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Abstract. Software development is a global activity unconstrained by the bounds of time and
space. A major effect of this increasing scale and distribution is that the shared understanding that
developers previously acquired by formal and informal face-to-face meetings is difficult to obtain.
This paper proposes a shared awareness model that uses information gathered automatically from
developer IDE interactions to make explicit orderings of tasks, artefacts and developers that are
relevant to particular work contexts in collaborative, and potentially distributed, software
development projects. The research findings suggest that such a model can be used to: identify
entities (developers, tasks, artefacts) most associated with a particular work context in a software
development project; identify relevance relationships amongst tasks, developers and artefacts e.g.
which developers and artefacts are currently most relevant to a task or which developers have
contributed to a task over time; and, can be used to identify potential bottlenecks in a project
through a ‘social graph’ view. Furthermore, this awareness information is captured and provided as
developers work in different locations and at different times.

Keywords: context awareness, collaboration, relevance filtering, distributed teamwork, empirical
studies, global software development

1. Introduction

Software development is a collaborative effort where groups of developers work
together within a global time/space matrix. During such collaboration developers
need to maintain their awareness of how particular tasks or project artefacts are
progressing, what fellow developers are (or have been) doing and the current state
of resources associated with the project. In collocated settings the awareness
information that concerns developers directly or tangentially is achieved through
the use of instant messaging clients, emails, scrum meetings and developers
stopping at the desks of co-workers to update them on problems or to see what
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problems they are facing (Ko et al. 2007). Developing and maintaining such
awareness is more difficult in distributed software teams than collocated ones
(Cramton 2001). This is because the awareness information required in such settings
is tacit, inherent, dynamic and contextual. It is tacit since most of what developers do
in collaboration spaces builds from experience, skills, heuristics and interactions that
can hardly be documented (Busch and Richards 2001; Hadas and Frank 2001), and
inherent since this knowledge is deeply bound to these developers. Its dynamic
nature stems from the ever changing state of software projects. Finally, the relevance
of such information varies across differing project contexts.

A number of studies have revealed the problems caused by these peculiar
attributes of distributed teams. They include poor visibility and control of remote
resources; inadequate communication, collaboration and coordination across
distributed teams; diminishing trust; and lack of shared contextual awareness
(Boland and Fitzgerald 2004; Chisan and Damian 2004; Hargreaves and
Damian 2004). An industrial experience report on distributed software teams
located over ten sites identified shared contextual awareness of the work carried
out by different team members as a major issue (Kommeren and Parviainen 2007).
Herbsleb (2007) has suggested that this lack of contextual awareness information
makes it difficult to initiate contact and often leads to a misunderstanding of
communication content and motivation. The lack of context information limits
the potential to track the effect of changes in distributed, collaboration space
(Kommeren and Parviainen 2007).

On the other hand, distributed software development offers a number of theoretical
benefits, including shortened time-to-market cycles, more rapid response to customer
needs and a more effective resource pooling (Kommeren and Parviainen 2007). The
goal of the research reported in this paper is to bridge the gap between the reality of
distributed software development and these theoretical benefits by developing
awareness systems that emulate collocation in distributed settings.

It is proposed that the benefits of collocation in virtual and distributed
collaboration spaces can be achieved by capturing the interaction activity trails
that occur within these spaces. These trails are built up as developers go about
their daily development tasks leaving historical traces behind. An empirical study
carried out by Fritz et al. suggests that these developer interactions can be used to
build models of awareness about a software code base (Fritz et al. 2007).

This paper starts by discussing related literature on awareness in general settings
before focussing on previous research that has aimed to provide support for increased
awareness in a collaborative and/or distributed software engineering environment.
From this review it becomes clear that awareness information needs, and the
mechanisms for dissemination in software development teams, are more easily
obtained in collocated than distributed scenarios. To achieve the potential benefits of
distributed, collaborative development further work is required that focuses attention
on who and what is relevant to particular work contexts within a software project. In
contrast to previous work, the approach proposed here aims to build an awareness
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model without relying on developers ‘tagging’ particular artefacts or on the
limitations of the underlying configuration management system.

Based on the literature review, this research introduces a ‘Continuum of Relevance
Index’ (CRI) model that proposes a new approach to providing relevance awareness
information. CRI is derived from developer interactions in a shared collaboration
space. The basis of this model is the monitoring of key interactions, such as project
views, updates and creates, made by any developer while working in a distributed,
collaborative space. The model is used to provide real time relevance rankings that
are intended to enhance awareness of the relevance of tasks, developers and artefacts
to a selected development work context. The research question that is addressed is:
Can a model based on real-time monitoring of IDE interactions, such as creates, edits
and views, enhance contextual awareness during distributed, collaborative software
development? A qualitative investigation using a prototype implementation of CRI
has been carried out using advanced student based collaborative projects. Results of
the study demonstrate that the model can provide accurate relevance rankings, and
thereby has the potential to increase developer awareness of artefacts, developers and
tasks, and their interrelationships, over a range of collaborative project contexts.

2. Review of literature and problem formulation

2.1. Awareness concepts within the framework of collaborative work

Research literature on the concept of awareness in a general setting suggests that it is
both situation and domain dependant with no single meaning. As Schmidt (2002)
says, “The very word ‘awareness’ is one of those highly elastic English words that
can be used to mean a host of different things. Depending on the context it may mean
anything from consciousness to knowledge to attention or sentience, and from
sensitivity or apperception to acquaintance or recollection”. Dourish and Bellott
(1992) define awareness as understanding the activities of others, providing a context
for your own activity, while Gutwin and Greenberg (1998) present awareness as a
mechanism for enhancing coordination and efficiency when people work together.
Schmidt (2002) defines awareness as an attribute of action, doing it “heedfully,
competently, mindfully, accountably”. Whilst acknowledging that there are other
forms of awareness that exist, the following five awareness types concern the needs
of group work dynamics that exist during collaboration:

– Informal awareness is associated with a pervasive sense of who is around,
what they are doing, and what they are going to do. People have this kind of
knowledge when they work together in the same office. Informal awareness
can been used to facilitate casual interactions and initiate appropriate modes
of communication (Gross et al. 2005).

– Group-structural awareness constitutes information about groupmembers such as
their roles, status and position on certain issues (Gutwin 1997). Group-structural
awareness is essential to obtain knowledge of the expertise of other collaborators

511USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS



based on the roles they assume. This knowledge can prove important in choosing
who to initiate an interaction with for mentoring on project activities.

– Social awareness is the type of information collaborators have about each
other in a conversational or task context and includes information such as the
attention, interest and emotional state of collaborators (Gross et al. 2005).
Providing such awareness information helps minimise interruptions and
disturbances when engaging in collaborative processes, or rather ‘appropriate
obtrusiveness’, as described by Schmidt (2002).

– Workspace awareness concerns information about the interactions of other
collaborators with a shared project workspace and the artefacts it contains.
Gutwin et al. (1996) described a set of elements that collaborators may keep
track of during a collaborative process in a shared space and the relevant
questions associated with these elements—see Table 1.

Context awareness is a more generic concept in which context refers to the set
of circumstances or facts that surround a particular event or situation (Webster
2006). From a computer science perspective context awareness was initially
perceived as referring to the location of an entity (Dey et al. 2001). The notion
has now evolved to not just a location but part of a process with different state
transitions (Bolchini et al. 2007).

Each of these five awareness types is associated with the notion of context. For
instance, informal awareness provides information on the presence and location
of collaborators and is therefore highly dynamic. Similar observations can be
made about the changing states of group-structural, social and workspace
awareness. Furthermore, since collaborators work on different tasks and different
resources and form different perceptions of their workspace, such awareness is
highly contextual and therefore cannot be generalised.

Table 1. Elements of workspace awareness (Gutwin et al. 1996).

Element Relevant questions

Identity Who is participating in the activity?
Location Where are they?
Activity level Are they active in the workspace?
Actions What are they doing?
Intentions What are they going to do?

Where are they going to be?
Changes What changes are they making?

Where are the changes being made?
Objects What objects are they using?
Extents What can they see?
Abilities What can they do?
Sphere of Influence Where can they have effects?
Expectations What do they need me to do?
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In the remainder of this paper, contextual awareness is implied each time the
word awareness is used.

2.2. Disseminating awareness information in computer mediated collaboration

Insight on how awareness is supported in electronic and virtual shared
workspaces is increasingly important, especially in scenarios where time and
space are parameters for defining a collaboration process. Researchers have
pursued a variety of strategies to keep collaborators aware of important
information. Cadiz et al. (2001) suggested that these strategies generally fall into
one of three categories: polling, alerts and peripheral awareness.

Polling involves making information accessible and allows collaborators to
repeatedly check, or ‘poll’, the information. This is advantageous when an
individual has knowledge of where to repeatedly check for updates on
information. It is also an appropriate mechanism to disseminate awareness when
such information is required on an ‘as needed’ basis.

Alerts involve intentionally interrupting an individual to provide awareness
information and overcome the drawback associated with polling of only finding
information when they poll the information source. Alerts can be delivered via
audio or visual cues and can range from highly to minimally intrusive, utilising
intelligent algorithms to determine if the cost of interruption is worth the benefit
(Horvitz et al. 1999). The main disadvantage of this approach is that alerts often
do disrupt users from their primary task (Cutrell et al. 2001; McFarlane 1999).

Peripheral awareness works by filling a user’s peripheral attention with
information such that it envelops them without distracting them. The goal is to
present the information so that it works its way into a user’s mind without intentional
interruption. Peripheral forms of disseminating awareness have been provided using
peripheral audio (Alexanderson 2004; Pacey and MacGregor 2001), peripheral
vision or a mix of peripheral visual and audio cues (Cadiz et al. 2001; Heiner
et al. 1999; Weiser and Brown 1996). The disadvantage of peripheral awareness is
that it is possible to ignore important information that appears only at the periphery.
Furthermore, the challenge is to figure out what should be presented peripherally, and
to strike a balance between too much and too little (Pedersen 1998).

Kantor and Redmiles (2001) argue that there is no optimal strategy to provide
awareness information in collaboration spaces because of the associated
advantages and disadvantages. For example, if one author is changing a
document, a co-author and an end user of the document are likely to benefit
from different awareness strategies.

2.3. Awareness information needs and dissemination in software development teams

The awareness requirements amongst collaborating software developers generally
focus on the need for information on people, project resources and development
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tasks. As such, they have much in common with the general awareness
information needs over shared workspaces identified by Gutwin et al. (1996) as
shown in Table 1. A study conducted by Ko et al. (2007) showed that the most
frequently sought information during software development included awareness
about tasks, artefacts and co-workers. The study also suggested that developers
frequently sought information about how the resources they depended on
changed; what their fellow team-mates had been doing; and what information
was relevant to their task. These awareness information requirements focus on
two broad perspectives. The historical perspective is where information is sought
about the overall impact of project entities on a selected work process (e.g.
developers seeking information on which artefacts are relevant to accomplish a
selected task). The recent perspective is where information is sought about the
current state of entities in the workspace (e.g. what team-mates are doing, or
recent changes on artefacts that developers depend on).

In collocated teams such awareness information has been disseminated via
polling and alert mechanisms such as email and instant messaging clients.
Development teams also use frequent, brief meetings throughout the day to stay
aware of work effort and problems. Also, developers will stop by a co-worker’s
office, chat in the hallway or over coffee to update them on problems or see what
problems they are facing (Curtis et al. 1988). Research studies demonstrate that
the social nature of software development work is also driven by awareness
information. For instance, Perry et al. (1994) reported that over half of
developers’ time was spent interacting with team members, of which much of
the communication was to maintain awareness. Ko et al. (2007) also highlighted
that co-workers were the most frequent resource when seeking information.
Furthermore, simply watching another developer carry out a task (Segal 1995),
and observing changes to project artefacts (Dix et al. 2004) have also been used
as a source of awareness in collocated software development.

Awareness information needs in distributed software development teams are
not significantly different from collocated needs. In distributed teams developers
also seek to maintain awareness of other developers activities including the code
artefacts and the tasks they are working on. Gutwin et al. (2004) found that
distributed developers sought to maintain a broad awareness of who were the
main people working on their project and what their expertise was.

For distributed teams, however, obtaining and disseminating awareness informa-
tion is more challenging and mostly dependent on electronic means. Studies carried
out on open source projects showed that awareness was mainly maintained using
text-based communication such as mailing lists and instant messaging clients
(Gutwin et al. 2004). The main advantage of text-based channels stems from their
simplicity of use, but they depend on commitment from developers to read the shared
text and making their project communications public (Biehl et al. 2007).

Version check-in logs in configuration management systems have also been
used to obtain awareness of work in both distributed and collocated software
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development. de Souza et al. (2003) showed that collocated developers often
gauge expertise by inspecting check-in logs. Similarly, Gutwin et al. (2004)
reported that distributed developers obtained awareness through check-in logs,
with changes being automatically sent to a mailing list of subscribed developers.
The advantage of check-in logs is that they are based on the actual manipulation
of project artefacts.

However, awareness information from check-in logs is not always sufficient.
While these logs can help find other developers, they generally do not distinguish
levels of expertise (McDonald and Ackerman 1998)—though Expertise Browser
(Mockus and Herbsleb 2002) would appear to be an exception to this. This
becomes more complicated when an artefact has been worked on by several
developers with differing levels of expertise. While strict partitioning and code
ownership rules may be enforced to help avoid this problem, in distributed
software such as open source development, code ownership is not always
obtainable. Gutwin et al. showed that partitioning was not so strongly applied on
open source projects and developers were free to work where they saw fit
(Gutwin et al. 2004). Study findings have also shown the lack of clear ownership
and partitioning in distributed, open source projects and concluded that the
structure of a project alone is not sufficient for developers to obtain the awareness
necessary to coordinate their actions (Mockus et al. 2002).

The closest imitation of collocation during distributed software development
has been through the use of media spaces. A typical media space consists of
permanent video and audio connections between geographically distributed sites.
The permanent connection of media spaces has been shown to reduce the cost of
initiating collaboration and to contribute to the creation of a common social space
irrespective of distance (Bly et al. 1993; Farshchian 2001; Singh 1999). While
media spaces cannot replace face-to-face awareness they do provide an
opportunity to obtain awareness information that is not normally possible without
‘being there’ (Bly et al. 1993). The use of video conferencing, video phone and
desktop video with audio capabilities in distributed development have also been
studied by de Freitas et al. (2008). However, the use of such synchronous
channels is highly challenging for distribution that is characterised by different
time zones. Furthermore, this mode of awareness lacks the flexibility of
mechanisms such as email and check-in logs, where information can be more
easily searched and referred to at convenience.

On the whole, these studies suggest that awareness support for distributed
software development teams is still inadequate from both a historical and a recent
perspective. Empirical studies have revealed that most tools are designed to
answer a specific kind of question, focussed on a particular type of code artefact
(Sillito et al. 2008). Also, most approaches treat information seeking questions as
if they were asked in isolation rather than part of an ongoing dialogue which can
be necessary to obtain full contextual awareness during distributed software
development. Finally, it is clear that collocated software development has
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awareness information benefits that are more difficult to obtain during distributed
development. As a result, collocated teams are likely to achieve higher
productivity, shorter schedules, and higher satisfaction among stakeholders
(Teasley et al. 2002). The goal is therefore to build tools for distributed teams
that emulate the attributes of collocation awareness in their design.

2.4. Enhancing context awareness in distributed software development
environments

Current software development environments (IDEs), such as Eclipse, NetBeans,
and Visual Studio, are enhanced with facilities to make software development
easier. These include source code editors, compilers, interpreters, debuggers,
visualisations and code generators. The size, complexity and distributed nature of
current projects also bring a demand for further features to support development.
The following discusses a range of approaches that have been used to enhance
contextual awareness during distributed software development within such IDEs.

2.4.1. Obtaining context by social tagging

A tag is a keyword assigned to a piece of information to help describe it. Social
tagging describes the collaborative activity of marking shared content to organize it
for future navigation, filtering or search (Yew et al. 2006). This concept has been
introduced into a number of IDE components to enhance contextual awareness
during distributed, collaborative software development. Storey et al. (2006)
presented TagSEA (Tags for Software Engineering Activities in Eclipse) based on
the concept of waypoints (locations of interest) and social tagging (social book-
marking). The waypoint analogy corresponds to marking specific locations in the
software such as Java source code elements (classes, methods, packages etc.). User-
created annotations, written as comments embedded in the code, result in very
explicit landmarks for readers and support navigation and coordination. While
preliminary feedback suggests that implicitly captured meta-data combined with the
lightweight nature of tagging is a promising technique for supporting contextual
awareness in distributed software development, it can become unwieldy in practice
and outdated over time. The concept of social tagging can also be found in Jazz,1

which is a real-time team collaboration platform based on the Eclipse IDE for
integrating work across the different phases of a software development lifecycle. One
of the aims of Jazz is to introduce contextual awareness into the collaboration
environment (Hupfer et al. 2004). With Jazz developers can initiate chats, which can
then be saved as code annotations on the section of the code artefact involved in the
discussion (Cheng et al. 2004).

The use of tagging can also be found in CASS (Cross Application Subscription
Services)—a software development awareness infrastructure (Kantor and
Redmiles 2001). CASS provides a notification server for the distribution of
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awareness information which enables developers to subscribe to types of information
that they believe will affect them and to specify which types of awareness tool the
information should be sent through (email etc.). The outcome of this configuration is
that developers get contextual awareness information on the state of different aspects
of a software system that directly affects their work. The main challenge with using
CASS appears to lie with the configuration that needs to be carried out by the
developer to get the tool running. This might be asking a lot from a developer who is
not familiar with the development space.

Finally, Froehlich and Dourish (2004) presented Augur as a visualisation tool
that provides a line-oriented view for supporting distributed software develop-
ment processes. These views are formed by tagging developers to different
aspects of an artefact they have been associated with. Initial evaluation of Augur
with open source software developers suggests that generating views based on
tagging the activities of developers to subsections of artefacts is both meaningful
and valuable to software developers.

2.4.2. Obtaining context by mining relational properties among software project
entities

During software development a wide variety of relationships are formed. These
relationships can be structural relations, based on direct and indirect links amongst
artefacts that comprise a project, or they can be social relations based on direct and
indirect links among developers collaborating on a project. A hybrid of these can also
be obtained, based on associations between developers and artefacts that are associated
with a shared software project. The use of such project structural and social relations
has also been modelled by context awareness mechanisms within IDEs.

The Rational Team Concert (RTC), a plug-in to Jazz (Jazz 2008), enables
contextual awareness by mining relational properties of entities within shared
software projects. Each ‘Project Area’ contains the artefacts for a project and has
an associated process which governs how the project is run and the way Jazz
behaves. Project areas are decomposed into a set of ‘Team Areas’, which describe
the teams that work on the project. Each team area has a list of team members and
the ‘Process Role’ they play within the team. A user can be a member of more
than one team. Each team area can define ‘Process Customizations’ of the process
to tailor Jazz for the team and its sub-teams. Finally, the planned work is
described by ‘Work Items’. The types of work items used in a project area are
defined by the process (Jazz 2008). This rigorous relational view offers the
potential to enhance traceability and contextual awareness of the state of different
entities within a project. For instance, information about the state of a work item
can be derived by viewing the code artefact resources and the developers that the
work item is associated with. Similarly, contextual information about a project
team can be derived by navigating the different team members and processes
associated with the project team. The potential downside of RTC is that each of
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these entities and their inter-relations has to be defined by the user-for non-trivial
projects this could be quite demanding. It is also worth noting that, during
evaluation, participants expressed some concern that Jazz might be used by
unethical managers to monitor their work instead of being used as a coordination
aid to enhance awareness (Cheng et al. 2004).

The work of de Souza et al. (2007) in developing Ariadne also demonstrated
the use of relational properties among entities to derive contextual awareness
within IDEs. Ariadne, another plug-in for the Eclipse IDE, analyses software
projects for dependencies, whilst collecting authorship information from
configuration management repositories. The tool translates technical dependen-
cies (e.g. call graphs) among components into social dependencies among
developers (by annotating components with social information) and creates a
visualisation to convey this information. Ariadne is used to identify developers
who are more likely to be communicating, by assuming that developers with
similar dependencies are likely collaborators. The accuracy of Ariadne is
therefore dependent on the state of a versioning system.

A number of other tools and models have been developed to enhance contextual
awareness in distributed software development based on mining relational properties
that exist amongst software project entities. Bruegge et al. (2006) presented Sysiphus
as a tool that supports the creation and subsequent browsing of a graph created by
linking artefacts, as well as annotations and comments on those artefacts. It achieves
this by encouraging collaborators to make communication and issues (tasks) explicit
in the context of system models and also to become aware of relevant stakeholders.
Cubranic et al. (2005) describes the design and evaluation of Hipikat, a tool that
draws on information retrieval techniques to help developers identify artefacts that
are related to an initial artefact used to generate a query. Evaluation shows that the
tool finds useful starting points for exploring the code. Finally, Expertise Browser
(Mockus and Herbsleb 2002) uses data from version control systems to locate
developers with desired expertise in geographically distributed software develop-
ment projects. Expertise is automatically constructed from ‘experience atoms’which
correspond to individual revision control changes (deltas). Evaluation of Expertise
Browser showed that newer and remote development sites tended to use the tool to
find individuals with particular expertise while larger, more established sites used the
tool to discover the particular expertise held by individuals or organisations.

2.4.3. Obtaining context by monitoring developer interactions

Interactions that are carried out in collaboration space can be viewed as having
different levels of impact on the state of a project. By associating different
weightings to interactions based on their perceived levels of impact on the state of
a shared project it is possible to obtain contextual awareness.

This concept of weighting the severity of developer interactions can be seen in
the modelling of Palantír (Sarma and Hoek 2002; Sarma et al. 2003). Palantír is a
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workspace awareness tool that complements configuration management systems.
It enhances awareness by continuously sharing information regarding operations
performed by all developers. The tool specifically informs a developer which
other developers change which other artefacts. Furthermore, Palantír provides a
measure of the severity of those changes (based on the proportion of the file that
has changed) and graphically displays this information in a configurable manner.
The accuracy of Palantír is highly dependent on consistent use of a version
management system by collaborating developers.

FASTDash (Fostering Awareness for Software Teams Dashboard) (Biehl et al.
2007) is a visualisation tool that highlights the current activity of team members,
such as which files are changing, who is changing them and how they are being used.
The visualisations can also be annotated, allowing members to supplement context
information with status details. FASTDash is optimised for developers working in
close proximity and time and may be less useful across different time zones or in
cases where collaborators are given the freedom of choice of place and time of work.

2.4.4. Obtaining context by combining developer interactions and relational
properties

The Team Tracks project (Deline et al. 2005) utilises the notion of relational property
and frequency of an interaction. Team Tracks helps developers understand
unfamiliar source code by mining navigation data as development teams go about
their daily programming activities. Team Tracks is based on two insights: the more
often developers visit a part of the code the more important it is; and the more often
developers visit two parts of the code in succession the more related they are. To help
a newcomer quickly find the most important parts of the code, Team Tracks limits the
code overviews to the most frequently visited items (favourite classes view). To help
a newcomer find code related to the module currently being worked upon Team
Tracks recommends parts of the code visited just before or after that module (related
items view). A controlled laboratory study has shown that Team Tracks significantly
improves a developer’s ability to perform updates to unfamiliar code.

2.4.5. Obtaining context by combining developer interactions and relational
properties with the notion of time and its expiration

This notion of context formation can be seen in the modelling of Mylyn (Kersten
2007) as a task-focused interface for Eclipse. The main objective of Mylyn is to
reduce information overload and make multi-tasking easier. Mylyn monitors a
developer’s work activity to identify code artefacts relevant to the task in-hand; it
then uses the task context to focus the Eclipse user interface on relevant artefacts.
As the interaction history is captured from a developer’s activity, a degree of
interest (DOI) function assigns real number weightings of artefacts to tasks. The
weighting is based on the frequency of access to the artefact and a decay factor
that corresponds to the total number of interaction events captured. Accessing an
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artefact in the context of a task increases its weight, while accessing other
artefacts decays the weight of infrequently accessed artefacts.

The weight associated with an accessed artefact, or decrease in weight of other
artefacts, is determined by the interaction events monitored by Mylyn as shown
in Table 2. Mylyn also considers events that do not directly affect the state of a
code artefact. For instance, a command event, such as a preference setting or a
save button press, increases the relevance of an active artefact to the current task.
An artefact is active if it is open within the tooling environment while the
command event is being executed. Propagation and prediction events cause
artefacts that have not yet been interacted with directly to be associated with a
task context. For example, a selection event may trigger a propagation event for
structurally related elements such as sub classes and the package containing the
class. Value ranges in the DOI specify which artefacts are relevant to a task.
Relevant artefacts are those with a positive DOI value. Empirical evaluation of
Mylyn, in which professional programmers used the tool for their daily work on
enterprise-scale Java systems, showed developers spending more time working
on code than navigating it (as opposed to the other way round).

2.5. Recommender systems for general task awareness

There is a body of related research, outside the specific domain of software
engineering that uses computer interaction data to automatically identify
resources that are relevant to tasks. Typical of this work is that of Dragunov et
al. (2005) on TaskTracer and Kaptelinin (2003) on UMEA.

These systems aim to identify the resources that are relevant to user defined
tasks. Typically, they operate in Microsoft Windows environments using COM
extensions to monitor and capture events associated with a range of tools e.g.
word processing, spreadsheets, databases, web browsers and email clients. The
goal of these systems is to be able to automatically identify the resources (and
processes) that are relevant to tasks such as writing a report, so that if a user is
interrupted, temporarily switches task, or comes back to a similar project at later
date, these tools can quickly recover the resources that are relevant to that task.

Table 2. Interaction events monitored by Mylyn (Kersten 2007).

Event kind Interaction Description

Selection Direct Editor and view selection via mouse or keyboard
Edit Textual and graphical edits
Command Operations such as saving, building, preference setting

and interest manipulation
Propagation Indirect Interaction propagates to structurally related elements
Prediction Capture of potential future interaction events
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These general task recommender systems and approaches have some
similarities to the model, and its implementation, described in this paper. They
are based on the monitoring of computer interaction data. They face the common,
major challenges of identifying the task that a user is working on, and detecting
when the user switches task. Typically the onus is on the user to identify both of
these, and they have to deal with noisy data. Often users will temporally change
the focus of their work without switching task.

However, there are also major differences between the goals of these more
general systems and a more specific distributed, collaborative software
engineering model. Both the TaskTracer and UMEA systems appear only to
present resource context from the perspective of an individual user and individual
tasks—these recommender systems identify the resources that are relevant to a
specific user addressing a specific task. In collaborative software engineering the
aim is to provide awareness across multiple, collaborating users (developers),
tasks and resources (software artefacts) from multiple perspectives. Therefore, as
well as discovering what artefacts are relevant to a specific individual performing
a particular task, the model should support discovering what tasks and developers
are relevant to identified artefacts, what developers have contributed to a task etc.
To address the general problem of noise, caused by temporary changes of context
(e.g. answering an email) or mistaken interaction (e.g. opening the wrong file)
there is a need for an underlying weighting system, or relevance model, that
disregards spurious interactions and rewards repetitive interactions, thereby
offering the potential to rank entities in terms of their relevance.

2.6. Research motivation

This review has centred on contextual awareness and dissemination mechanisms
in the form of tools that can be used to enhance contextual awareness during
distributed, collaborative software development. The initial insight obtained from
this review is that awareness information needs, and the mechanisms for
dissemination in software development teams, are more easily obtained in
collocated than distributed scenarios. While distributed teams also have potential
advantages, to fully achieve these requires that more research is carried out on the
modelling and dissemination of contextual awareness.

Table 3 is a general classification of the reviewed systems based on the
identified elements of workspace awareness initially described by Gutwin et al.
(1996) and shown in Table 1. The classification demonstrates that the majority of
systems enable collaborators to identity who is participating in an activity, the
changes they have made, and the objects used. Identifying the current location,
current actions, activity levels, extents, abilities, sphere of influence and
expectations of collaborators within the workspace are less supported. Tools that
are characterised by support for intention are mostly tag based, and rely on
developers to explicitly state their intention within the work space.
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The approach of systems such as TagSEA, CASS, Augur and some aspects of
Jazz depend on social tagging of different aspects of a software system by
developers. Such systems are not based on the physical manipulation of code and
are thus subject to a level of potential misrepresentation of context. Also, tag
based systems can become outdated over time, especially when developers fail to
update tags as aspects of the system change.

An alternative approach is adopted in systems like Sysiphus, Ariadne, Hipikat
and Rational Team Concert which obtain context by mining relational properties
among software project entities. These have recorded a number of successes in
generating and representing contextual awareness information, but challenges
may arise as the relational dependencies amongst entities become increasingly
complex. Furthermore, when abstract models such as use cases or bug definitions
are used as the basis of task definition, these systems only focus on concrete
artefacts and do not consider the relationships between the more abstract models
and concrete artefacts. Similar limitations exist in systems such as Palantír which
is based on monitoring the activity captured by configuration management
systems during check-in and check-out. In addition, FASTDash appears to be
intended for developers working in relatively close proximity and not separated
in time. Expertise Browser addresses some of the key goals by automatically
generating rankings of developer expertise related to code artefacts by monitoring
version control systems, but this approach omits potentially relevant activity such
as when a developer views an artefact and also includes no notion of task
awareness.

Team Tracks derives contextual awareness by articulating entity dependencies
and weighting the severity of developer interaction on an underlying relation.
Team Tracks is limited in the nature and amount of dependencies it represents
and because the weighted severity of dependencies is based only on view
interaction events (rather than edits etc.). In contrast, Mylyn’s relative strength of
dependency is determined by a degree of interest function based on frequency of
access to entities and the nature of interaction being performed by a developer.
However, Mylyn does not currently focus on distributed software development.
Its notion of task context for collaborative software development is analogous to
passing tokens of context generated by one developer to another to continue
building upon. While it is useful and interesting to obtain awareness of the impact
of a selected task on the state of a code artefact (as demonstrated in Mylyn), it is
potentially more useful for enhanced coordination to obtain awareness of the
relative impact of every task and all associated developers that have affected the
state of the artefact.

Central to this paper is the observation that relevance relations amongst entities
in a collaboration space are asymmetric. For example, assuming a task instance
Tx is achieved using artefacts A1, A2...An, it cannot be assumed that the relevance
of An to Tx is the same as the relevance of Tx to An. This is because relevance is
context sensitive—the relative relevance of an artefact to a task depends on the
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other artefacts associated with that task, whereas the relative relevance of a task
to an artefact depends on the other tasks to which the artefact is relevant.

The main novelty of the approach proposed in this paper compared to the previous
work described above is a model that provides a perception of the relevance and
impact of tasks, developers and artefacts associated with a distributed software
project in a selected work context. For a selected task instance, awareness is provided
of the relative impact of project developers and code artefacts. For a selected code
artefact, awareness is provided of the relative impact of project tasks and developers
on the state of the code artefact. Similarly, for a selected developer, awareness is
provided of the relative impact of tasks and code artefacts on the work context of the
developer. The provision of such awareness is independent of configuration
management systems or the need for tagging, and is from a collaborative perspective
rather than that of an individual developer. Furthermore, the provision of this
contextual awareness is not limited by time or space and continually changes to keep
pace with software project dynamics.

3. Example software development scenario

The following is an example used to motivate the research and, later in the paper,
explain the functionality in the proposed model and its implementation.

Bill, Amy and Ruben are members of a team collaborating to develop an online
cinema ticketing system called TickX. There are two front-end use cases required to
accomplish TickX: Purchase Tickets and Browse Movies. (Here use cases are
viewed as a structure for the definition and assignment of tasks. In addition, there will
be some use cases for system administrators which are not included here.) A number
of code artefacts are being developed to realise TickX and include Ticket.java,
Customer.java, Account.java, Booking.java, Movie.java, MovieCatalog.java and
Cinema.java. A class diagram for TickX is as shown in Figure 1.

While Amy and Bill have been collaborating to implement the Purchase Tickets
tasks/use cases, Ruben has been responsible for Browse Movies. The following
interaction trails take place as these collaborators go about their allocated tasks:

– While Amy was working on Purchase Tickets she created and updated the
Account.java and Customer.java code artefacts. She viewed and updated
Booking.java a number of times. She also viewed MovieCatalog.java and
Cinema.java.

– In the initial phase of Bill’s collaboration on Purchase Tickets, he viewed the
Account.java and MovieCatalog.java code artefacts. This was subsequently
followed by his creation and update of the Ticket.java and Booking.java code
artefacts.

– Ruben’s execution of Browse Movies involved creation and further updating
of the MovieCatalog.java, Cinema.java and Movie.java code artefacts. Ruben
also viewed Ticket.java a number of times.
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In this scenario, the Purchase Tickets task is associated with Bill and Amy, and a
number of code artefacts. Also, MovieCatalog.java is associated with all three
collaborators as well as the two tasks. Some typical context awareness questions that
can now arise include:Who is the appropriate developer to seek for help on Purchase
Tickets? Which artefact has most impacted the state of Purchase Tickets? Which of
the code artefacts or tasks has Amy contributed most to? Which of the tasks or
developers has most affected the state of MovieCatalog.java?

The model proposed here helps to address such questions.

4. The continuum of relevance (CRI) model

This research proposes that context awareness in distributed, collaboration spaces
can be achieved by capturing development events that occur within these spaces.
These events may then be used to identify the current actions, activity levels,
extent and sphere of influence of the different entities that exist in a collaboration
space. Such cues are built up as developers go about their daily tasks, leaving
historical traces behind. The basis of the CRI model is the monitoring of core
interactions with system artefacts (program files) such as views, updates, creates
and deletes. The model is used to provide relevance rankings that depend on the
context of work being carried out by a developer. Rankings are then provided of
tasks, developers and artefacts in that context. The nature of a shared
collaboration space means that a developer can be identified as being highly
relevant to the current state of a particular task or artefact instance, but not in any
way relevant to the state of another task or artefact instance, though all such
instances exist in the same shared collaboration space.

The entities considered in the model are defined as follows:

– A project is an endeavour embarked on to create a software product or service
and serves to bound the collaboration space.

Figure 1. Class diagram for TickX.
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– A task is viewed as an activity that is required to be accomplished in order to
achieve a software project. Tasks can be use cases, user stories in agile
processes, bug reports, etc.

– Developers are the team members that work within a project context.
– Artefacts are project components such as software modules and documents

that are manipulated by developers.

This collection of entities is strongly inter-related. Projects are realised by
developers working on artefacts within the context of a task. There exist many-
many relationships amongst developers, tasks and artefacts, although no direct
relations are currently supported for entity instances of the same type.

Relationships between entities are established by interactions events—the
operations that a developer can carry out upon an artefact within the context of a
task. Rather than monitor the entire space of possible interactions that can occur,
the CRI model focuses on a core set of four interaction types that influence the
changing state of a software project—create, update, view and delete. The
following assertions are made about these core interaction events:

– A create event is responsible for the manifestation of a tangible artefact within
a collaboration space.

– An update event affects the state of an entity instance directly. Associated
with an update is the update delta—the absolute difference in the number of
characters associated with the artefact before and after the event (Mockus and
Herbsleb 2002).

– A view event indirectly affects the state of entity instances—viewing an
artefact instance can enhance understanding in order to update the same
artefact or other artefact instances.

– A delete is responsible for transforming an entity to an intangible state, where
it is unable to receive any further events. (Deleted entities are retained in the
historical perspective).

During collaborative software development project, different work contexts
(associations between task, developer and artefact entities) are formed that
characterise the relationships amongst entities in a collaboration space. These
work contexts are constantly changing in response to events, and entities may
participate in one or many work contexts.

From the example scenario described in Section 3 it is possible to create work
contexts (represented as graphs) for each entity to capture the relational properties
between them. Each interaction event related to an entity can contribute a node to
the context graph (if an interaction event refers to an entity instance not yet
represented in the graph, a node for the instance is added to the graph). For
example, the context graph of Amy will consist of every task participated in (just
one—Purchase Tickets) and code artefacts that she has created, updated or
viewed (there are five of them). Similarly, the context graph of the Purchase
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Tickets task will consist of every code artefact that was created, updated or
viewed and the developers that carried out the interaction events while actively
working on the task. Finally, the context graph of each artefact (consider
MovieCatalog.java, for example) will consist of every task and developer
associated with the views, updates and create carried out on that artefact.
Figure 2a, b and c illustrate these work context graphs. Similar graphs are created
by CRI for all other developers, tasks and code artefacts.

To further investigate the properties of interaction events, and their weighted
influence on the relevance of entities in a collaboration space, a study of CVS
records associated with real development projects was performed. These records
were derived from a group project software engineering class at the University of
Strathclyde and open source Eclipse IDE technology and tools projects. CVS
repositories of 200 artefacts from a combination of the Eclipse Communication
Framework (ECF),2 Dash,3 Mylar,4 Equinox,5 and Eclipse Modelling Framework
(EMF)6 open source projects were analysed. Only artefact check-ins with version
repositories associated with more than one developer were considered.

The results showed that developers associated with the first check-in of an
artefact were also associated with 49.6% of subsequent checked in versions. It is
therefore asserted that the create event is particularly important relative to other
interaction types. Furthermore, while it is expected that view events can enhance
understanding of project entities, studies conducted by Zou and Godfrey (2006)
suggested that random view events, which are irrelevant to on-going development
work, can also occur. In weighting the influence of view events on the relevance
of entities in a collaboration space, it is therefore important that the effects of such
irregularities are inhibited.

Based on the insight obtained from these interaction types, the weightings
shown in Table 4 are assigned to each interaction event type. A view interaction
event is equivalent to 10 units of absolute update delta,7 while a create interaction

Figure 2. Work context graphs for Amy, Purchase Tickets and MovieCatalog.java.
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is equivalent to 100 units of absolute update delta. Related work by Fritz et al.
(2007) has also suggested the importance of create events and of identifying the
authors of code artefacts (Kersten 2007). A similar approach in associating
weights to interaction events has been used in the development of the Mylyn
degree of interest model, where the selection event in Mylyn corresponds to a
view in CRI, and edit in Mylyn corresponding to updates in CRI. In Mylyn, a
scaling factor of 1 was assigned to selection, propagation and prediction events.
Similarly, factors of 0.7 and 0.017 were assigned to edit and decay events
respectively (see Table 2). These values were determined based on usage statistics
during the programming of Mylyn itself and validated based on feedback from
other developers’ usage of the tool (Kersten 2007).

A fundamental assumption in CRI is that the size of an entity’s work context or the
number of other entities that an entity exacts its presence on, is proportional to the
relative influence such an entity exacts on the collaboration space. For example, a
task that has existed for a long time in a collaboration space and has several
developers implementing the task using a number of artefacts is considered to hold
more information about the state of the project compared to a task that is newly
introduced into the collaboration space and has a small number of associated
developers and artefacts. A similar analogy holds for artefacts and developers. This
size dimension is captured by the concept of sphere of influence (SOI).

SOI is a general concept used to capture both geographic and semantic groupings,
and provides a well-defined boundary for interactions. For example, Gutwin et al.
(1996), in their work onworkspace awareness for groupware systems, refer to SOI as
where collaborators canmake changes within a shared artefact. SOI in CRI refers to a
region over which an entity exacts some kind of relevance (which is in turn
determined by the interaction events) and is defined by its work context (and is
directly proportional to the number of entities that constitute a work context).

The SOI ratio is used to represent the relative influence an entity exacts on the
collaboration space. The SOI ratio of an entity is defined as the ratio of the total
number of unique entity instances directly associated with an entity (the size of its
work context) compared to the total number of unique entity instances in the whole
collaboration space (excluding same-type associations—developer-developer etc.).

Based on the example scenario described in Section 3, it is possible to calculate
the SOI of each entity represented in the collaboration space. Figure 3 is a sphere
of influence representation of developers for the TickX project scenario. Similar
representations can be created for tasks and artefacts. As shown in Figure 3, the

Table 4. Interaction type weightings.

Interaction type View Update Create

Weighting factor 0.001 0.0001*∆ 0.01

∆—Absolute update delta (magnitude of the update)
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sphere of influence of Amy is defined as 6/9 (entities within Amy’s work context/
total number of entities—2 tasks and 7 classes). Similarly SOI ratios are
calculated for other developers (e.g. Bill’s is 5/9) and also for artefacts and tasks.

Entities that compose a defined sphere of influence can be characterised with
overlapping properties. For instance as shown in Figure 3, Customer.java only
falls within the sphere of influence of Amy, while MovieCatalog.java falls within
the sphere of influence of each of Amy, Bill and Ruben.

The maximum sphere of influence that an entity can achieve is 1. This is for a
case where an entity is associated with every other entity that is not its type in the
collaboration space. This is typical for scenarios where the collaboration space
consists of a single artefact, task or developer. A minimum value of 0 is achieved
if the work context is empty; this is typical for scenarios where, for example, a
developer has not interacted with any task or artefact. In general, as the number
of entities in a work context increases relative to the number of entities in
collaboration space, the sphere of influence ratio also increases.

The concepts of work context, interaction events associated with an entity, and
the variation of its SOI ratio, forms the basis of the CRI model. This model is
intended to provide an accurate, real-time perception of the overall work effort of
individual developers as well as their recent work; an indication of which tasks
and artefacts have consumed most effort over all developers; and hence an
indirect indication of the relevance of entities to a project. CRI is a linear model
that cumulatively builds the relevance values of entity instances as they are
associated with interaction events and as their SOI ratios vary. These cumulative
relevance values are derived for two modes: history and recent.

Figure 3. Sphere of influence representation for developer entities in the TickX collaboration
project.
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4.1. CRI history mode

The history mode aims to provide awareness of the overall dissipation of work
effort across entities that constitute a selected task, developer and artefact work
context respectively. This is computed by linearly combining the relevance value
associated with an entity in a selected work context before an interaction event
with the relevance gained as a result of the interaction event. The relevance
gained as a result of an interaction event is dependent on the type of interaction
event and the SOI ratio of the selected entity work context. More formally, the
cumulative relevance gained by an entity instance e in response to an interaction
is represented by Eq. (1). The type of interaction is represented by t and the
different values it can assume are shown in Table 4. The SOI ratio is represented
by s, n is the total number of interactions to date associated with entity e.

X nð Þe ¼ X n�1ð Þe þ t nð Þe*S nð Þe ð1Þ
In other words, the relevance value for entity e after n interactions is based

upon its previous value plus the value of the interaction multiplied by the SOI
ratio of the entity.

4.2. CRI recent mode

The recent mode aims to provide real-time awareness of the current dissipation of
work effort across entities that constitute a selected task, developer and artefact work
context. The core difference between history and recent mode is how the relevance
values of inactive entities—those untouched by an interaction event—are computed.
In the history mode relevance values of inactive entities remain unaffected, while in
the recent mode relevance values of inactive entities in a work context decay for
every interaction event that impacts that work context. Thus, the longer the duration
of inactivity associated with an entity within a selected work context, the more the
relevance of the inactive entity decays. This process of decay in relevance is
represented using the notion of periodic decay and is dynamically determined by the
SOI ratio of the selected entity work context and the interaction event type. (Periodic
decay was influenced by a similar notion in Mylyn (Kersten 2007)). Relevance lost
due to periodic decay represents the negation of the relevance gained by the active
entities defined in an event that impacts a selected work context. The effect of
periodic decay is implemented by decreasing the relevance values of inactive entities
e′ when an interaction takes place and is defined in Eq. (2).

X nð Þe0 ¼ X n�1ð Þe0 � t nð Þe*S nð Þe ð2Þ
So the impact of period decay is to subtract the additional relevance computed

for the active entity away from all inactive entities in that work context. Both
these equations are applied after every interaction takes place.
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The outcome generated by both history and recent mode calculations is the
association of numeric values to the relevance of entities that constitute a selected
work context. From this a ranking can be created from which collaborating
developers can then obtain awareness of overall and recent work effort that has
impacted the different work contexts of distributed entities bound by a software
project in a collaboration space. As well as entity rankings, coloured labels of
varying intensity are provided to indicate the relative strength of relevance.

4.3. Illustration

To illustrate how the CRI model can be used to obtain a perception of the
relevance of an entity instance to a selected work context it is assumed that the
interaction trails shown in Figure 4 were the events used to achieve the earlier
TickX project. Any selected time on the timeline corresponds to at least one event
associated with a developer, a task and an artefact. For instance, the project
started with the creation of the Account.java code artefact by Amy while
contributing to the Purchase Tickets task on timeline 1. Timeline 7 corresponds to
two events occurring at the same time: Ruben updated Cinema.java (update delta
50) as he worked on Browse Movies, while Bill viewed Account.java as he
worked on Purchase Tickets (indicated by the three ‘✚’s in timeline 7).

Figure 5 represents the history and recent mode relevance list outcomes for the
entities that constitute the work context of the Purchase Tickets task. Entity
instances with greater relevance values are positioned at the top of the relevance
list. Also the relative differences in cumulative relevance values are proportional
to the relative distance between instances in the list. Each list consists of entity
instances of the same type that constitute a selected work context.

Figure 4. Monitored interaction trails used to achieve TickX across 25 timelines.
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The relative positions of entity instances on history and recent mode relevance
lists can be used to obtain insight into overall and recent work effort. Figure 5
shows that within the Purchase Tickets task work context Account.java has had
greater overall influence on the state of the task, while, in recent mode, Booking.
java is associated with most coding effort. Also, the figure shows that Amy is
attributed with most overall and recent coding effort in achieving the task. Similar
relevance lists are created for every other task, developer, and artefact.

5. Model implementation

A client-server architecture was chosen to implement the CRI model where each
developer’s Eclipse IDE is a client and the model processing logic and storage of
interaction sequence data is performed on the server. The client monitors
sequences of view, update, create and delete interaction events executed within
Eclipse. Eclipse was chosen because of its open, plug-in architecture. When a
network connection exists, this event data is offloaded to the server and
synchronised with that of other developers. While there is no connection (or a
slow connection) the client can temporarily store event data locally and perform
local model processing logic to give the developer a partial view of current
relevance—offline mode. The CRI implementation architecture is as shown in
Figure 6. The architecture is distributed across client and server ends, and
consists of four core layers: the model, event, messaging and Rich Client
Platform (RCP). The client end of each layer is plugged into the Eclipse platform
while the server end resides on an Apache Tomcat web application server.

Projects are defined within Eclipse itself and the current collaboration project is
identified via a unique project identifier which is then associated with any code

History mode Recent mode
a Artefacts relevance list b Developers relevance list c Artefacts relevance list d Developers relevance list

Figure 5. History and recent mode artefact and developer relevance lists for the purchase
tickets work context.
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artefact being monitored by CRI. Each time a code file is opened in Eclipse it is
registered as a view event by the registrar.event component in the event layer.
Similarly, each time a new file is created it is registered as a create event. The
update delta is determined by comparing the absolute difference in the number of
characters in a file before and after a save action is triggered in the editor. When
artefacts are deleted the work context graph of the deleted node freezes. The
history of interaction events associated with the deleted node is, however,
retained in the log of event trails and can always be viewed in history mode to
obtain the relevance of the entity instance prior to its deletion.

The model layer is the main event processing unit in the architecture. This
layer is responsible for the formation of entity work contexts and their related
SOI ratios. The event layer is responsible for capturing and archiving interaction
event sequences generated within a collaboration space. The log.event component
is the clearing centre and data warehouse of all events generated by collaborators.
The messaging layer carries out asynchronous processing of request/response
messages from the server. The offline.emulator component emulates the server
end functions of the model and event layers while a developer is generating
interaction events in the offline mode. Finally, the RCP layer resides only on the
client end, and provides the minimal set of components required to build a rich
client application in Eclipse.

Figure 7 is a snapshot of an Eclipse view of the visualisation.rpc component
(which takes up a small area of the Eclipse real estate). System developers can
open, activate and deactivate their tasks (use cases) of interest by using the popup
menu labelled 3 in Figure 7. All interaction events carried out by a developer

Figure 6. Core layers of the CRI implementation architecture.
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are traced to the work context of an activated use case. The RCP layer is also
responsible for generating relevance based ordering and social graph
visualisations.

The visualisation of entities involved in a selected work context is structured
such that entity instances with greater relevance values are positioned at the top
of the relevance list. The relative difference in the relevance values of entities is
depicted using varying colour intensity. Entities at the top of the relevance list are
represented with greater colour intensity. Closely related entities show the same
relative colour intensity. Label 2 in Figure 7 highlights a relevance-based, ordered
visualisation of code artefacts that constitute the work context for the Purchase
Tickets (Browse Movies is to the right of this). It can be seen in the figure that
although MovieCatalog.java has been used to achieve both tasks, its relative
impact on the state of Browse Movies is greater than on the state of Purchase
Tickets. Similar hierarchies are also provided for the relative impact of developers
on the executable state of the two tasks.

Figure 7. Relevance based ordered visualisation of artefacts associated with TickX tasks/use
cases.
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The CRI implementation also includes the capability to replay the evolving
state of each context. As an example, a playback of the evolution of the code
artefacts and their relative relevance associated with Purchase Tickets can be
obtained by sliding through the slider bar labelled 1 in Figure 7. The generation
of the social graph visualisation—see Section 6.2.1 and Figure 15—is triggered
by the button labelled 4 in Figure 7 (this uses the JUNG8 (Java Universal
Network/Graph) framework).

6. Evaluation of the CRI model

To evaluate the model the following research question was investigated in an
empirical study:

Can a model based on real-time monitoring of IDE interactions, such as
creates, edits and views, enhance contextual awareness during distributed,
collaborative software development?

6.1. Methodology

The study involved ten advanced software engineering students in the third year of
their Integrated Masters/Honours programme in Computer Science at the University
of Strathclyde, UK, all of whom volunteered to participate. All participants had at
least 2.5 years of object-oriented development experience using Java. They were all
participating in the group project class developing ‘Gizmoball’9—an editor and
simulator for a pinball table first proposed by MIT—and working in groups of three.
Of the ten participants two groups of three were the best two performing groups in
the class (‘G1’ and ‘G2’), another group of three participants came from a relatively
strong group (‘G3’), and a single student came from a group that was of average
performance (‘G4’). The groups had been designed to consist of individuals of
similar academic ability so as to encourage equal participation.

Participants were not restricted to time or place of work. Groups were required
to have at least one face-to-face meeting every week; during this time they also
discussed their progress with the teaching assistant (TA) coordinating the group.
Feedback from participants suggested that, besides the mandatory meeting, they
also held occasional collocated meetings. All the groups used a version control
system. Feedback from group G1 suggests occasional pair programming practice,
while group G2 also used a wiki system.

CRI data was gathered over a 6 week development period—2 weeks of
prototype development and 4 weeks of full-scale development. The model was
used during development (rather than maintenance) and was used in both a
distributed and collocated setting—all participants recorded instances of working
from home and within the university campus, the gathered data suggested that
participants spent more time working at different times or places than they spent
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working together. At the end of the 6 weeks, structured interviews were conducted
with eight of the participants—the two who did not wish to be interviewed had used
CRI the least (‘Blair’ and ‘Greg’—see Table 5). The interviews were personalised to
include CRI relevance views and other project information specific to the participant
being interviewed. It also had a mix of open and closed questions to allow the
interviewer (the first author) to follow up interesting responses with more detailed
questioning. All data was anonymised for analysis and presentation.

An audio record of all the interview sessions was carried out with the permission
of the participants. These audio records were then transcribed and analysed. Each
participant was interviewed separately. Apparent agreements and disagreements in
feedback were addressed after the interview sessions by comparing each recorded
feedback snippet with a replay of actual interaction event trails captured by CRI for
the work context that matched the feedback described by the participant. The
outcome of this analysis showed no apparent contradiction in statements made by
different members of each group that was interviewed.

6.2. Results

During the study 7166 CRI interactions over 16 tasks were recorded—see
Table 5. Of this total 0.11% were delete interactions, 1.98% creates, 45.72%
updates, and 52.20% views. 50% of the tasks involved two or more collaborating
developers. On average, 448 CRI interactions were registered per task with a
minimum of 3 and a maximum of 2,479. An average of 717 CRI interactions was
registered per participant with a minimum of 4 and a maximum of 1,157. 142
artefacts were created and monitored by CRI, 18% of the artefacts were
associated with two or more collaborators. 62.4% of the total update delta was
associated with artefact creators.

Table 5. Total interactions associated with each participant in the detailed study.

Group Collaborator Updates Deletes Creates Views Total interaction events
per collaborator

G1 Alex 550 1 23 740 1,314
G1 Tony 567 1 18 937 1,523
G1 Luke 232 1 11 210 454
G2 James 1,016 1 54 1,157 2,228
G2 Paul 42 0 9 222 273
G2 Tracy 778 1 8 223 1,010
G3 Blair 12 0 5 43 60
G3 Greg 0 1 0 3 4
G3 Boris 57 2 12 134 205
G4 Smith 22 0 2 71 95

Total 3,276 8 142 3,740 7,166
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As part of the initial evaluation tests were carried out to ensure that the
implementation of the model behaved according to its design when used in practice.
This was firstly achieved by carrying out a controlled injection of real project updates
starting from a known state. The changes in relevance rankings were then tracked
and verified to ensure artefacts progressively moved up and down the rankings as
expected both in recent and in history mode, with changes occurring more rapidly in
recent mode due to the effect of periodic decay. Also, the impact of each of the CRI
components was investigated individually. SOI was shown to increase the relevance
ranking of entities associated with high SOI e.g. when an artefact was worked upon
by a developer who was also associated with many other artefacts. Similarly for each
interaction type: create interactions were important to identify the developer and the
task that were responsible for artefact creation—though view and update interactions
dominate over the lifetime of a project; there were examples where developers were
persistently viewing artefacts but not editing them but it was clear that reading the
code was important to their current task; and, update interactions indirectly captured
edit activity by developers working in the context of a task. Finally, the effect of
periodic decay was shown to have the desired impact of dampening relevance of
inactive entities in recent mode (as opposed to history mode).

In investigating themain research question, three contributions to increased awareness
during collaborative development as a result of the use of CRI were identified.

6.2.1. Results related to accuracy of CRI compared to participant opinion

Firstly, the study uncovered examples where it appeared that CRI provided a
more accurate record of relevance than that of individual developers themselves.
A set of questions in the structured interview explored the perception of relevance
held by participants compared to the CRI relevance rankings. Before the
commencement of each interview session, a separate paper list (in random order)
was made for each set of artefacts and tasks that the participant had worked on.
Before the participant had a view of any ranking information from CRI, they
were asked to rank the top four artefacts and tasks in descending order based on a
number of criteria, including overall coding effort and recent coding effort.
Analysis of these results showed that 62.5% of the time a participant’s top
selection, in terms of overall work effort, matched that of CRI; for recent work
effort the match was 37.5%. 87.5% of the time the participant’s top selection was
in CRI’s top 5 for overall work effort, and 62.5% of the time for recent effort. So
there was quite a mismatch between the CRI ranking and the estimates provided
by individual developers, particularly with respect to recent work.

One possible reason for this is the uncontrolled factors that may have impacted
on CRI results. In the interviews each participant was asked to state how
frequently they remembered to log into CRI, answered on a scale of 0–100%. To
understand if CRI impacted upon the normal working practices of participants they
were also asked: how frequently a new task was created or activated as the
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participant’s work context changed, how difficult it was to work within the context of
an identified task, how difficult it was to create a new task, and how difficult it was to
activate an existing task in CRI (all answered on a Likert scale of 1–7). Interview data
suggested that CRI may have only captured 60–90% of the total work effort of
developers—see Figure 8, and that developers only changed task within CRI 25–
50% of the time they actually switched task in practice—see Figure 9a–d. CRI results
are therefore likely to be subject to an element of inaccuracy.

To investigate these results further, participants were shown the actual CRI
relevance rankings for both history and recent modes, after they had given their
initial responses, and asked for any insights into possible discrepancies. This led
to the identification of possible reasons for the mismatches between CRI rankings
and those of the participants.

One potential reason is that participants formed a perception of effort based on
a related cluster of code artefacts. This snippet from participant ‘Paul’:

“I am not sure of Wall.java, I don’t think I put as much coding effort into Wall.
java as I put into the flipper related classes…”

Analysis of the interactions associated with Paul showed that the CRI ranking
was ‘correct’—the total effort of Paul on the flipper classes, as measured by CRI,
was greater than Wall but none of them individually exceeded Wall (for Wall 12
views and a total update delta of 1,400 characters were recorded, for Flipper it
was 8 and 214, for LeftFlipper 7 and 778, and for RightFlipper 19 and 25).

Another reason that may have influenced the mismatch was the size of the
artefact—one participant discounted a code artefact because it was only a small
driver module, but then acknowledged that it was modified each time the user
interface was tested; another was the perceived difficulty associated with an
artefact—one participant ranked an artefact lower down as it was perceived as
“straightforward” with many edits that were “not hard to implement”; and lastly a
participant discounted an artefact because all the effort had been in terms of “…
simply copied and pasted from an online source”.

The other main reason uncovered for mismatches appears to have been due to
flawed recollection and estimates by participants—which is to be expected. For
example participant ‘Boris’:

“Yes I understand why OuterWall.java should be there, I was recently working
on it…I don’t know why BouncingBall.java will be higher than Flipper.java…I
know why! …”

Figure 8. Dot plot showing percentage frequency participants remembered to log into CRI.
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Participant ‘Alex’:

“I am a bit surprised that CollidableCircle.java is positioned that high; I
thought it would have been a bit lower… Yeah, thinking more about it, the
ranking looks about right, just that sometimes I depend on my recent coding
experience…”

While the factors identified as possible reasons for potential mismatch
between CRI rankings and those of the participants do not necessarily
suggest CRI is ‘correct’, these examples suggest that an automated awareness
system such as CRI has the potential to maintain more accurate rankings than
might be possible by human developers who can be influenced by recent
effort or overwhelmed by the amount of work done or scale of a project.
However, the goal of CRI is to be more useful than that—it aims to enhance
the awareness of developers—providing them with information that would be
otherwise difficult to obtain in an environment that is both distributed in
space and time.

6.2.2. Results related to deeper collaboration insights provided by CRI

The second, and main, contribution of CRI is in enhancing awareness of the
complex dependencies that can exist in different work contexts within a
distributed, collaborative project. These dependencies include the fact that a
code artefact may be associated with a number of developers and used to achieve
a variety of project tasks including system use cases and maintenance changes.
Similarly, a project task can be associated with a number of collaborating
developers and a range of code artefacts. Finally, a developer will be working on
a number of project tasks and using a wide range of code artefacts to achieve each
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Figure 9. Experience feedback from participants.
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task (Gutwin et al. 2004; Mockus et al. 2002). The aim of CRI is to be able to
extract relevant awareness information for particular work contexts from this
network of entities and their interdependencies.

A snippet of feedback from Luke from group G1 on insights he obtained while
sliding through the history of entities constituting their collaboration space is
shown below:

“…I had a slide through the relevance positions of developers and java classes
for the File Demo task… I noticed that it has only been ‘Tony’ working on that
task. TriangleBumper.java and MainProgram.java were the original classes I
noticed he started with, and it was so for quite a while…

Currently there are a number of other classes he has used for that task…

If a maintenance task is to be carried out on my system, such information will
really be useful too… Since I can see the relative change of relevance that an
artefact or a developer would have had in association with a task used to
realise the system…”

The feedback snippet from Luke suggests that he did not need any formal or
informal collocated meeting with other members of his group to obtain awareness
of the state of the File Demo task. Through his use of CRI, he was able to
understand that it had only been Tony that had been working on File Demo; from
this, he also obtained insight into the relative significance of the artefacts Tony
was using to accomplish the task.

Analysis of developer interaction data captured during the study enabled the
detailed investigation of these snippets. In particular it was possible to recreate
development paths and investigate the validity and details of comments made by
participants during the interviews.

The analysis of File Demo in Table 6 shows the percentage of interaction
events Tony was associated with for each artefact he used in achieving the File
Demo task. A total of 13 code artefacts were used, he interacted significantly with
TriangleBumper (32.03%), LeftFlipper (23.60%) and MainProgram (17.55%).
Figure 10 shows an activity-time plot of File Demo and snapshots of the related
artefacts relevance list at different intervals over the history of File Demo. The
artefact relevance lists in Figure 10 labelled 1–6 show that the initial phase of
Tony’s work on File Demo actually involved TriangleBumper and MainProgram
and later progressed to a number of other code artefacts. The positions of
TriangleBumper and MainProgram have also been consistently high on the
relevance list over the history of File Demo as demonstrated by the artefacts
labelled a and b on the artefact relevance lists. This analysis confirms the
awareness obtained from CRI by Luke on File Demo.

Obtaining such awareness would be difficult in a distributed setting without the
use of a relevance model such as CRI. In particular CRI captured the fact that
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Tony had a wide range of interactions with a variety of artefacts, so for example
Ball had little significance since Tony had minimal interaction with it and
Triangle had much more significance due to the increased interaction with that
artefact.

Another snippet of feedback from ‘Tracy’ in group G2 provides an insight he
obtained while sliding through the history of entities constituting the G2
collaboration space:

“…Sliding through the history of a task or artefact gives you a feel of how
things have moved on, especially after sliding through a history of the
artefacts I have been associated with…

Having a slide through a task view I can gauge how important an artefact has
been to the task over time, I did notice that MainScreen.java has retained high
relevance over a long duration now; recently KeyConnectFrame.java has
turned out to be high also…

… This gave me the clue that these classes are quite important to the User
Interface task…

I got particularly interested in MainScreen.java when I noticed ‘James’ and
‘Paul’ have also used this class… I have been the only one working on
KeyConnectFrame.java

I believe this information will again be very important to me when carrying
out a maintenance task on a system I am not really familiar with…”

Table 6. Percentage of developer and artefact interaction events associated with File Demo task.

Views Updates Absolute update delta % of standardised
interactions

Artefacts
GameModel.java 3 5 184 2.23
MainProgram.java 21 21 1,475 17.55
TriangleBumper.java 24 21 2,836 32.03
GameObject.java 4 1 32 0.75
RightFlipper.java 9 5 859 9.88
LeftFlipper.java 10 4 2,166 23.60
Ball.java 2 1 2 0.23
GizmoHandler.java 7 2 563 6.59
CircleBumper.java 3 2 12 0.44
ApplicationWindow.java 2 3 67 0.91
Absorber.java 3 2 6 0.37
FileHandler.java 6 3 144 2.12
GameWindow.java 3 9 286 3.29
Developers
Tony 97 79 8,632 100.00
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Tracy’s particular interest had been to be aware of other developers that have been
collaborating on the same task he was working on and the code artefacts being used
to achieve the task. The feedback from Tracy also supports the capability of CRI to
enhance contextual awareness of distributed software project processes. Tracy
became aware of the impact of theMainScreen and KeyConnectFrame code artefacts
on the User Interface task which he was collaborating on with ‘James’ and ‘Paul’.
While he had worked primarily on KeyConnectFrame, he had not at any time
interacted with MainScreen while performing the User Interface task. Irrespective of
not working with MainScreen, using CRI he was aware of the relative impact of the
artefact on the task he was working on. Again, he obtained this awareness without
having to meet formally or informally with James or Paul.

Figure 11 shows the context graph of User Interface demonstrating that it was
accomplished by the three collaborating developers and the use of 71 code artefacts.
Useful awareness insights into the state of User Interface would have been more
difficult to achieve without the use of a relevance model such as CRI given the
number of developers and artefacts involved. Each of the developers and artefacts

Figure 11. The context graph of the G1 User Interface task showing the 71 code artefacts
and 3 developers involved in achieving the task.
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had different levels of influence on the state of User Interface. Figure 12 shows six
sequential snapshots of developer and artefact relevance lists at different intervals
over the history of the User Interface task. The labelled entities are the artefacts and
developers that Tracy was interested in during his collaboration on User Interface.
The screenshots show the relatively high positioning of MainScreen over the history
of User Interface and the higher positioning of KeyConnectFrame at the later phases
of the task. The developer relevance lists also show that the early phase of
development work on User Interface consisted only of Tracy while James and Paul
became associated with the task as it progressed. The positions of James and Tracy
switched on the relevance list at different periods of User Interface development.
Figure 12 confirms the awareness obtained by Tracy using CRI during the
development of User Interface.

Finally, a snippet of feedback from ‘Alex’ in group G1 on insight he obtained
using the CRI history mode relevance list is shown below:

“…If there is an artefact that has remained high on the ranking over a
considerable time line, it tells me where the main focus or problems have been
in the project…

I have been watching the PlayWindow.java and BuildWindow.java classes
recently on the Build Mode task…

Although I have not worked much on them, I know they have been important in
achieving Build Mode …

I also noticed that classes are high on ‘Luke’s’ relevance ranking…

He is probably doing a lot of work on it…”

The feedback from Alex implies that using CRI he was able to build awareness of
the relevance of PlayWindow and BuildWindow to the BuildMode task. These were
the top two artefacts on the Build Mode task artefacts relevance list. Furthermore, he
was able to obtain awareness that Luke was more relevant to the state of these two
artefacts compared to other developers within the collaboration space. Again, it
would have been difficult for Alex to achieve this awareness without a relevance
model such as CRI since Build Mode was dependent on all three developers in the
group and 70 code artefacts—see Figure 13. Again, each of the developers and code
artefacts had different levels of influence on the state of Build Mode.

Figure 14 shows snapshots of entity relevance lists for the final work context
state of Build Mode (labels 1a and b), Luke (label 2), PlayWindow (labels 4a and b)
and BuildWindow (labels 3a and b). Label 1a demonstrates the high relevance
positions of PlayWindow and BuildWindow on the Build Mode artefact relevance
list and label 1b shows the high relevance position of Luke compared to the other
developers on the state of Build Mode. The artefact relevance list for Luke shown
in label 2 further demonstrates the relative relevance of PlayWindow and
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BuildWindow to Luke’s work context. The developer and task relevance lists for
PlayWindow and BuildWindow work context shown in labels 3a, b and 4a, b also
confirms the awareness stated by Alex in his feedback.

Firstly, the Build Mode task has had significant impact on the state of
PlayWindow and BuildWindow given that they are positioned top on the task
relevance list for each of the two code artefacts (labels 3b and 4b). Secondly,
while Alex had minimal impact on the state of BuildWindow (label 3a—bottom
in the developer relevance list) Luke has had significant impact on the state of
this artefact (label 3a—being top in the developer relevance list). Tony also
impacted on the state of BuildWindow but not as much as Luke. Furthermore,
Alex had not at any time worked on PlayWindow while Luke was the most
relevant then Tony (label 4a). Amid the numerous artefacts and three developers
that had collaborated on Build Mode (see Figure 13), Alex did not need to
formally or informally meet with Luke or Tony to become aware of their
relevance or to discover the most important artefacts in this task.

The snippet of feedback for ‘Tony’ shown below again demonstrates the
usefulness of CRI for distributed software development. His aim in sliding

Figure 13. The context graph for the Build Mode task showing 70 code artifacts and the 3
developers involved in achieving the task.
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through the history of entities constituting his collaboration space was to monitor
the real-time progress of work on tasks and code artefacts:

“… It is always good to see over time, how much you have worked on certain
code or tasks…

After our group meeting, I will watch to see if there is a certain growth in the
task we discussed during the meeting…

I noticed some time delay in processing as the timeline gets longer.

This feature will be more intuitive if timeline definitions are more specifically
defined…”

Tony’s feedback also suggests that sliding through histories of entities could suffer
from network latency as the lifetime of the project increases. Also, the usability of the
history slicing feature in CRI could be improved by adding more intuitive timeline
definitions such as the particular date or hour an interaction was carried out.

6.2.3. Results related to the social graph view of CRI

Finally, another contribution to enhanced awareness by CRI is at the abstract level
provided by the social graph view. CRI social graphs are constructed by merging all
the context graphs for each group. The relevance position of an entity, relative to all
the work contexts it has been associated with can be interpreted as an estimate of its
global importance or ‘centrality’ compared to all other entities in the graph. All
edges (representing interactions) are between entities in different subsets and no
entities in the same subset are adjacent. The size of an entity in the graph reflects its
importance, and is proportional to its Markov centrality in the network (Latora and
Marchiori 2007), arcs between entities reflect dependencies i.e. artefact-developer,
artefact-task, and task-developer. Figure 15 shows the social graph for group G1 in
this study.

The potential benefit of social graphs is that they present a high level view of a
collaboration space which can help identify key entities in terms of their size and
relationships. Ideally, they can be used to visualise the potential impact of making a
change to a project e.g. removing a developer or an artefact, updating a task; or they
may help identify potential bottlenecks in a project. Again the potential benefits of
the social graph view were highlighted, with, for example, ‘Alex’ saying:

“...It’s the fastest way to get all the information from CRI… I always use the
graph to get a general state view of the project… I do check it every few days
just to give me a grasp of what is going on with developers in the group and
which tasks have had a considerable change recently…”

Another quote from ‘Tony’ reflects on the accuracy of the social graph view,
highlighting the main task and artefact that have been the focus for his group’s
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efforts, and also pointing out the limitation of scaling associated with the social
graph view:

“…Will say that is spot on…

It’s easy to see where the biggest problems are… For instance, I can see that
Build Mode task and BuildWindow.java have really been a problem spot…

We have spent some few days really trying to figure some buggy stuff there…

The number of artefacts has made it cluttered and complex…”
Figure 16 shows a summary of participant responses to an interview question

on their opinion of the accuracy of the social graph view.
Evidence captured from the empirical study suggests that the social graph can

present a useful high level view of the state of a collaboration space including
work that isn’t being done because an entity is not present or is relatively small—
see the following comment from ‘Boris’:

“…If we have done ‘JUnit Test’ how come it only (shows) Gizmo.java, Square.
java and GizmoModel.java…?

Figure 15. Group G1’s social graph.
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Because I know that it should be looking at virtually all of the code…

There is something wrong…

This tells that there is more work to be done (on) ‘JUnit Tests…”

On the other hand, a couple of participants identified the potential disadvantage
that social graphs can quickly become overwhelming as the size of a
collaboration space grows.

6.2.4. Results summary

The evaluation has demonstrated a number of findings. Firstly, it has shown that it is
possible to build and implement a model, based on the identification of developers,
tasks and the capture of interaction events (create, update and view) on code
artefacts, that can provide contextual awareness in a distributed, collaborative
environment. It has been shown that the proposed model worked in practice, during
this study, in keeping with its theoretical design. It was shown that often the CRI
model appeared to have a more accurate record of relevance than individual
developers—this is not really surprising since individuals are missing key
information regarding the work efforts of their colleagues, particularly during
distributed development. It was shown that the social graph view can provide a
useful high level summary of the state of a collaborative project. The main finding is
that a model such as CRI can enhance developers’ awareness of the state of a
collaborative project in a range of ways: what developers, tasks and artefacts are
most relevant in particular work contexts, both from an overall effort perspective and
from a most recent work perspective. Finally, the capability to ‘slide through’ the
history of a project enabled developers to get a quick and effective overview of how
the project has developed from a range of perspectives over time.

7. Discussion

The main aim of this work has been to propose and evaluate a model that provides a
perception of the relevance and impact of tasks, developers and artefacts associated
with a distributed, collaborative software project in a selected work context. The

Figure 16. Participants level of acceptance of the social graph views during the Gizmoball
study.
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evaluation study has demonstrated that the features of CRI appear to address many of
Gutwin et al.’s elements of workspace awareness—see Table 1, including some of
the elements that are not well addressed in other tools. It is argued that the identity,
activity level, actions, objects, extent, abilities, and sphere of influence can all, to a
significant extent, be inferred from the position of tasks and artefacts on the relevance
hierarchy of recent and overall work effort in the CRI work contexts of developers.
Similar arguments can be made about task and artefact work context perspectives.
The outstanding Gutwin elements that are not addressed are those concerned with the
future (intentions and expectations), those to do with changes (which are well
addressed by existing configuration management tools) and location.

While the research focuses on a distributed context, the outcome of the
evaluation arguably suggests that CRI can be useful in a range of cooperative
contexts—local or distributed. For instance, CRI was used by participants in
different scenarios within the time/space matrix. This included working at
different times within the university campus (different time/same place) or from
their homes (different times/different place), as well as working at the same time
within the university campus (same time/same place).

The proposed CRI model appears to extend awareness support provided by
previous work in a number of respects. CRI provides a more holistic approach
to awareness by integrating information relating to developers, artefacts and
associated tasks. While awareness information in Ariadne and Hipikat is
centred only on developer and code artefacts respectively, Team Tracks,
FASTDash and Expertise Browser are centred on relational properties between
developers and code artefacts. Furthermore, Mylyn is centred on relational
properties between tasks and code artefacts. The evaluation study does suggest
that additional awareness information, specific to different work contexts, can
be provided by integrating relational properties amongst these three entities
types. Secondly, CRI provides collaborative awareness information based on
both recent and overall work effort. While recent work effort can be deduced
in Mylyn, its implemented degree of interest model does not extend to a
collaborative context. Thus, while it is useful to provide awareness of the
impact of a task on the state of an artefact, as done in Mylyn, it is arguably
more useful for developers to obtain awareness of the relative impact that all
tasks have had on the state of code artefacts over the project history. Finally,
as demonstrated in the study, CRI’s relevance based ordering view of entity
relevance in the history mode provides the opportunity to replay the evolving
relevance of entities over the lifecycle of a software project.

There have been a number of lessons learned from the modelling, implementation
and subsequent evaluation of CRI. One of the important lessons learned from the
modelling of CRI is that the SOI ratio can be central in revealing a number of latent
properties of a collaborative software development process. For instance, a high SOI
ratio for a developer may suggest that they are working with many parts of the
system and hence central to the development process. Furthermore, if most
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developers tend to be associated with a high SOI ratio, then it might imply a shared
code ownership development model such as extreme programming. If a task has a
high SOI ratio then this can indicate its importance to the development process. On
the other hand it might indicate poor task definition and allocation practice—for
instance, the task has not been broken down enough or that the development process
has not been well segmented. The use of SOI as the basis of a forensic analysis of the
design and its development has rich potential for future work.

CRI specifically excluded relations between same type entities e.g. artefact to
artefact. It is believed that such awareness information could also be relevant and
useful within a cooperative setting. Such relations would provide awareness of
the relevance of developers to each other depending on their context of work or
the relative interdependence between task or artefact instances. Developer-
developer relations have been studied in Ariadne. The outcome suggested that
such relations can be used to identify developers who are more likely to be
communicating (de Souza et al. 2007).

The study also reveals the need for a more scalable visualisation of the social
graph (e.g. fisheye), particularly if it were to be used in real-world applications
with potentially thousands of entities and inter-relations.

Finally, CRI does not measure the time developers spend viewing code
artefacts. Developers may spend more time on entities which are more important
(though there are obvious dangers here such as being interrupted while viewing).
It is anticipated that measuring viewing time (within certain limits) and
potentially the size of a view event, based on scrolling and mouse movement,
may help increase the accuracy of CRI. Another possibility is to distinguish
between local updates that that are never committed and updates that are actually
made visible to others. The granularity at which interactions are currently
recorded is the file level; there may be benefits in focussing on lower level
granularity, such as the method level, to identify artefact relevance in more detail.

8. Threats to validity

A standard criticism of this kind of university-based research project is the use of
students. The best that can be done is to use experienced students working on
realistic development projects. The project only lasted 10 weeks, and was only
monitored for 6 weeks. Therefore these findings must be treated with caution;
however it is still argued that they provide a reasonable indication of the potential
strengths and weaknesses of a CRI-like model in real world distributed,
collaborative development. A related threat is that the participants had previously
had very limited experience of collaborating in groups and this may have
impacted their working practices compared to more experienced participants.

Another threat is that CRI did not accurately capture all development data. It is
clear that participants did not record all tasks that they worked on and did not

552 INAH OMORONYIA ET AL.



always change task as they changed work context—this is a real challenge for a
task-based model such as CRI.

The studies were part of an assessed University course. Participation was
entirely voluntary and the lecturer associated with the course (the fourth author)
was not involved in any interviews or data analysis. He only saw anonymised
data.

The results may have been impacted by the lack of experience of participants
with CRI. Again, for pragmatic reasons, participants were only provided with a
CRI user guide and a 30 minute tutorial. Some participants may not have
developed a sufficient understanding to fully utilise CRI and develop deeper
insights into its strengths and weaknesses.

A real threat to CRI usage both in this study and in practice is that it is possible
for developers to forcibly increase their relevance in a collaborative space.
Developers can easily perform meaningless or routine views and updates that
boost their relevance. This is a real danger in any development environment
where CRI might be used as the basis of judging individuals, and is a strong
reason, along with privacy concerns, why this must not be done. In this study we
tried to stress that CRI outputs were not, and should not be, used as the basis to
judge the performance of individuals.

Finally, this study was carried out in the context of a forward engineering
project. It is believed that CRI offers significant potential benefits when used in
reverse engineering or maintenance contexts. Although a few participants hinted
at perceived benefits of CRI models in these contexts, little can be deduced about
this without further research.

9. Conclusions

This paper has presented and evaluated a model intended to enhance contextual
awareness in distributed, collaborative software engineering spaces where
developers are free to work at any time and in any location. Key results
demonstrate that it is possible to derive real time relevance rankings of project
entities that exist in collaborative space by monitoring developer interactions.
These interactions have been used to derive: an indication of the overall work
effort of individual developers in particular work contexts through the history
mode as well as their current work through the recent mode; an indication of
which tasks and artefacts have consumed most effort over all developers; a
history slicing capability that allows a developer in particular work contexts to
‘playback’ the development process; and, a social graph that provides an abstract
view, void of context, of the overall state of a project which can help determine
potential bottlenecks and the potential implications of deleting artefacts, updating
tasks or removing developers from a project.

Empirical evaluation using a small but realistic case study demonstrated that
the implementation of the model appeared to work in practice according to the

553USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS



design. In particular, both SOI—representing the importance of an entity in a
collaborative space—and periodic decay—reducing the importance of inactive
elements in recent mode—were shown to have a clear impact on the relevance
rankings in keeping with the CRI model design.

Investigation of whether the model can support awareness during collaborative
development highlighted three areas of strength: a number of examples were
identified where it appeared that CRI was maintaining more accurate relevant
rankings than individual developers; developers used the history slider to ‘replay’
project development to help enhance their understanding of who had contributed
what at each stage of development and what tasks and artefacts were most
relevant throughout the project lifecycle; and, the social graph view of CRI was
shown to provide an effective high level summary of a collaborative project—
showing what entities were important and also highlighting areas where
development may not have been as much as it should have been.

This research has focused on the development and evaluation of a model that can
enable collaborators achieve contextual awareness based on tasks, developers and
artefacts that are being used to achieve a distributed software project. For a selected
task instance, awareness of the relative impact of project developers and code
artefacts is provided. Similarly, for a selected code artefact, awareness is provided
of the relative impact of project tasks and developers on its current and historical
state. Finally, for a selected developer, awareness is provided of the relative impact
of tasks and code artefacts on their work context. The CRI relevance model is based
on a collaborative perspective rather than an individual one.

Further work should investigate the potential to track important software
development artefacts beyond code e.g. requirements, design, tests and
maintenance requests. The main reason for focussing on code alone in this initial
work was the ease with which code changes could be tracked in the Eclipse
architecture. Other areas that that should be explored include: measuring length
and extent of artefact viewing; examining improved techniques to capture task
creation and change; and, the potential for forensic analysis of the development
process based on SOI data. Finally, major ethical considerations exist in the real
world use of CRI since it could be abused as the basis of capability judgment and
reward structuring. This can be partially addressed by appropriate management
attitude and also mechanisms within CRI to allow developers to switch monitors
on and off at any stage.
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Notes

1. http://www.jazz.net (Verified 04/2009)
2. http://www.eclipse.org/ecf (Verified 02/2007)
3. http://www.eclipse.org/dash (Verified 02/2007)
4. http://www.eclipse.org/mylar (Verified 02/2007)
5. http://www.eclipse.org/equinox (Verified 02/2007)
6. http://www.eclipse.org/emf (Verified 02/2007)
7. Absolute update delta is the positive or negative difference in the number of characters

associated with a code artefact before and after an update interaction event.
8. http://jung.sourceforge.net/ (Verified 04/2009)
9. http://www.mit.edu/~6.170/assignments/gizmoball/gizmoball.html (Verified 04/09)
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