies in other domains, in our study, we attempt to investigate how deep learning-
based approaches can be used to address process data for enhanced learner modeling 
and examine if they are advantageous over conventional approaches.

Specifically, the key objective of the present study is to develop a deep learning-
based approach capable of modeling both product and process data for enhanced 
learner modeling. We attempt to address several specific issues with respect to CBAs 
for learning in the current study. First, since learners’ skill levels improve as they 
continuously interact with a learning system, the proposed model should address 
the temporal dependencies between learner-item interactions (i.e., it is a sequential 
modeling approach). Second, in addition to predicting learners’ performance on 
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unseen items (e.g., item responses to unseen items), the proposed model is expected 
to be capable of discovering the mapping of items to the targeted latent skills (i.e., 
item-skill associations). That is, under the assumption that a set of underlying skills 
affect how learners respond to assessment items, efforts from domain experts in tag-
ging assessment items with skill labels can be less needed if the proposed model can 
automatically estimate item-skill associations. Finally, given the potential of process 
data to reflect learners’ efforts in attempting assessment questions, the proposed 
model should be capable of capturing the latent representations of process data to 
improve the prediction performance. To achieve these, in this study, we proposed 
a novel deep learning-based approach that can address both product and process 
data for learner modeling based on deep neural networks, long short-term memory 
(LSTM) networks, and the attention mechanism. More concretely, the LSTM net-
works are adopted to capture the temporal dependencies between learner-item inter-
actions and between learners’ problem-solving actions; the deep neural networks are 
adopted to capture the latent representations of learners and items as well as their 
interactions; and the self-attention mechanism is adopted to estimate the mapping of 
items to skills from scratch.

In summary, our work makes the following contribution to the literature.

•	 We investigate the possibility of using deep learning as technical underpinnings 
for enhanced learner modeling, which has rarely been investigated in previous 
studies.

•	 We attempt to develop an approach that can deal with both product and process 
data for learner modelling in the context of CBAs.

•	 We attempt to develop an approach with the potential of automatically discover-
ing item-skill associations without expert knowledge. This might benefit large-
scale CBA scenarios by reducing human efforts in prespecifying the mapping of 
items to skills.

2 � Literature review

2.1 � Existing approaches for learner modeling

In educational measurement, two families of modern psychometric models —IRT 
and CDMs — are widely used to model the process of learners responding to assess-
ment items measuring one or multiple underlying skills. Psychometric models esti-
mate learners’ latent skill levels and item parameters characterizing item features 
(e.g., difficulty and discrimination). In contrast to computational approaches, psy-
chometric models rely on strong theoretical assumptions regarding the associations 
of skill mastery with item responses. For example, standard IRT models only allow 
one latent skill to be measured (i.e., unidimensionality), making them inadequate 
in addressing multiple skills. Learner modeling by CDMs requires a pre-specified 
human-labelled mapping of items to latent skills, failing to address CBAs with 
many assessment items. In addition, unlike computational approaches, constrained 
by their theoretical assumptions, psychometric models, without sophisticated model 
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revisions, have limited capacity to discover how assessment items associate with tar-
geted latent skills from scratch. This feature of learner modeling, however, benefits 
large-scale CBAs since human efforts in defining item-skill associations are less 
needed. Moreover, psychometric models are mostly used in conventional standard-
ized assessments in which learner data is typically structured, clean, and complete. 
However, learners may interact with different subsets of CBA items asynchronously. 
As such, learner data may be of unequal sequence lengths and with much random-
ness and noise. Therefore, conventional psychometric models are not scalable 
enough to model large-scale learner data. Finally, since learning occurs as learners 
continuously interact with CBA items, learner modeling without accounting for how 
previous learning outcomes affect current and future learning might overlook the 
dynamic changes in learners’ cognitive states. Unfortunately, given that psychomet-
ric models typically require the assumption of local independence (i.e., conditional 
on latent skill levels, item responses are independent of each other), they are limited 
in modeling the temporal dependencies between item responses.

Bayesian approaches have also been widely used for learner modeling, since they 
are computationally sound, and highly flexible and expressive (Desmarais et  al., 
2012). Particularly, Bayesian networks, a type of probabilistic graphic model that 
graphically represents a joint distribution of random variables (Koller & Fried-
man, 2009), are of great popularity for learner modeling (de Klerk et al., 2015). To 
address the dynamic changes in cognitive states across multiple CBA items, vari-
ants of Bayesian networks with a temporal dimension — dynamic Bayesian net-
works (DBNs) and its special case BKT — were developed to estimate and update 
learners’ skill levels as learning progresses. In empirical studies, Bayesian networks 
and their variants have been used for learner modeling in CBAs assessing high-level 
skills (e.g., creative problem solving, Shute et al., 2009; 21st-century skills, Shute 
& Ventura, 2013) and knowledge and skills in science and mathematics (e.g., Cui 
et  al., 2019; Levy, 2014). Despite their popularity, learner modeling with Bayes-
ian approaches in CBAs suffers from the curse of dimensionality — a great number 
of items and skills may lead to highly complex computations of conditional prob-
abilities. In addition, similar to psychometric models, standard Bayesian approaches 
typically require the mapping of items to skills to be prespecified so that they cannot 
be directly used for automatic discovery of item-skill associations.

Another strand of educational data mining research has focused on adapting CF 
techniques for learner modeling. Initially developed and used for recommender sys-
tems, the CF technique has gained increasing popularity in modeling educational 
data in recent years (e.g., Almutairi et al., 2017; Desmarais & Naceur, 2013; Durand 
et al., 2015; Lan et al., 2014; Matsuda et al., 2015). For example, matrix factoriza-
tion, a model-based CF approach, is of great potential for learner modeling because 
of its effectiveness in recovering unknown user-item interactions given sparse user 
data. It should be noted that most CF research in educational data mining mainly 
focused on employing CF to evaluate, discover, or refine the mapping of items to 
skills (e.g., Desmarais, 2012; Desmarais & Naceur, 2013; Durand et al., 2015; Lan 
et al., 2014; Matsuda et al., 2015; Sun et al., 2014). For example, the data-driven 
item-skill associations by CF-based approaches were close to or even outperformed 
the expert-specified ones (Desmarais & Naceur, 2013; Matsuda et  al., 2015; Sun 
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et al., 2014). In summary, the literature highlights the potential of CF approaches for 
learner modeling and their capacity to learn item-skill associations from the scratch.

2.2 � Deep learning approaches for learner modeling

Recently, deep learning-based approaches have proven exceptionally effective in 
predicting learners’ unknown or future learning outcomes. Learner modeling with 
deep learning is essentially a supervised learning problem — based on various 
inputs regarding learners, items, and learning contexts, a deep learning model out-
puts the predictions of learners’ unknown or future item responses (e.g., probabili-
ties of succeeding on unknown or future items). Notably, the variety of deep learn-
ing architectures (e.g., deep neural networks and recurrent neural networks [RNNs]) 
allows the flexibility of deep learning approaches in addressing complex learner 
data. For example, previous studies have exploited the side information of learn-
ers and items (e.g., item context and learner background) to improve the accuracy 
of learner modeling with convolutional neural networks or RNNs (Chaplot et  al., 
2018; Cheng et al., 2019; Su et al., 2018). Particularly, DKT (Piech et al., 2015), an 
RNN-based learner modeling approach, is exceptionally effective in accounting for 
the temporal dependencies between item responses. The advantages of DKT and its 
variants in learner modeling over conventional learner models have been well docu-
mented in the literature (e.g., Wang et al., 2017; Xiong et al., 2016; Yeung, 2019; 
Yeung & Yeung, 2018).

More recently, researchers have incorporated deep learning architectures into 
the CF framework for improved learner modeling (e.g., Chen et  al., 2023). Deep 
learning-based CF approaches can capture a high degree of complexity (e.g., non-
linearity) of learner-item interactions through deep neural networks. For example, 
multiple neural network layers can be used to learner item and user vectors, result-
ing in enhanced prediction performance through strong item and learner represen-
tations (e.g., He et  al., 2017; Nguyen et  al., 2018). The inclusion of deep learn-
ing architectures largely improves the prediction performance of conventional CF 
methods because they have a strong capacity to learn finer-grained representations 
and auxiliary information of users and items. However, the effectiveness of deep 
learning-based CF approaches for learner modeling in the CBA context remains 
under-investigated.

2.3 � Learner modeling with process data

As mentioned, a few case studies exist showing how process data analytics can 
inform learning in the CBA settings. For instance, Greiff et al. (2015) analyzed the 
process data of one question on complex problem-solving in PISA 2012 to iden-
tify learners’ problem-solving strategies. They extracted a set of frequency-related 
and time-related features from the process data and examined how these features 
predicted learners’ problem-solving success. Notably, they identified a domi-
nant strategy for solving the question. However, their analyses were conducted in 
an exploratory fashion with only one item, which is not scalable and extendable in 
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other settings. With the data of an item from the same assessment, Liu et al., (2018) 
proposed to use a modified multilevel mixture IRT model to analyze learners’ pro-
cess data, which identified different latent classes of problem-solving strategies and 
estimated learners’ abilities at both the process and item levels. Their approach was 
also examined with the data of one item and showed limited generalizability. The 
PISA dataset was also analyzed by the event history analysis model proposed by 
Chen et  al., (2019). Their approach was developed to model the problem-solving 
process with the aim of predicting both the remaining time a learner needs to com-
plete the item and the final problem-solving outcomes (success or failure). However, 
their approach suffers the limitation of single-item analysis as well, which cannot 
be well extended to multiple-item analysis. Similarly, Shu et al., (2017) proposed a 
Markov-IRT model to extract features from learners’ problem-solving processes as 
evidence for psychometric measurement. However, the Markov property assumed 
by their approach limits the temporal dependencies in problem-solving between two 
consecutive actions.

More recently, Tang et  al., (2021) proposed a more generalizable approach for 
extracting informative features from learners’ action sequences in solving a problem 
based on the sequence-to-sequence autoencoder. The learned latent features indi-
cate how learners attempt a problem, which can be used for subsequent statistical or 
machine-learning analysis. Essentially, their approach is the representation learning 
of action sequences. However, it is limited in dealing with multiple items simultane-
ously and modeling the time information. Moreover, in terms of learner modeling or 
other predictive analyses, a sophisticated model is still needed to connect representa-
tion learning of action sequences with different model architectures.

In summary, the existing approaches for learner modeling with process data were 
mainly developed and examined in specific contexts, and they often fail to deal with 
multiple items. Moreover, some approaches heavily rely on statistical or psychomet-
ric assumptions and require human-specified rules, undermining their scalability 
and generalizability. Regarding learner modeling, few approaches can model item 
responses with process data at a large scale across multiple items.

Overall, our review of the existing literature on learner modeling concluded that 
deep learning-based approaches are of great potential for effective learner modeling 
in the context of CBAs, but this topic remains under investigated. In addition, exist-
ing deep learning-based approaches for learner modeling cannot adequately address 
process data. Consequently, this study aims to develop a deep learning-based 
approach to address product and process data for enhanced learner modeling. Spe-
cifically, the following three research questions are to be addressed in this study.

•	 Do the proposed model and its variants show satisfactory prediction accuracy in 
predicting learning performance in the context of CBAs?

•	 Does the proposed model outperform another popular deep learning-based 
learner model (i.e., DKT)?

•	 Does the proposed model show good prediction performance at different levels 
of data availability for training?

•	 Can the proposed model automatically discover interpretable item-skill associa-
tions?
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3 � Method

In the following, we first introduce the proposed model with technical details. Then 
we describe how to evaluate the effectiveness of the proposed model with a real-
world dataset.

3.1 � Introduction to the proposed model

The following sections present technical details for the proposed model, starting 
with the problem formulation, followed by the technical details of the modeling 
framework.

3.1.1 � Problem formulation

Suppose the approach applies to data of m independent learners interacting with an 
n-item assessment on k latent skills. As such, the learner-item interactions can be 
represented as �i = {(�i, �

i
1
,Ri

1
, Li

1
), (�i, �

i
2
,Ri

2
, Li

2
),… , (�i, �

i
T
,Ri

T
, Li

T
)} , where 

�i and �i
t
 label learner identifications and item identifications at the t th timestep, 

respectively. Moreover, Ri
t
 , taking a value of either one (correct) or zero (incorrect), 

denotes the learning outcome at the t th timestep, and Li
t
= {ai

t
, ti
t
} , consisting of an 

action sequence ai
t
 and a time sequence ti

t
 , denotes the problem-solving process asso-

ciated with Ri
t
 at the t th timestep. Given a sequence of a learner’s learner-item inter-

actions �i over T  timesteps, the proposed model aims to learn a model M that pre-
dicts his or her learning outcome R̂i

T+1
 on the next item �i

T+1
 at the timestep T + 1 . In 

addition to predictions of future learning outcomes, the proposed model discovers 
the mapping of items to latent skills from the associations between items during the 
model training process.

3.1.2 � Modeling process of the approach

Figure  1 graphically presents the architecture of the proposed model, which is of 
two sub-architectures: one architecture for modeling item responses and problem-
solving processes and the other for predicting future item responses.

Embeddings of items and learners  Given the raw data �i , the proposed model 
first learns latent representations of learners and items from the identification vec-
tors �i and �t through embedding layers. Specifically, the approach converts sparse 
vectors of learners and items to dense vectors with a pre-specified dimensionality 
k . As such, learner and item identifications can be represented by a k-dimensional 
learner representation � =

[

�1,… , �m

]

 and a k-dimensional item latent representa-
tion � =

[

�1,… , �n

]

 respectively.

Deep learning of problem‑solving processes  In addition to learner and item embed-
dings, the process data needs to be processed and learned for sequential modeling 
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Fig. 1   Graphical representation of the proposed model

Fig. 2   Architecture for process data learning in the proposed model



13722	 Education and Information Technologies (2024) 29:13713–13733

1 3

(see Fig. 2). At the t th timestep, learner �i responding item �i
t
 produces a sequence 

of problem-solving actions ai
t
= {e1, e2,… eQ} and a sequence of action-associated 

time durations ti
t
= {t1, t2,… tQ} , where eq and tq indicate the q th problem-solving 

step and associated time duration. Given that ai
t
 is a vector with categorical values, 

the model converts each action eq to a dense vector of d0 dimensions through embed-
ding, which is then fed into an LSTM network layer for learning the time-series 
dependencies between actions. It should be noted that multiple LSTM layers are 
allowed to better capture the complexity of temporal dependencies across multiple 
timesteps. The LSTM networks finally produce learned representations of actions 
and time durations. Subsequently, the approach concatenates learned representations 
of actions and time durations and feeds them into a deep neural network architecture 
for learning the interactions between actions and time durations, producing a final 
learned representation of process data at the t th timestep �i

t
.

Concatenating leaner‑item interactions  Next, the proposed model first concatenates 
the latent representations of learners and items, and the latent representation of pro-
cess data, resulting in a (2 k + da)-dimensional vector, �ij . To concatenate �ij with the 
item response Ri

t
 at timestep t , since Ri

t
 takes a value of either one or zero, �ij is 

extended to a (2 k + da)-dimensional vector 0 = (0, 0,… , 0) , resulting in a final con-
catenated vector �t

ij
 as:

where ⊕ indicates concatenation.

Deep learning for sequential learning  After concatenations, the model feeds �t
ij
 into 

one or multiple LSTM network layers to learn how item responses temporally asso-
ciate with each other. Mathematically, an LSTM network layer recurrently updates 
the hidden state of each �t

ij
 at the t th timestep ht with its previous hidden state ht−1:

In the above, ft , it and ot denotes the forget, input, and output gates within an 
LSTM cell respectively, Ct denotes the cell state at the t th step, and � and tanh indi-
cate the Sigmoid and the hyperbolic tangent activation functions respectively. In 
addition, Wf  and bf  , Wi and bi , and Wo and bo indicate the weights and bias of the 
forget gate, the input gate, and the output gate respectively. In summary, the three 
gates of an LSTM cell control what information to be inputted, remembered, forgot-
ten, and outputted through the cell. This feature contributes to the effectiveness of 
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the LSTM network in learning temporal dependencies. The output sequence of the 
last LSTM layer � = {si

1
, si

2
,… , si

T
} incorporates the sequential information on how 

a learner interacts with items over the past T  timesteps. Next, the model concate-
nates si

T
 with the embedding vector of the next item at timestep T + 1 , �T+1

j
 , and 

feeds the concatenation into multiple neural network layers, which can be formally 
stated as:

In the above, �1 to �H , and f1 to fH denote the weights and activation functions 
for the H neural network layers, respectively. The final output of the multiple neural 
network layers, Di

T+1
 , combines the information on the current item for prediction 

and the information regarding all history item responding processes.

Self‑attention mechanism  To make the model more predictive of item responses, in 
addition to LSTM networks, the proposed model applies a self-attention layer (Vas-
wani et al., 2017) to model the relevance of an item for prediction with a learner’s 
history item responding processes. The attention mechanism deals with three types 
of vector inputs: query, key, and value. Specifically, in the proposed model, the 
query refers to the item embeddings of an item for prediction, and both keys and val-
ues refer to a learner’s history item responding processes �t

ij
 . In the attention mecha-

nism, a compatibility function is used to model the relevance of a query with differ-
ent keys, represented by attention weights. The output of the attention mechanism is 
calculated as a weighted sum of value vectors using the attention weights. Specific 
to the proposed model, the relevance of an item for prediction with previous items 
can be represented by its attention weights connecting to other items. We used the 
scaled dot-product attention (Vaswani et al., 2017) in the current study, which is for-
mally calculated as:

where � , � , and � denote the query, key, and value matrices of dimension k respec-
tively, and sof tmax(��T∕

√

k) generates the attention weights. It is noteworthy that 
the prediction of an item response at timestep T + 1 should be solely based on the 
item responding processes over the past T  timesteps, and therefore when comput-
ing attention weights, the model omits keys at timesteps later than t for any query 
at timestep t . In addition, to impose non-linearity on the weighted attention output, 
according to Vaswani et  al., (2017), for each timestep, the output of the attention 
layer is fed into a feedforward neural network layer and one layer with the ReLU 
activation. Moreover, through a residual connection (He et  al., 2016), the model 
adds up the input and the output of each layer as the final output so that the impor-
tance of lower-layer features can be better captured. Layer normalization (Ba et al., 
2016) applies to each layer of the attention mechanism.

(3)Di
T+1

= fH(W
T
H
fH−1(… f2(W

T
2
f1(W

T
1

[

si
T

vT+1
j
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VST∕
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Prediction  The proposed model makes predictions through feeding the concatenated 
output of the deep LSTM network architecture D and the attention mechanism F into 
one neural network layer with Sigmoid activation (see the right-hand part of Fig. 1):

Model learning  During the training process, the proposed model updates the follow-
ing model parameters: the embedding weights for items, learners, and problem-solv-
ing actions, the LSTM network weights, and the neural network weights. The binary 
cross-entropy loss is used as the objective function for model learning:

where R̂i
t
 indicates the model-predicted likelihood of correctly solving items at the 

t th timestep. The Adaptive Moment Estimation (Adam; Kingma & Ba, 2014) is 
selected as the optimizer in training.

3.2 � Dataset description

To evaluate the effectiveness of the proposed model, we used a real-world dataset 
accessed from the PSLC DataShop1 (Koedinger et  al., 2010), named “Lab study 
2012 (cleanedLogs).” There are 74 learners, 14,959 problem-solving steps, and 
37,889 transactions involved in the dataset. Moreover, among the six latent skill 
models (each corresponds to a different number of latent skills), we selected the one 
labelled “KC (DefaultFewer_corrected)” for training the model. The data was gen-
erated through learners interacting with the web-based tutoring system when solv-
ing fraction problems. Notably, learners might take different sets of fraction prob-
lems, implying different item sequences for each learner. In this study, since learners 
might take several problem-solving steps to solve a fraction problem, in this study, 
one problem-solving step was considered an independent item which involved one 
or multiple transactions (i.e., specific timestamped problem-solving actions). To 
preprocess the dataset, we first deleted all system-produced and/or non-timestamped 
transactions and then treated all problem-solving steps related to hints as intermedi-
ate actions for solving a problem. In addition, to make problem-solving actions dif-
ferentiable, we concatenated the labels of actions and corresponding learner selec-
tions, given that actions of the same categories share the same labels. For learners’ 
action and time sequences for solving each item, we fixed the maximum action and 
time sequence length at six because over 90% of items were attempted with six or 
fewer actions by learners. Finally, since most sequences of learner-item interac-
tions are of more than 200 timesteps, we split the item sequences of the 74 learners 
into multiple 20-timestep subsequences to increase the size of item sequences for 

(5)R̂i
T+1

= Sigmoid
(

WT
[

D

F

])

(6)J = −
∑T

t=1
R
i

t
logR̂i

t
+
(

1 − R
i

t

)

log
(

1 − R̂
i

t

)

,

1  https://​pslcd​atash​op.​web.​cmu.​edu/

https://pslcdatashop.web.cmu.edu/
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training. This resulted in a final dataset involving 866 item sequences, 32 unique 
items, and 15 unique skills.

3.3 � Training settings

In this study, the embedding weights of items, learners, and actions were regular-
ized with a finalized regularization weight of 0.001, which was selected from four 
candidate weights: 0, 0.001, 0.01, and 0.1. In addition, to reduce overfitting, a drop-
out layer with a dropout rate of 0.5 was applied prior to each neural network layer, 
which was selected from three candidate rates: 0, 0.2, and 0.5. Regarding the sub-
architectures of the proposed model, both the deep LSTM network architecture and 
the architecture for prediction involve one layer with output dimensions of five and 
two, respectively. Moreover, we selected a latent dimension of 120 for the embed-
ding layers of items, learners, and actions. The learning rate for Adam was finalized 
at 0.0001, which was selected from the following four values: 0.0001, 0.001, 0.01, 
and 0.1. The model was trained for 150 epochs with a finalized batch size of 256, 
which was selected from the following candidate values: 5, 32, 64, 128, and 256.

3.4 � Evaluation settings

In this study, DKT was selected as the baseline for evaluating the effectiveness of 
the proposed model. DKT is a deep learning-based learner modeling approach that 
predicts the probabilities of the next learning performance based on modeling his-
tory learning performance with an RNN architecture (Piech et al., 2015). DKT was 
used as a baseline for model evaluation in many learner modeling studies, where 
it has been found to outperform conventional models such as BKT (e.g., Xiong 
et al., 2016). In this study, DKT was modelled with a 100-node LSTM layer, and the 
model was trained at the skill level (i.e., skill IDs were used as inputs) with a learn-
ing rate of 0.001. In addition to DKT, the proposed model was compared against its 
two sub-architectures, the attention and the LSTM variants. Instead of concatenat-
ing the attention and the LSTM outputs for final predictions as in the full model, 
the attention and the LSTM variants make predictions solely based on the outputs 
of the attention mechanism and the LSTM architecture, respectively. Moreover, to 
examine if process data learning is effective for improving prediction performance, 
we compared the proposed model with a variant without the module for process data 
learning.

In this study, to evaluate the performance of the proposed model, we selected the 
first 30%, 50%, and 70% of item responses of each learner item response sequence 
for training. The model was evaluated with both the regression and classification 
metrics. The classification metrics included Accuracy (ACC) and the Area Under 
the Receiver Operating Characteristic (ROC) Curve (AUC; Ling et al., 2003). ACC 
scores are computed as the percentage of correctly predicted item responses with 
a cut-off value of 0.5. Unlike ACC, AUC indicates the area under the plot of sen-
sitivity rates against the false-positive rates and therefore, its calculation does not 
rely on any specific cut-off values. This feature of AUC makes it insensitive to class 
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imbalance (e.g., the majority of item responses are correct, and few are incorrect). 
The regression evaluation metrics (Willmott & Matsuura, 2005) included the Mean 
Absolute Error (MAE) and the Root Mean Square Error (RMSE).

4 � Results

4.1 � Prediction performance

The evaluation performance of each model on the test datasets across different train-
ing/test partition ratios is presented in Table 1. Generally, disregarding the training/
test partition ratios, the proposed model demonstrates higher ACC and AUC rates 
and lower MAE and RMSE rates than DKT and the variant without process data 
learning. Moreover, using more history items for training slightly improves the pre-
diction accuracy of the proposed model, shown by slightly higher ACC and AUC 
rates and slightly lower MAE and RMSE rates.

Regarding the comparison between the proposed model and its two sub-architec-
ture variants, it is evident that the proposed model has a similar or higher prediction 
performance than its two sub-architecture variants. However, the attention variant 
slightly outperforms the LSTM variant.

Table 1   Comparison of testing performance between the proposed model and other models

ACC​ = Accuracy, AUC​ = Area under the ROC Curve, MAE = Mean Absolute Error, RMSE = Root Mean 
Square Error. Values in bold represent the metric of the optimum model of the ones compared

Model ACC​ AUC​ MAE RMSE

Training ratio: 0.7
DKT 0.7037 0.7157 0.3786 0.4339
Model without process data 0.7143 0.7347 0.3583 0.4298
Full model 0.7225 0.7400 0.3580 0.4254
Attention variant 0.7219 0.7395 0.3583 0.4258
LSTM variant 0.6909 0.6928 0.4065 0.4419
Training ratio: 0.5
DKT 0.6890 0.6974 0.3739 0.4422
Model without process Data 0.7076 0.7266 0.3587 0.4342
Full model 0.7160 0.7323 0.3578 0.4300
Attention variant 0.7160 0.7309 0.3589 0.4305
LSTM variant 0.6904 0.6946 0.4028 0.4408
Training ratio: 0.3
DKT 0.6672 0.6439 0.3764 0.4748
Model without process data 0.7065 0.7182 0.3595 0.4382
Full model 0.7126 0.7259 0.3616 0.4330
Attention variant 0.7118 0.7261 0.3617 0.4335
LSTM variant 0.6847 0.6882 0.4093 0.4453
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4.2 � Mapping of items to skills

In this study, the proposed model adopted the approach by Pandey & Karypis, 
(2019) to discover the mapping of items to skills. In the model, through the atten-
tion mechanism, the attention weights of each item for prediction (i.e., the query) 
can be used to indicate the connection strength of an item with its previous items. 
The attention weights for each possible item pair (i.e., [query item, key item]) 
can be summed over all learners to derive their relevance weights, which are then 
normalized for each query item so that weights of each item sum to one. Accord-
ing to the relevance weights of each item, the items measuring the same skill can 
be indicated by the clusters of items with the strongest connections to each other.

According to the heatmap of item relevance weights (see Fig. 3), even though 
the clustering of items is not fully clear-cut, it can be found that a major item clus-
ter includes items 10 to 21, shown by their stronger connections to each other than 
others, indicating that items 10 to 21 might measure the same skill. To validate 
this, we compared the discovered item-skill associations with the original skill 
model. According to the skill model, items 10 to 21 were designed to evaluate 

Fig. 3   Heatmap indicating item relevance by the proposed model. Note. The item and skill names are 
presented in Table 2
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the same skill of “equivDragFract” (see Table  2), which suggests the potential 
of the proposed model to identify item-skill associations from the scratch auto-
matically. However, unfortunately, the heatmap shows that the proposed model 
might be less capable of discovering item-skill associations in case only one or 
two items are developed for measuring a skill. Unsurprisingly, given few items 
developed for a skill, the skill might not be fully represented and measured by the 
items, and learners might not have adequate opportunities to exercise the skill. As 
such, the relevance weights might be calculated with much randomness, resulting 

Table 2   Item and skill labels

ID Item label Skill label

1 combo1 UpdateComboBox equivFractEquivalent
2 combo1_3 UpdateComboBox compFract
3 combo2 UpdateComboBox relationEquivMultiplySameNumber
4 combo2_1 UpdateComboBox compSectSize
5 combo2_2 UpdateComboBox compNumSect
6 combo2_3 UpdateComboBox compFract
7 combo3 UpdateComboBox relationEquivConserveAmount
8 combo4 UpdateComboBox relationEquivSameAmount
9 combo5 UpdateComboBox relationEquivDiffNumbers
10 dragTarget1 WasJustHitByA Circle equivDragFract
11 dragTarget1 WasJustHitByA NL equivDragFract
12 dragTarget1 WasJustHitByA Rect equivDragFract
13 dragTarget2 WasJustHitByA Circle equivDragFract
14 dragTarget2 WasJustHitByA NL equivDragFract
15 dragTarget2 WasJustHitByA Rect equivDragFract
16 dragTarget3 WasJustHitByA Circle equivDragFract
17 dragTarget3 WasJustHitByA NL equivDragFract
18 dragTarget3 WasJustHitByA Rect equivDragFract
19 dragTarget4 WasJustHitByA Circle equivDragFract
20 dragTarget4 WasJustHitByA NL equivDragFract
21 dragTarget4 WasJustHitByA Rect equivDragFract
22 fract1_denom1 UpdateTextArea relationCompTotalSectNumber
23 fract1_denomMultiply1 UpdateTextArea equivMultiplyDenom
24 fract1_numMultiply1 UpdateTextArea equivMultiplyNum
25 fract2_denom1 UpdateTextArea relationCompTotalSectNumber
26 fract2_num1 UpdateTextArea numSectZeroDot
27 fract3_denom UpdateTextArea equivNameDenomFract
28 fract3_denomMultiply1 UpdateTextArea equivMultiplyDenom
29 fract3_num UpdateTextArea equivNameNumFract
30 fract3_numMultiply1 UpdateTextArea equivMultiplyNum
31 fract4_denom UpdateTextArea equivNameDenomFract
32 fract4_num UpdateTextArea equivNameNumFract
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in a less clear-cut clustering of items. Moreover, it should be noted that despite 
multiple skill models for the dataset, the ground truths regarding the connections 
between items and skills are never known. Therefore, we cannot fully validate the 
estimated item-skill associations by the proposed model. To sum up, the proposed 
model successfully identified the mapping of the major skill to most assessment 
items, supporting its potential to discover item-skill associations from scratch.

5 � Discussion and future work

This work proposed a novel deep learning-based model to sequentially model learn-
ing outcomes using product and process data. According to the evaluation results, 
we conclude that the proposed model can predict learning outcomes with high accu-
racy and automatically identify the mapping of items to skills without prior expert 
knowledge. Compared with the model without process data learning, the proposed 
model accounts for additional information from learner problem-solving processes 
to improve prediction accuracy.

Notably, our approach aligns with the multiple purposes of learning out-
come modeling in the context proposed by Pelánek (2017). Specifically, learn-
ers’ future interactions with a system are affected by the outputs (e.g., predic-
tions of future item responses) of a model analyzing learner data extracted from  
the system through three loops. During the process of learners interacting with 
an assessment item, the process data modelling module of the proposed model 
has the potential to process learners’ problem-solving steps and produce esti-
mated probabilities of item successes, which is characterized as affecting learn-
ers’ short-term behaviors within the “inner loop” of learning outcome modelling. 
Regarding the predictions of future item responses, they can be used to inform 
the instructional policies for improved learning effects. For example, suppose 
a system predicts that a learner will correctly solve the next item with a 95% 
chance. In that case, the system will stop presenting other similar items for meas-
uring the same skill since the learner is very likely to have mastered the skill. 
Moreover, if a system predicts that an item is too hard or too easy for a learner, 
then the system will skip or delay presenting the item to the learner to maximize 
his or her learning effects. These exemplify how the proposed model can affect 
learners’ future interactions through the “outer loop” of learning outcome mod-
eling by Pelánek (2017). Regarding the third loop with human involvement, the 
item-skill associations discovered by the proposed model can be used to provide 
actional insights. For example, if a system discovers that an item is of low qual-
ity or not related to most other items, a human expert might consider dropping 
this item from the item bank to improve the validity of the assessment system. 
In summary, the proposed model, the proposed model, bears great potential in 
promoting personalized learning through its three major features of process data 
learning, learner modeling, and domain modeling, which correspond to the three 
loops of learning outcome modeling proposed by Pelánek (2017).

Pedagogically, our study posits that the proposed model substantively contrib-
utes to personalized learning applications, particularly in the context of CBAs, in 
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several key dimensions. First, our study offers a novel, scalable learning outcome 
modelling approach, affording education practitioners a valuable tool to adeptly 
leverage both learner product and process data. As suggested by our findings, 
incorporating student process data significantly enhances the predictive capac-
ity of personalized learning systems. This implies that education practitioners 
should not only prioritize learners’ explicit performance but also examine their 
problem-solving processes for a comprehensive understanding of how learners 
achieve learning objectives. Second, the high predictive capability of the pro-
posed model facilitates a more efficient personalized learning system, proficiently 
tailoring recommendations for learning materials and assessments to individual 
students. Finally, the functionality of the proposed model to discover the map-
ping of items to skills benefits the development of large-scale assessments. Since 
items can be automatically mapped onto their targeted skills, the development of 
a large-scale CBA can be more expeditious and cost-effective. In terms of practi-
cal implications, educators are encouraged to implement the proposed model to 
create more reliable and predictive personalized learning experiences for learn-
ers, with insights into both the “where” and “why” of learners’ performance. In 
addition, the proposed model streamlines the development of large-scale CBAs. 
More importantly, the proposed model holds promise for adaptation to other digi-
tal learning environments where learners’ product and process data are available 
(e.g., massive open online courses) to inform the optimization of learning out-
comes and the learning context.

Inevitably, several limitations exist for the current work. First, since the model 
discovers item-skill associations through identifying major item clusters based on 
the estimated relevance weights between items instead of parameterizing latent 
skills, the mapping of items to skills might be discovered with randomness, espe-
cially when skills are measured by a limited number of assessment items. Second, 
despite its satisfactory performance in addressing dichotomous item responses, 
the model needs to be adapted to deal with polytomous item responses in future 
work since non-binary scoring is prevailing in most educational settings. Third, 
the better demonstrate and understand how learners acquire new knowledge, the 
interpretability of the proposed model can be enhanced considering the black box 
nature of deep learning architectures.
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