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Abstract

In this paper we address game theory problems arising in the context of network
security. In traditional game theory problems, given a defender and an attacker, one
searches for mixed strategies which minimize a linear payoff functional. In the prob-
lems addressed in this paper an additional quadratic term is added to the minimiza-
tion problem. Such term represents switching costs, i.e., the costs for the defender
of switching from a given strategy to another one at successive rounds of a Nash
game. The resulting problems are nonconvex QP ones with linear constraints and
turn out to be very challenging. We will show that the most recent approaches for
the minimization of nonconvex QP functions over polytopes, including commercial
solvers such as CPLEX and GUROBI, are unable to solve to optimality even test
instances with n = 50 variables. For this reason, we propose to extend with them the
current benchmark set of test instances for QP problems. We also present a spatial
branch-and-bound approach for the solution of these problems, where a predominant
role is played by an optimality-based domain reduction, with multiple solutions of
LP problems at each node of the branch-and-bound tree. Of course, domain reduc-
tions are standard tools in spatial branch-and-bound approaches. However, our con-
tribution lies in the observation that, from the computational point of view, a rather
aggressive application of these tools appears to be the best way to tackle the pro-
posed instances. Indeed, according to our experiments, while they make the com-
putational cost per node high, this is largely compensated by the rather slow growth
of the number of nodes in the branch-and-bound tree, so that the proposed approach
strongly outperforms the existing solvers for QP problems.

Keywords Game theory - Nonconvex quadratic programming problems - Branch-
and-bound - Bound-tightening

P4 M. Locatelli
marco.locatelli @unipr.it

Extended author information available on the last page of the article

@ Springer


http://orcid.org/0000-0001-7138-8653
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00282-7&domain=pdf

562 G. Liuzzi et al.

1 Introduction

Consider a finite two-person zero-sum game I', composed from a player set
N = {1,2}, each member thereof having a finite strategy space S,, S, associated
with it, and a utility function u; : §; XS, - R for all i € N. We assume a zero-
sum Nash game, making u, := —u, hereafter, and letting the players choose their
actions simultaneously and stochastically independent of one another (contrary
to a Stackelberg game, where one player would follow the other, which we do not
consider here). The game is then the triple I' = (N,S = {5, S, }, H = {uy, —u; }),
and is most compactly represented by giving only the payoff function u; in matrix
form (since the strategy spaces are finite) as

A € RISIXISI = (ul(x, Z))(x,z)ESIXSZ'
An equilibrium in I" is a simultaneous optimum for both players w.r.t. u;. Assuming
a maximizing first player, an equilibrium is a pair (x*, z*) satisfying the saddle-point
condition

u (x,7%) < u (X, 7%) < u(x*,z7) V(x,z) €S XS,

It is well known that many practical games do not have such an equilibrium point; as
one of the simplest instances, consider the classical rock-scissors-paper game, repre-
sented by the payoff matrix

rock  scissors paper
rock 0 1 —1
scissors ( —1 0 1 )
paper 1 —1 0

This game has no equilibria in pure strategies: any fixed choice of rock, scissors
or paper would imply a constant loss for the first player (and likewise for the sec-
ond player). This means that player 1 is forced to randomize its actions in every
round of the game, and this concept leads to the idea of mixed extensions of a game,
which basically changes the above optimization problem into one over the convex
hulls A(S,), A(S,) of the action spaces, rather than the finite sets S;, S,. An element
of A(S;) is then a probability distribution over the elements of the support S;, and
prescribes to pick a move at random whenever the game is played.

The game rewards its players after each round, and upon every new round, both
players are free to choose another element from their action space at random. Implic-
itly, this choice is without costs, but what if not? Many real life instances of games
do incur a cost for changing one’s action from a; € §; in the first to some distinct
a, € S in the next round. Matrix games cannot express such costs in their payoff
functions, and more complex game models such as sequential or stochastic games
come with much more complicated models and equilibrium concepts. The goal of
this work is to retain the simplicity of matrix games but endow them with the ability
to include switching costs with the minimal natural (modeling) effort.
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The area of system security [2, 30] offers rich examples of such instances, such as
(among many):

— Changing passwords [25]: if the currently chosen password is p; and we are
obliged to pick a fresh password (say, different from the last couple of passwords
that we had in the past), the use of the new password p, # p, induces quite some
efforts, as we have to memorize the password, while choosing it as hard as pos-
sible to guess. The “cost” tied to the change is thus not monetary, but the cogni-
tive efforts to create and memorize a new password. This effort can make people
reluctant to change their passwords (or write them down, or use a very similar
password for the new one).

— Changing computer/server configurations: this usually means taking a computer
(e.g., a server) offline for a limited time, thus cutting down productivity perhaps,
and hence causing costs. If security is drawn from randomly changing configura-
tions (and passwords, resp. password changing rules are only one special case
here), then this change incurs costs by temporal outages of IT infrastructure for
the duration of the configuration change, and the efforts (person-hours) spent on
applying this change. This is why server updates or patches are usually done over
nights or weekends, when the loads are naturally low. If the optimization would,
however, prescribe a rather frequent change of configurations at random inter-
vals, this can quickly become a practical inhibitor, unless the switching costs are
accounted for by optimization.

— Patrolling and surveillance [4, 24]: consider a security guard on duty to repeat-
edly check a few locations, say A, B, ..., E, which are connected at distances
as depicted in Fig. 1. This is a chasing-evading game with the guard acting as
player 1 against an intruder being player 2, and with the payoff function u being
an indicator of whether the guard caught the intruder at location i € {A,...,E}, or
whether the two missed each other. This is yet another instance of a game with
all equilibria in mixed strategies, but with the unpleasant side-effect for the guard
that gets the prescription to randomly spot check distant locations to “play” the
equilibrium x*, the guard would have to move perhaps long distances between
the locations. For example, if it is at A in round 1 and the next sample from the
random distribution x* € A({A....,E}) tells to check point E next, the shortest path
would be of length 1 + 3 + 2 = 6 over C. Starting from A, however, it would be

Fig. 1 Example of spot checking
game on a graph
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shorter and hence more convenient for the guard to check location B first along
the way, but this would mean deviating from the equilibrium! A normal game
theoretic equilibrium calculation does not consider this kind of investment to
change the current strategy. This may not even count as bounded rationality, but
simply as acting “economic” from the guard’s perspective. But acting economi-
cally here is then not governed by a utility maximizing principle, but rather by a
cost minimization effort.

Generalizing the patrolling game example, the issue applies to all sorts of
moving target defense: for example, changing the configuration of a computer
system so as to make it difficult for an attacker to break in, often comes with
high efforts and even risks for the defending player 1 (the system administra-
tor), since it typically means taking off machines from the network, reconfiguring
them to close certain vulnerabilities, and then putting them back to work hoping
that everything restarts and runs smoothly again. A normal game theoretic model
accounts only for the benefits of that action, but not for the cost of raking the
action.

Including the cost to switch from one action to the next is more complicated
than just assigning a cost function ¢ : §; — R and subtracting this from the utilities
to redefine them as u’l(i, J) =u,(i,)) — c(i), since the cost to play a; will generally
depend on the previous action g; played in the previous round.

We can model this sort of payoff by another function s : §; X S; — R that we call
the switching cost. The value of s(i, j) is then precisely the cost incurred to change
the current action i € S, into the action j € §; in the next round of the game. Intui-
tively, this adds another payoff dimension to the game, where a player, w.l.o.g. being
player 1 in the following, plays “against itself”, since the losses are implied by its
own behavior. While the expected payoffs in a matrix game A under mixed strate-
gies X € A(S,),z € A(S,) are expressible by the bilinear functional x” Az, the same
logic leads to the hypothesis that the switching cost should on average be given by
the quadratic functional x”Sx, where the switching cost matrix is given, like the
payoff matrix above, as

Se R|51|X|51| = (s(x’ W))(x,w)ES]XSl'

This intuition is indeed right [26], but for a rigorous problem statement, we will
briefly recap the derivation given independently later by [32] to formally state the
problem.

1.1 Paper Outline

The paper is structured as follows. In Sect. 2 we give a formal description of the
problem as a nonconvex QP one with linear constraints, and we report a complex-
ity result, proved in Appendix 1 In Sect. 3 we present a (spatial) branch-and-
bound approach for the problem, putting a particular emphasis on the bound-
tightening procedure, which turns out to be the most effective tool to attack it. In
Sect. 4 we present a real-life instance. In Sect. 5 we present some computational
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experiments. We first describe the set of test instances. Next, we discuss the per-
formance of existing solvers over these instances. Finally, we present and com-
ment the computational results attained by the proposed approach. In Sect. 6 we
draw some conclusions and discuss possible future developments.

1.2 Statement of contribution
The main contributions of this work are:

— addressing an application of game theory arising in the context of network
security, where switching costs come into play, and showing that the resulting
problem can be reformulated as a challenging nonconvex QP problem with
linear constraints;

— introducing a large set of test instances, which turn out to be very challenging
for existing QP solvers and, for this reason, could be employed to extend the
current benchmark set of QP problems (see [11]);

— proposing a branch-and-bound approach for the solution of the addressed QP
problems, based on standard tools, but with the empirical observation that a
very aggressive use of bound-tightening techniques, with a high computa-
tional cost per node of the branch-and-bound tree, is the key for an efficient
solution of these problems.

2 Formal description of the problem

Let the game come as a matrix A € R™™, where n and m are the number of
strategies for player 1 and 2, respectively, with equilibrium (x*,z*), and let it be
repeated over the time ¢ € N. At each time ¢, let X, ~ x* be the random action
sampled from the equilibrium distribution over the action space (with x* being
the optimal distribution). In a security setting and zero-sum game, neither player
has an interest of being predictable by its opponent, so we assume stochastic
independence of the action choices by both players between any two repetitions
of the game. Then, we have Pr(X,_;, = i,X, =j) = Pr(X,_; = i) - Pr(X, = j), so that
any future system state remains equally predictable whether or not the current
state of the system is known. Hence, the switching cost can be written as

n n
SX. X) =D Y sy Pr(X, =i X, =))
i=1 j=1

n n

= Z Z sy - Pr(X,_, = i) - Pr(X, = j) = x" Sx.

i=1 j=1

With this, player 1’s payoff functional becomes vector-valued now as
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ul : A(SI)XA(Sz) N RZ’ (X,Z) — <M1(X,Z) =XTAZ>’ (1)

s(x,z) = x'Sx

and the game is multi-objective for the first player. As we are interested mostly in
the best behavior for player 1 and the analysis would be symmetric from player 2’s
perspective, we shall not explore the view of the second player hereafter.

Remark 1 The game could be equally well multi-objective for the second player
too, and in fact a practical instance of such a situation may also come from secu-
rity: it could be in an adversary’s interest to “keep the defender busy”, thus causing
much friction by making the defender move fast from one place to the other. This is
yet just another instance of a denial-of-service attack, to which such a game model
would apply.

For the sake of computing a multi-objective equilibrium, more precisely a
Pareto-Nash equilibrium, the algorithm in [27] based on the method laid out in
[16] proceeds by scalarizing (1) by choice of some @ € (0, 1), to arrive at the real-
valued goal function

a-x"Az+ (1 —a)-x"Sx,

for the first player to optimize. Now, the usual way from here to an optimization prob-
lem for player 1 involving a rational opponent applies as for standard matrix games
[26]: let e; € R™ be i-th unit vector, then arg max,c (s, (X" Az) = arg max,(x" Ae)).
After introducing the additional variable v, the resulting problem becomes

min (1—a) -x"Sx + av
s.t. v > xTAe; i=1,...,m 5
ijlszl ( )
ijO j=1,...,n,

which is almost the familiar optimization problem to be solved for a Nash equilib-
rium in a finite matrix game. It differs from the well known linear program only in
the quadratic term, and, in fact, the equilibrium problem for matrix games is recov-
ered by substituting @ = 1in (2). Note that the matrix S in the quadratic term will (in
most cases) have a zero diagonal, nonnegative off-diagonal entries, be indefinite and
not symmetric in general (patrolling game example given above already exhibits a
variety of counterexamples leading to nonsymmetric distance matrices S if the graph
is directed). Of course, symmetry of S can be easily recovered, so in what follows
we will assume that S is symmetric. The two extreme values « = 0 and @ = 1 give
rise to simple problems. Indeed, as already commented, for a« = 1 the problem is
an LP one, while for a« = 0 is a Standard QP (StQP) problem, which is in general
NP-hard (e.g., in view of the reformulation of the max clique problem as an StQP
problem, see [18]), but is trivial in the case of zero diagonal and nonnegative off-
diagonal entries (each vertex of the unit simplex is a globally optimal solution). For
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what concerns the intermediate values a € (0, 1) we can prove the following result,
stating the complexity of problem (2) .

Theorem 1 Problem (2)is NP-hard.
Proof See Appendix 1. O

Remark 2 The dependence of next actions on past ones extends to other scenarios
too: for example, if the game is about coordination in wireless settings (e.g., collabo-
rative drones), the players, e.g., drones, share a common communication channel.
Every exchange of information occupies that channel for a limited period of time,
thus constraining what the other players can do at the moment. Such effects can be
described by stochastic games, but depending on how far the effect reaches in the
future, backward inductive solution methods may become computationally infeasi-
ble [14]; likewise, extending the strategy space to plan ahead a fixed number of k
steps (to account for one strategy determining the next k repetitions of the game)
may exponentially enlarge the strategy space (by a factor of 2°®, making the game
infeasible to analyze if k is large). Games with switching cost offer a neat bypass
to that trouble: if an action is such that it occupies lots of resources for a player,
thus preventing it from taking further moves in the next round of the game, we can
express this as a switching cost. Assume, for instance, that an action in a game I’
is such that the player is blocked for the next k rounds, then the switching cost is
k-times the expected utility u (with the expectation taken over the equilibrium dis-
tribution played by the participants) that these next k rounds would give. Virtually,
the situation is thus like if the player would have paid the total average gain over the
next rounds where it is forced to remain idle (thus gaining nothing):

u —k-u + u+-+u =u+ 0+0+...+0
—— —— ——

switching cost yirtyal payoffs practical payoffs 3)
over k rounds by being idle
for krounds

Expression (3) will in practice be only an approximate identity, since we assumed
that the game, viewed as a stochastic process, has already converged to stationarity
(so that the equilibrium outcome u is actually rewarded). The speed of convergence,
indeed, can itself be of interest to be controlled in security applications using mov-
ing target defenses [32]. The crucial point of modeling a longer lasting effect of the
current action like described above, however, lies in the avoidance of complexity:
expression (3) has no issues with large k, while more direct methods of modeling
a game over k rounds, or including a dependency on the last k moves, is relatively
more involved (indeed, normal stochastic games consider a first-order Markov chain,
where the next state of the game depends on the last state; the setting just described
would correspond to an order k chain, whose conversion into a first order chain is
also possible, but complicates matters significantly).
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3 A branch and bound approach

After incorporating parameter « into the definitions of matrix S and vectors A,
j=1,...,m, and after introducing the vector of variables y, problem (2) can be
rewritten as the following problem with bilinear objective function and linear
constraints:

min F(X,y,v) := % Y Xyt

vZAij j=1,....m @
inSiX i=l,...,n
X€EA4,

where S; denotes the i-th row of matrix S and 4, denotes the n-dimensional unit sim-
plex. In what follows we will denote by P the feasible region of this problem, and by
Py y its projection over the space of x and y variables.

Each node of the branch-and-bound tree is associated to a box
B=[f,,u]X [fy,uy], where £, u, and t’y,uy denote lower and upper bound
vectors for variables x and y, respectively. An initial box B, containing Py, is
easily computed. It is enough to set £, = 0, u, = e (the vector whose entries are
all equal to one), and

€= TN, Sae £y = X, Sy
Note that, although not strictly necessary, we can also bound variable v to belong to
an interval. Indeed, we can impose v > 0 (due to nonnegativity of the entries of vec-
tors Aj,j= 1,...,m), and
< A,
VS max, e
which certainly holds at optimal solutions of problem (4). In what follows we
describe in detail each component of the branch-and-bound approach, whose
pseudo-code is then sketched in Algorithm 1.

3.1 Lower bounds

Given box B = [£y, u,] X [£y, u,], then the well known McCormick underestimat-
ing function (see [17])

max {fx’_yi + zf’yl_x,» -7 ¢ Uy Yi+ Uy X; — ”xf”)’i}’

X7 yi?

can be employed to limit from below the bilinear term x;y; over the rectangle
[fx,-’ “x,.] X [fyi, u“,i]. In fact, it turns out that the McCormick underestimating func-
tion is the convex envelope of the bilinear term over the given rectangle. Then, after
introducing the additional variables f;, we have that the optimal value of the follow-

ing LP problem is a lower bound for problem (4) over the box B:
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L(B) = min % ; ftv (5)

X E 4, (5b)

vaij j=1,....m (5¢)
y=Sx i=1,...,n (5d)

x,y) €B (Se)
izl xi+C 0y —¢.¢, i=1...,n (5)
fi> Uy Yy + Uy X; — Uy Uy i=1,...,n (52)

The optimal solution of the LP problem will be denoted by
(x*(B), y*(B),f*(B),v*(B)).

3.2 Upper bound

The global upper bound (GUB in what follows) can be initialized with +co or, alter-
natively, if a local search procedure is available, one may run a few local searches
from randomly generated starting points, and take the lowest local minimum value
as initial GUB value, although, according to our experiments, there is not a signifi-
cant variation in the computing times if such local searches are performed. During
the execution of the branch-and-bound algorithm, each time we compute the lower
bound (5) over a box B, its optimal solution is a feasible solution for problem (4)
and, thus, we might update the upper bound as follows:

GUB = min{GUB, F(x*(B), y*(B),v*(B))}.

3.3 Branching

The branching strategy we employed is a rather standard one. Given node B, we first
compute the quantities:

g =X (B)y’(B) — [*(B), (6)

measuring the error of McCormick underestimator for each bilinear term x;y; at the
optimal solution of the relaxed problem (5). Then, we select r € arg max;_; :
i.e., the index corresponding to the bilinear term where we have the largest error at
the optimal solution of the relaxation. Next, we might define the following branch-
ing operations for box B:
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Branching on x and y: Define four children nodes by adding constraints

(x, <XB), Y, SYFB) {x, <xXB), ¥, 23 B)),
(22 B), y, <YFB) %, 2xB), , 23} B)),
respectively (quaternary branching);

Branching on x: Define two children nodes by adding constraints
x, <x*(B) and x >x*(B), respectively (binary
branching);

Branching on y: Define two children nodes by adding constraints
y,<y*(B) and y >y*(B), respectively (binary
branching).

Note that all choices above, with the new McCormick relaxation given by the new
limits on the variables, reduce to zero the error for bilinear term x,y, at the opti-
mal solution of problem (5). It is worthwhile to remark that the computed lower
bound tends to become exact even when branching is always performed with respect
to variables of the same type (say, always variables x;, i = 1,...,n). Indeed, it is
enough to have that ||u, — Z,|| — O or, alternatively, that lla, — fy|| — 0 in order to
let the underestimating function values converge to the original objective function
values. This is a consequence of the fact that the McCormick underestimation func-
tion tends to the value of the corresponding bilinear term even when only one of the
two intervals on which it is defined shrinks to a single point. In the computational
experiments we tried all three possibilities discussed above and it turns out that the
best choice is the binary branching obtained by always branching on y variables.

3.4 Bound-tightening technique

A reduction of the boxes merely based on the above branching strategy would lead to
a quite inefficient algorithm. It turns out that performance can be strongly enhanced
by an Optimality-Based Bound-Tightening (OBBT in what follows) procedure (see,
e.g., [8, 31]). An OBBT procedure receives in input a box B and returns a tightened
box in output, removing feasible points which do not allow to improve the current
best feasible solution. More formally, let B be the set of n-dimensional boxes. Then:

OBBT : B— B : OBBT(B)CB and F(x,y,v)
> GUB V (x,y) € [BNP,,]\ OBBT(B).

In our approach, we propose to employ an OBBT procedure, which is expensive but,
as we will see, also able to considerably reduce the number of branch-and-bound
nodes. The lower and upper limits fx,, "ﬂyi’ Uy s Uy i=1,...,nare refined through the
solution of LP problems having the feasible set defined by constraints (5b)-(5g) and
the additional constraint

n
%Zf,-+v§GUB, %)
i=1
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stating that we are only interested at feasible solutions where the underestimating
function, i.e., the left-hand side of the constraint, corresponding to the objective
function (5a), is not larger than the current upper bound GUB. Thus, each call of this
OBBT procedure requires the solution of 4n LP problems with the following objec-
tive functions:

£, /u, =min/max x;, £, /u, =min/max y, i=1,...,n.

Note that all these problems are bounded in view of the fact that x is constrained
to belong to the unit simplex. In fact, what we observed through our computational
experiments is that it is not necessary to solve all 4n LPs but it is enough to concen-
trate the effort on the most ’critical’ variables. More precisely, in order to reduce the
number of LPs without compromising the performance, we employed the following
strategies (see also [12] for strategies to reduce the effort). Taking into account the
quantities g; computed in (6), we notice that the larger the g; value, the higher is the
need for a more accurate underestimation of the corresponding bilinear term. Then,
we solved the following LP problems.

— [0.2n] LP problems with objective function min y;, for all i corresponding to the
[0.2n]1argest g; values;

— a fixed number [0.1n] of LP problems with objective function max y;, for all i
corresponding to the [0.1n]largest g; values;

— again [0.1n] LP problems with objective function max x;, for all i corresponding
to the [0.1n]largest g; values;

— no LP problem with objective function min x;.

These choices have been driven by some experimental observations. In particular,
we noticed that the lower limit for y, is the most critical for the bound computation
or, stated in another way, constraint

izl xi+ 6y =€ F,,

is often the active one. For this reason a larger budget of LP problems is allowed
to improve this lower limit with respect to the upper limits. Instead, we never try to
improve the lower limit £, because it is experimentally observed that this limit can
seldom be improved. l

This way, the overall number of LPs to be solved at each call of the OBBT proce-
dure is reduced to approximately 0.4n. Note that rather than solving all LP problems
with the same feasible set, we could solve each of them with a different feasible
region by incorporating all previously computed new limits in the definition of the
feasible region for the next limit to be computed. That leads to sharper bounds, how-
ever we excluded this opportunity since we observed that LP solvers strongly benefit
from the opportunity of solving problems over the same feasible region.

The underestimating function depends on the lower and upper limits
fxi, fy’, Uy, Uy Thus, once we have updated all such limits, we can call procedure
OBBT again in order to further reduce the limits. These can be iteratively reduced
until some stopping condition is fulfilled. Such iterative procedure has been
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proposed and theoretically investigated, e.g., in [8]. That obviously increases the
computational cost per node, since the overall number of LPs to be solved at each
node is now approximately 0.4n times the number of calls to the procedure OBBT,
which depends on the stopping condition. But, again, we observed that the addi-
tional computational cost is compensated by a further reduction of the overall num-
ber of nodes in the branch-and-bound tree.

It is important to stress at this point that OBBT procedures in general and the one
proposed here in particular, are not new in the literature. The main contribution of
this work lies in the observation that a very aggressive application of the proposed
OBBT, while increasing considerably the computational cost per node, is the real
key for an efficient solution of the addressed problem. Indeed, we will see through
the experiments, that our approach is able to significantly outperform commercial
QP solvers like CPLEX and GUROBI, and a solver like BARON, which is strongly
based on tightening techniques.

3.5 Pseudo-code of the branch-and-bound approach

In this section we collect all the previously described tools and present the pseudo-
code of the proposed branch-and-bound approach. In Line 1 an initial box B, is
introduced and the collection of branch-and-bound nodes C still to be explored is
initialized with it. In Line 2 a lower bound over B is computed, while in Line 3 the
current best observed feasible point z* and the current GUB value are initialized.
Take into account that such values can also be initialized after running a few local
searches from randomly generated starting points. Lines 4-21 contain the main loop
of the algorithm. Until the set of nodes still to be explored is not empty, the follow-
ing operations are performed. In Line 5 one node in C with the lowest lower bound
is selected. In Line 6 the index k of the branching variable is selected as the one with
the largest gap g; as defined in (6). In Line 7 the branching operation is performed.
In Line 8 the selected node B is removed from C, while in Lines 9—19 the following
operations are performed for each of its child nodes. In the loop at Lines 10-17, first
procedure OBBT is applied and then the lower bound over the tightened region is
computed, until a stopping condition is satisfied. In particular, in our experiments
we iterate until the difference between the (non-decreasing) lower bounds at two
consecutive iterations fall below a given threshold e (¢ = 1073 in our experiments).
In Lines 13-16 both z* and GUB are possibly updated through the optimal solution
of the relaxed problem. In Line 18 we add the child node to C. Finally, in Line 20
we remove from C all nodes with a lower bound not lower than (1 — €)GUB, where
€ is a given tolerance value. In all the experiments, we fixed a relative tolerance
€ = 1073, which is considered adequate for practical applications.

Note that we do not discuss convergence of the proposed branch-and-bound
approach, since it easily follows by rather standard and general arguments which can
be found in [15].

In Algorithm 1 we highlighted with a frame box, both the stopping condition in
Line 10 and the call to the OBBT procedure at Line 11, since the performance of the
proposed algorithm mainly depends on how these two lines are implemented.
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In what follows, in order to stress the importance of bound-tightening, we will
refer to the proposed approach as Branch-and-Tight (B&T), which belongs to the
class of Branch-and-Cut approaches, since tightening the bound of a variable is a
special case of cutting plane.

Data :SeR™*" A cR™X" ¢>0;
1 Let Bp be an initial box and set C = {Bo} ;
2 Compute the lower bound L(Bg) through (5) ;
3 z* =x*(Bg) and GUB = F (x*(By),y*(Bo),v*(Bo)) ;
4 whileC#0 do
5 B € argmingec L(B) ;
6 k € argmax;=1,....n T} (B)yz*(B) - fr (B) ;
7 Branch B into B1 = BN {y, < y]:(B)} and By = BN {yg > yg(B)} ;
8 C=C\{B};
9 for i € {1,2} do
10 while ‘ A stopping condition is not satz’sﬁed‘ do
1 [B: = 0BBT(B))
12 Compute the lower bound L(B;) through (5) ;
13 if F(x*(B;),y*(Bi),v*(Bi)) < GUB then
14 ‘ z* =x*(B;) ;
15 GUB = F(x*(B;),y*(Bi),v*(B;)) ;
16 end
17 end
18 C=CU{B;};
19 end
20 C=C\{BeC : L(B)>(1-¢)GUB};
21 end
22 return z*, GUB;

Algorithm 1: Branch-and-bound algorithm
4 Example: Crime prevention by patrolling (of the Police)

In this section we present an example of real-life instance where player 1 is the
police, patrolling around in a certain geographic area. In this area, we consider the
roads as defining a directed graph that the police traverses seeking to prevent crimes.
They do so by randomly checking locations in the area, reachable over the roads,
and traveling from one location to the other induces a certain travel time. For the
crime distribution, we assume that “more public space means more witnesses, SO
less likelihood of a crime committed”. Applying this intuition to a roadmap, we take
the probability of crimes to occur at a location as inverse proportional to the num-
ber of ways leading to this point. That is, the “more remote” a place is, the more
likely is a crime to happen there, and places that are reachable over many ways are
more likely to be crowded, so crimes are less likely there (of course, not all sorts of
crimes, such as pickpockets would certainly prefer crowded places, but mugging is
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preferably done where a victim cannot easily escape). Note, however, the probability
can also be defined in different ways, e.g., by taking into account police records.
Our showcase region is the Hampi village in India, shown as a screenshot map in
Figure 7?. The respective geographic information ships with the package dodgr
(distances on directed graphs) [19] for the R environment, so that we can conveni-
ently use geographic information and digitalized roadmaps to define the playground
for the game model (see [20] for how this is done step-by-step). In our case, the
dodgr package directly lets us compute travel times or distances, representing the
costs incurred to realize a random spot checking, which is precisely the matrix S
above. The actual payoff structure in the game depends on the locations and their
likelihoods to become crime scenes. The road network for the Hampi village, has
1901 vertices and 3891 edges. At this point a subset of vertices of the road network
is selected. The resulting vertices in the graph are then defined as pure strategies
in the game, i.e., places for the police to be checked, with inter-vertex travel times
taken as the switching cost in the matrix S. For practical purposes, it is reasonable
to take a subset with cardinality between 50 and 100. Indeed, this size also appears
reasonable in light of the fact that police patrols can certainly not check arbitrarily
many places in reasonable time and efficiency, thus problem instances between 50
and 100 places appear as the most that is physically feasible.

Note that games of a shape like that of our police patrolling example exist in
manifold versions in the literature, such as regarding the patrolling of coast guards
[10], border patrol [21], pipeline protection [3], airport surveillance [22], and game
theoretic models against environmental crime (so-called green security games) [5];
see [28] for a more extensive overview of related game models. Common to all these
is their goal of optimizing patrolling (and to an extent also surveillance), but none of
this past work accounts for the efforts of realizing the patrolling in practice, in light
of the efforts practically invested (for the moving), but not theoretically counted in
the optimization model.

5 Numerical results

In this section we will first describe the test instance generator and, then, we will
present and discuss the results of extensive computational experiments with such
instances.

5.1 Testinstances description

The game is about spot checking a set of n places to guard them against an adver-
sary. The places are spatially scattered, with a directed weighted graph describing
the connections (direct reachability) of place v from place u by an edge v — u
with a random length.
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[Hampi village, taken from OpenWorldMap [1]]

$3)

[Road graph as extracted from the geographic data provided by [19]]

The payoffs in the game are given by an n X n matrix A (so m = n in the above
description), and are interpreted as the loss that the defending player 1 suffers
when checking place i while the attacker is at place j. Thus, the defender can:

— either miss the attacker (i #j) in which case there will be a Weibull-distrib-
uted random loss with shape parameter 5 and scale parameter 10.63 (so that
the variance is 5); (this distribution is a common choice to describe economic
losses, among other extreme value distributions);

— or hit the attacker at i = j, in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. The problem

above is that of the defender. The Nash equilibrium then gives the optimal ran-
dom choice of spot checks to minimize the average loss. To avoid trivialities, the
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payoff matrices are constructed not to admit pure strategy equilibria, so that the
optimum (without switching cost) is necessarily a mixed strategy.

As for the switching cost, if the defender is currently at position i and next
— according to the optimal random choice — needs to check the (non-adjacent)
place j, then the cost for the switch from i to j is the shortest path in the afore-
mentioned graph (note that, since the graph is directed, the matrix S is generally
nonsymmetric).

For the random instances, the matrix S is thus obtained from a (conventional)
all-shortest path algorithm applied to the graph. Note that the graph is an Erdos-
Renyi type graph with n nodes and p = 0.3 chance of any two nodes having a con-
nection. We also made tests with sparser (p = 0.2) and denser (p = 0.4) graphs,
which result in S matrices with larger entries in the former case and smaller in
the latter case (the entries are given by shortest paths which tend to be smaller
in denser graphs). The computational results with these different p values (not
reported here) show that the instances with p = 0.2 are slightly more challenging
than those with p = 0.3, while those with p = 0.4 are slightly simpler. However,
the differences are not very significant. Also note that all entries of matrix S are
positive except for the diagonal ones, so that the matrix is dense. We underline
this fact since, according to the experimental results reported, e.g., in [7, 33], the
density of the Hessian matrix is a relevant factor to assess the difficulty of non-
convex QP problems.

Remark 3 The Erdos-Renyi model is here a suitable description of patrolling situ-
ations in areas where moving from any point to any other point is possible without
significant physical obstacles in between. Examples are water areas (e.g., coasts) or
natural habitats (woods, ...), in which guards are patrolling. It goes without saying
that implementing the physical circumstances into the patrolling problem amounts
to either a particular fixed graph topology or class of graphs (e.g., trees as mod-
els for harbor areas, or general scale-free networks describing communication rela-
tions). Such constrained topologies, will generally induce likewise constrained and
hence different (smaller) strategy spaces, but leave the problem structure as such
unchanged, except for the values involved.

The weights in the graph were chosen exponentially distributed with rate param-
eter A = 0.2, and the Weibull distribution for the losses has a shape parameter 5 and
scale parameter ~ 10.63, so that both distributions have the same variance of 5.

Remark 4 The choice of the Weibull distribution is because of its heavy tails, useful
to model extreme events (in actuarial science, where it appears as a special case of
the generalized extreme value distribution). If the graph is an attack graph, we can
think of possibly large losses that accumulate as the adversary traverses an attack
path therein (but not necessarily stochastically independent, which the Weibull-dis-
tribution sort of captures due to its memory property). Besides, both the exponential
and the Weibull distribution only take non-negative values, and thus lend themselves
to a meaningful assignment of weights as “distances” in a graph.
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The graph sizes considered are n = 50,75,100 and for each graph size
we consider ten random instances. We restricted the attention to « values in
{0.3,0.4,...,0.9} since problems with @ values smaller than 0.3 and larger than 0.9
turned out to be simple ones. The overall number of instances is, thus, 210 (70 for
each size n = 50, 75, 100).

Note that all the data of the test instances are available at the web site http://www.
iasi.cnr.it/~liuzzi/StQP.

5.2 Description of the experiments

The problem discussed in this paper belongs to the class of nonconvex QP prob-
lems with linear constraints, which is a quite active research area. Even well-known
commercial solvers, like CPLEX and GUROBI, have recently included the oppor-
tunity of solving these problems. In [33] different solution approaches have been
compared over different nonconvex QP problems, namely: Standard Quadratic Pro-
gramming problems (StQP), where the feasible region is the unit simplex; BoxQP,
where the feasible region is a box; and general QPs, where the feasible region is
a general polytope (in [7] an extensive comparison has also been performed more
focused on BoxQPs). The approaches tested in [33] have been the nonconvex QP
solver of CPLEX, quadprogBB (see [9]), BARON (see [29]), and quadprogIP,
introduced in [33]. According to the computational results reported in that work,
solvers quadprogIP and quadprogBB have quite good performance on some
subclasses. More precisely, quadprogIP works well on the StQP problem (see
also [13] for another approach working well on this subclass), while quadprogBB
performs quite well on BoxQPs, especially when the Hessian matrix of the objective
function is dense. However, they do not perform very well on QP problems with
general linear constraints. Some experiments we performed show that their perfor-
mance is not good also on the QP subclass discussed in this paper. For this rea-
son we do not include their results in our comparison. Thus, in the comparison we
included: the nonconvex QP solver of CPLEX (v. 12.10), the best performing over
QPs with general linear constraints according to what is reported in [33]; the non-
convex QP solver of GUROBI (v. 9.0.0), which has been recently introduced and is
not tested in that paper; BARON (v. 2019.12.7), since bound-tightening, which, as we
will see, is the most relevant operation in the proposed approach, also plays a central
role in that solver.
We performed four different sets of experiments:

— Experiments to compare our approach B&T with the above mentioned existing
solvers over the subclass of QP problems discussed in this paper (only at dimen-
sion n = 50, which, as we will see, is already challenging for all the competi-
tors);

— Experiments with B&T by varying the intensity of bound-tightening (no bound-
tightening, light bound-tightening, strong bound-tightening), in order to put in
evidence that (strong) bound-tightening is the key operation in our approach;
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— Experiments with B&T at dimensions n = 50,75, 100, in order to see how it
scales as the dimension increases;
— Experiments with the Crime Prevention instance described in Sect. 4.

All the experiments have been carried out on an Intel® Xeon® gold 6136 CPU at
3GHz with 48 cores and 256GB main memory. The algorithm has been coded using
the Julia [6] language (version 1.3.1). Doing the implementation we parallelized
as much as possible the bound-tightening procedure discussed in Sect. 3.4, where
many LPs with the same feasible region need to be solved. The code is available for
download at the URL http://www.iasi.cnr.it/~liuzzi/StQP.

5.2.1 Comparison with the existing literature

As a first experiment, we compare our method with the commercial solvers BARON,
CPLEX and Gurobi. We run all these methods over ten instances at dimension
n =50 with a € {0.3,0.4,...,0.9} (thus, overall, 70 instances). We set a time limit
of 600 seconds. A relative tolerance £ = 1073 is required for all solvers since, as
already previously commented, it is considered adequate for this application. In
Table 1, we report the average performance. For each method we report the number
of nodes (column nn), the percentage gap after the time limit and in brackets the
computational time needed to reach it (column GAP % (s)), and finally the per-
centage of success, i.e. the percentage of instances solved to optimality within the
time limit (column Succ %). In our opinion, this table reports the most important
finding of this paper. It can be seen that all the commercial solvers fail on most of
the instances (apart from 7 out of 10 instances with @ = 0.9 and, for what concerns
CPLEX, an instance with @ = 0.8), whereas B&T solves all the instances with an
average time of less than 30 seconds (the complete results are reported in Appendix
1). These results show that, although commercial solvers are fully developed, there
is still room for improvements. In particular, it seems that performing bound-tight-
ening in a very intensive way can strongly enhance the performance of a solution
approach. In fact, as previously recalled, BARON already incorporates bound-tight-
ening techniques but, as we will see in the following set of experiments, the inten-
sity with which bound-tightening is applied also makes a considerable difference.
Before that, however, for the sake of completeness, we report in Table 2, the results
of B&T over the n = 50 test instances when a lower tolerance value is employed,
namely € = 107>, in order to evaluate the impact of this parameter on the perfor-
mance of B&T. It is interesting to notice that the lower value has a clear impact on
the instances with small a value (say a < 0.5), even causing a failure with @ = 0.4,
while the impact is much milder for larger « values. In this table we also include col-
umn time/LP, where we report the average time for the solution of each LP. Such
value is almost equal to the overall CPU time divided by the number of LPs solved.
This is due to the fact that the computing times of B&T are almost entirely due to
the OBBT procedure and, in particular, to the LPs needed to apply it. An analogous
consideration applies to all the experiments we reported in this paper.
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Table 2 Average performance
of B&T on all the 10 instances

for each value of a whenn =50 53 915 57095 6673 1.6 000 100

with tolerance equal to 10> with

strong bound tightening 04 3918 2056841 23121 I1ile 2204 90
0.5 2302 950433  103.19 1.083 000 100
0.6 704 263673 2881 1093 000 100
07 902 220091 2335 1.04e 000 100
0.8 59 105008  10.61 1.00e 000 100
0.9 588 62603 595 94let 000 100

a nn #LPs time time/LP GAP%  Succ %

5.2.2 Importance of bound-tightening

As already stressed many times, the quite good performance of B&T is due to the
bound-tightening procedure. It is now time to show it with numbers. To this end,
besides the already proposed setting for our approach, we ran it under two different
settings:

No bound-tightening at each node we do not apply the procedure OBBT, but we
simply compute the lower bound by solving problem (5);

Light Bound-Tightening] at each node we only solve the following LPs once
(and, consequently, we compute the solution of problem (5) only once)

— [0.1n] LP problems with objective function min y;, for all i corresponding to
the [0.1n] largest g; values;

— a fixed number [0.057] of LP problems with objective function max y;, for all
i corresponding to the [0.05n] largest g; values;

— again [0.05n] LP problems with objective function max x;, for all i corre-
sponding to the [0.05n] largest g; values;

— no LP problem with objective function min x;.

Of course, this strongly reduces the effort per node. With no bound-tightening
a single LP is solved per node, while with light bound-tightening [0.2n] + 1 LPs
are solved at each node. In fact, light bound-tightening already requires a con-
siderable computational effort per node (and, as we will see, it is already enough
to perform better than existing solvers). However, the originally proposed strong
bound-tightening procedure, where the OBBT procedure is iteratively applied
and at each iteration [0.4n] LPs are solved, delivers better results. In Table 3,
we report the average performance on the instances with n =50 in terms of
number of nodes, number of LPs solved, CPU time in seconds and percentage
gap of the three levels of bound-tightening. It is evident from the table that the
OBBT procedure is what really makes the difference: most of the instances are
not solved without bound-tightening, whereas the number of nodes and the CPU
time needed to solve the instances decrease as we increase the level of bound-
tightening. In Appendix 1 we also report the full table with all the results.
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5.2.3 Computational results over the proposed test instances as n increases

In this subsection we show the behavior of B&T as the dimension n increases.
We have solved ten instances for three different sizes n =50, 75, 100 and the
usual values of @ = {0.3,0.4,...,0.9} (thus, overall 210 instances). Note that, for
all the different values of n, lower and larger values of @ with respect to those
we tested give rise to much simpler instances (recall that the problem becomes
polynomially solvable for the extreme values @ =0 and a = 1). We set a time
limit of 10800s for all instances. For n = 50 and n = 75 we solve all the instances
to optimality (in fact, the largest time to solve an instance with n = 50 is about
2 minutes, whereas for n = 75 the largest time is below 1 hour, but most of the
problems are solved within 10 minutes). In Figures 2a—c we report the box plot
of number of nodes, number of LPs and CPU time needed for the different val-
ues of @ when n = 50. The figure shows that the hardest instances are the ones
corresponding to the central values of @ and this will turn out to hold true also at
larger dimensions. We also observe that the overall number of nodes is extremely
limited, thus confirming that, while computationally expensive, the bound-tight-
ening procedure allows to considerably reduce the size of the branch-and-bound
tree (again, this fact is observed also at larger dimensions).

In Fig. 3, we report the different box plots for all the instances at n = 75. It is
worthwhile to remark that we solve most of them within ten minutes and explor-
ing less than 300 nodes.

Finally, in Fig. 4 we report the performance of B&T on problems of dimen-
sion n = 100. In this case there are seven instances we are not able to solve
within the time limit. These occur for values a € {0.6,0.7,0.8}, thus confirm-
ing that the central values of this parameter give rise to the most challenging
instances. With respect to n = 50 and n =75, we have the additional box plot
displayed in Fig. 4d reporting the final percentage gap when the time limit is
reached. Note that it is never larger than 1.2% and most of the times it is lower
than 0.5%, thus showing that, even when the algorithm does not terminate, the
quality of the returned solution is guaranteed to be high.

5.2.4 Numerical results for the Crime Prevention application

In this subsection we solve an instance of the Crime Prevention application,
described in Sect. 4, where 50 check spots have been identified (i.e., n =50
according to our notation). In Table 4, we report the results for different values of
a obtained by B&T and by the commercial solvers CPLEX, Gurobi and BARON.
We report for each method the CPU time (we set a time limit of 600 seconds)
followed in brackets by the gap at the end of the time, the number of nodes, and
for our method also the number of LPs solved, since it is our major computa-
tional burden. Although this instance turns out to be less challenging than the
random ones previously considered, and also the other solvers are able to return
the solution within the time limit for most (but not all) & values, B&T is the only
method able to solve the instance for all the values of a and in all cases within 3
seconds. Therefore, also for this real world application, our method outperforms
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Fig.2 Box plots for different performance measures for n = 50

the commercial solvers, confirming the effectiveness of the approach. We also run
B&T with a larger number of check spots (namely, 75 e 100) and the usual dif-
ferent @ values. The method is able to solve them all within 11 s, thus confirming
once again the efficiency of B&T.

6 Conclusions and future work

In this paper we addressed some game theory problems arising in the context of net-
work security. In these problems there is an additional quadratic term, representing
switching costs, i.e.. the costs for the defender of switching from a given strategy to
another one at successive rounds of the game. The resulting problems can be reformu-
lated as nonconvex QP with linear constraints. Test instances of these problems turned
out to be very challenging for existing solvers, and we propose to extend with them
the current benchmark set of test instances for QP problems. We presented a spatial
branch-and-bound approach to tackle these problems and we have shown that a rather
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aggressive application of an OBBT procedure is the key for their efficient solution. The
procedure is expensive, since it requires multiple solutions of LP problems at each node
of the branch-and-bound tree. But we empirically observed that the high computational
costs per node of the branch-and-bound tree are largely compensated by the low num-
ber of nodes to be explored. We recall that the code of B&T and all the data of the test
instances are available at the web site http://www.iasi.cnr.it/~liuzzi/StQP. As a topic for
future research, we would like to further investigate the use of OBBT procedures in
the solution of QP problems, and we would like to identify other cases, besides those
addressed in this paper, where their intensive application may considerably enhance
the performance of branch-and-bound approaches. We have actually already performed
some experiments and obtained promising results over test instances of nonconvex QPs
with general linear constraints. We plan to present the results in a future work. Moreo-
ver, it would be interesting to evaluate whether the intensive application of OBBT pro-
cedures is also able to enhance the performance of commercial nonconvex QP solvers.
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Table 4 Results on the instance of the Crime Prevention application with 50 check spots

o GUROBI CPLEX BARON B&T

o CPU time #nodes CPU time #nodes  CPU time #nodes CPUtime  #nodes #LPs
0.3 600.00(17.05) 3604392  600.00(30.28) 373403 600.00(2.37) 117 2.48(0) 19 2485
04 175.26(0) 1186711 600.00(26.41) 415455  600.00(1.88) 78 2.30(0) 19 2141
0.5 31.39(0) 201557 222.83(0) 244784  600.00(1.42) 85 2.21(0) 21 2053
0.6 6.22(0) 26632 32.84(0) 34536 207.26(0) 43 2.27(0) 23 2239
0.7 2.28(0) 5711 16.38(0) 20414 66.74(0) 31 1.93(0) 23 1705
0.8 1.39(0) 2812 5.1(0) 3247 15.05(0) 6 1.22(0) 3 631
0.9 1.17(0) 746 2.82(0) 701 3.87(0) 3 1.05(0) 1 362
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A Proof of Theorem 1

In this section we consider the complexity of problem (2). Such problem is a noncon-
vex QP with linear constraints. NP-hardness of QP problems has been established for
different special cases like, e.g., the already mentioned StQP problems (see [18]) and
the Box QP problems (see, e.g., [23]). However, due to its special structure, none of the
known complexity results can be applied to establish the NP-hardness of problem (2).
Thus, in what follows we formally prove that its corresponding decision problem is NP-
complete. Let

fx) = —XTSX + max AT (8)
where §; =0 for each i=1,...,n and §; >0 for each i#j, while A, >0,
k=1,...,m. Moreover, let

={xeR! : ex=1},

be the n-dimensional unit simplex. After incorporating @ and (1 — a) respectively
into S and A,;, k=1,...,m, problem (2) is equivalent to min, 4, f(x). Then, we
would like to establish the complexity of the following decision problem:

Given a constant £ >0 Ix€ 4, : f(x) <&? 9)

We prove the result by providing a polynomial transformation of the max clique
decision problem: Given a graph G = (V,E) and a positive integer k < |V|, does
there exist a clique C in G with cardinality at least k? We define the following
instance of the decision problem (9). Let

S = 0 ifi=jor(i,j) €EE
i~ ) n* otherwise.

Moreover, let m = n and foreach k = 1, ... ,nlet A, = e;, where e, is the vector with
all components equal to 0, except the k-th one, which is equal to 1. Stated in another
way, the piece-wise linear part is max;_; _, ;. Flnally, let £ = —. We claim that the

minimum value of f over 4, is not larger than &= z Lif and only 1f G contains a clique
with cardinality k. The if part is very simple. Indeed, let us consider the feasible
solution x; = % if i € C, where C is a clique of cardinality &, and let x; = O other-
wise. Then, the value of f at this point is equal to % Indeed , the value of the quad-
ratic part is 0, while the value of the piece-wise linear part is % The proof of the only
if part is a bit more complicated. We would like to prove that, in case no clique with
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cardinality at least k exists, then the minimum value of f over the unit simplex is
larger than % Let us denote by x* the minimum of f over the unit simplex. Let

K = supp(x*) = {i : x] >0},

and let C be the maximum clique over the sub-graph induced by K, whose cardinal-
ity is at most k — 1. We first remark that if, for some i € K \ C, it holds that

1
*>_
Xz =,

1
x> — and
LT R . « ) T n
JEC : (i)EE

then the quadratic part contains the term

4 % *
n xl.</ 2 xj> >1,
ieC : (ij)¢E

which concludes the proof. Therefore, fori € K \ C we assume that either x < n% or
oL

X< (10)

JEC © (HEE

Now, let
. e 1
Klz{l :i€K\C and x 2—2}.
n

If3 k,,k, € K, and (k;, k,) & E, then n4lexz2 > 1, which concludes the proof. Then,

we assume that for each k|, k, € K|, (k;,k,) € E, i.e., K, itself is a clique. Now let us
consider the following subset of C

C,={ieC : (i,k) ¢ E for at least onek € K, }.

It must hold that |C,| > |K,|. Indeed, if |C,| < |K,], then (C\ C,) UK, is also a
clique with cardinality larger than C, which is not possible in view of the fact that C
has maximum cardinality. Then, in view of (10) we have that

1 .
x;“<n—2 VieC,

and, moreover, by definition of K, we also have
x; < lz Vie K\ (K, UQO).
n

Since |C;| > |K||, we have that

T={ieK : x’.‘zL},
i 2
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is such that |T| < |K||+|C\C|| L |C;|+|C\C,| =|C| £k—1. Thus, taking
into account that

1
i€K\T n
we must have that

ieT
and, consequently, taking into account that |7| < k — 1, for at least one index j € T
it must hold that

1 —
x>
i

I =

>
k —

—_

b}

| —

so that the piece-wise linear part of fis larger than %, which concludes the proof.
B Detailed numerical results

See Tables 5, 6, and 7
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Table6 Complete results for
B&T over random instances
of problems with dimension
n = 50, a ranging between 0.3
and 0.9, and tolerance 103

@ Springer

a nn #LPs Time GAP%
0.3 11 5283 11.14 0.00
0.3 29 17606 20.63 0.00
0.3 11 5754 7.05 0.00
0.3 277 195089 234.67 0.00
0.3 205 101779 112.15 0.00
0.3 65 25861 27.90 0.00
0.3 87 62146 72.52 0.00
0.3 73 55425 64.15 0.00
0.3 139 92675 106.65 0.00
0.3 15 9332 10.39 0.00
0.4 11 6040 7.36 0.00
0.4 119 56925 63.32 0.00
0.4 105 53535 58.64 0.00
0.4 887 515650 595.72 0.00
0.4 1099 538834 600.37 0.22
0.4 13 6142 7.19 0.00
0.4 507 230814 253.32 0.00
0.4 545 289835 326.33 0.00
0.4 621 353526 393.11 0.00
0.4 11 5540 6.73 0.00
0.5 41 24084 27.46 0.00
0.5 21 10952 12.89 0.00
0.5 113 51903 57.15 0.00
0.5 299 119675 130.64 0.00
0.5 167 76745 83.22 0.00
0.5 5 3415 4.62 0.00
0.5 707 281019 300.12 0.00
0.5 327 123507 133.36 0.00
0.5 581 234135 255.79 0.00
0.5 41 24998 26.62 0.00
0.6 51 22901 24.94 0.00
0.6 11 4304 6.19 0.00
0.6 53 21124 23.88 0.00
0.6 189 78217 82.27 0.00
0.6 99 31888 33.13 0.00
0.6 33 13745 16.54 0.00
0.6 51 20718 23.38 0.00
0.6 39 9034 9.63 0.00
0.6 127 45572 49.18 0.00
0.6 51 16170 18.91 0.00
0.7 35 8701 10.04 0.00
0.7 9 3406 4.98 0.00
0.7 41 10444 11.07 0.00
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Table 6 (continued) @ on #LPs Time GAPY%
0.7 487 115543 118.45 0.00
0.7 71 16075 15.33 0.00
0.7 31 6536 7.17 0.00
0.7 95 25500 28.54 0.00
0.7 23 3829 4.29 0.00
0.7 43 11448 12.20 0.00
0.7 67 18609 21.39 0.00
0.8 15 3754 423 0.00
0.8 19 3547 3.83 0.00
0.8 43 7331 7.22 0.00
0.8 29 7413 8.12 0.00
0.8 99 14061 12.50 0.00
0.8 21 4294 4.55 0.00
0.8 179 33030 34.59 0.00
0.8 39 6700 6.58 0.00
0.8 51 9861 9.96 0.00
0.8 95 15017 14.47 0.00
0.9 25 4767 5.08 0.00
0.9 47 5387 5.14 0.00
0.9 55 6550 6.15 0.00
0.9 5 1852 2.44 0.00
0.9 101 7792 6.83 0.00
0.9 49 5847 5.78 0.00
0.9 63 6949 6.74 0.00
0.9 63 5687 5.03 0.00
0.9 89 9347 8.75 0.00
0.9 91 8425 7.56 0.00
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