
Hybrid metaheuristics for selective inference task offloading
under time and energy constraints for real-time IoT sensing systems

Abdelkarim Ben Sada1 • Amar Khelloufi1 • Abdenacer Naouri1 • Huansheng Ning1 • Sahraoui Dhelim2

Received: 22 February 2024 / Revised: 13 May 2024 / Accepted: 17 May 2024
� The Author(s) 2024

Abstract
The recent widespread of AI-powered real-time applications necessitates the use of edge computing for inference task

offloading. Power constrained edge devices are required to balance between processing inference tasks locally or offload to

edge servers. This decision is determined according to the time constraint demanded by the real-time nature of applications,

and the energy constraint dictated by the device’s power budget. This problem is further exacerbated in the case of systems

leveraging multiple local inference models varying in size and accuracy. In this work, we tackle the problem of assigning

inference models to inference tasks either using local inference models or by offloading to edge servers under time and

energy constraints while maximizing the overall accuracy of the system. This problem is shown to be strongly NP-hard and

therefore, we propose a hybrid genetic algorithm (HGSTO) to solve this problem. We leverage the speed of simulated

annealing (SA) with the accuracy of genetic algorithms (GA) to develop a hybrid, fast and accurate algorithm compared

with classic GA, SA and Particle Swarm Optimization (PSO). Experiment results show that HGSTO achieved on-par or

higher accuracy than GA while resulting in significantly lower scheduling times compared to other schemes.

Keywords Selective sensing � Edge computing � Machine learning � Task offloading � Genetic algorithms

1 Introduction

In recent years, the proliferation of Internet of Things (IoT)

devices and the exponential growth of data generated at the

edge of networks have fueled the emergence of edge

computing as a promising paradigm for efficient data

processing and analysis. Edge computing leverages the

computational resources available at the network periph-

ery, closer to where data is generated, to provide low-la-

tency and high-throughput services for various

applications, ranging from real-time analytics to aug-

mented reality [1, 2].

Central to the efficacy of edge computing is the efficient

allocation of computational tasks among edge devices and

centralized servers, aiming to strike a balance between

resource utilization, latency reduction, and energy effi-

ciency. Particularly, in inference tasks, where predictive

models are deployed to analyze data and make real-time

decisions, the allocation of tasks to appropriate computa-

tional resources becomes crucial [3].

The landscape of artificial intelligence (AI) has wit-

nessed remarkable advancements, driven by breakthroughs

in AI training algorithms and the availability of powerful

hardware accelerators. As a result, the deployment of

multiple compact AI inference models at the edge has

become increasingly prevalent. These models, character-

ized by their small size and efficient computational foot-

print, offer significant advantages in terms of resource

utilization, latency reduction, and energy efficiency. By

leveraging techniques such as model distillation, quanti-

zation, and pruning, researchers have been able to create

highly optimized inference models that are well-suited for

deployment on resource-constrained edge devices [4].

Furthermore, the proliferation of specialized hardware

accelerators, such as GPUs, TPUs, and FPGAs, has further

accelerated this trend, enabling edge devices to perform

& Sahraoui Dhelim

sahraoui.dhelim@ucd.ie

1 School of Computer and Communication Engineering,

University of Science and Technology Beijing, Beijing,

China

2 School of Computer Science, University College Dublin,

Dublin, Ireland

123

https://doi.org/10.1007/s10586-024-04578-1(0123456789().,-volV)(0123456789().,- volV)

Cluster Computing (2024) 27:12965–12981

/ Published online: 19 June 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04578-1&domain=pdf
https://doi.org/10.1007/s10586-024-04578-1

complex AI inference tasks with unprecedented speed and

efficiency. As such, the availability of multiple compact AI

inference models at the edge presents a unique opportunity

to enhance the performance and scalability of edge com-

puting systems while catering to the diverse needs of

emerging edge applications [5–8].

In this paper, we address the challenging problem of

inference task scheduling and offloading in edge comput-

ing environments characterized by time and energy con-

straints. Specifically, we consider scenarios where edge

devices are equipped with multiple small-sized inference

models, each varying in accuracy and inference times (see

Fig. 1). The objective is to assign inference tasks to either

local edge models or centralized edge server models in a

manner that maximizes accuracy while adhering to strin-

gent time and energy constraints imposed by the applica-

tion domain.

The problem of inference task offloading under time and

energy constraints in edge computing is inherently com-

plex and challenging, with its computational complexity

exacerbated by the NP-hard nature of the problem. As a

combinatorial optimization problem, determining the

optimal allocation of inference models for inference tasks

between local models and edge server models involves

exploring a vast search space of possible task assignments

while simultaneously considering multiple conflicting

objectives, such as maximizing accuracy, while respecting

time and energy constraints. The NP-hardness of the

problem implies that finding an exact solution within a

reasonable amount of time becomes increasingly difficult

as the size of the problem instance grows, rendering tra-

ditional exact algorithms impractical for real-world

deployment [9].

The significance of solving this problem lies in its direct

impact on the performance, scalability, and cost-effec-

tiveness of edge computing systems across various appli-

cation domains. For instance, in healthcare applications,

such as remote patient monitoring and real-time diagnosis,

timely and accurate inference results are critical for

ensuring patient safety and well-being. Similarly, in

autonomous vehicles and smart transportation systems,

efficient inference task offloading can enhance decision-

making processes, leading to improved traffic manage-

ment, accident prevention, and passenger safety. Further-

more, in industrial IoT (IIoT) applications, such as

predictive maintenance and quality control, the ability to

offload inference tasks optimally can result in substantial

cost savings, productivity gains, and operational efficiency

improvements [10, 11].

In literature, we find a scarcity of research concerning

inference task scheduling and offloading under constraints

mainly due to the novelty of the problem at hand. The work

by [12] focuses on data selection based on the likelihood of

low inference accuracy to offload to an edge server under

an energy constraint. This work points in the direction of

the more general problem this paper is tackling. However,

they only take advantage of a single inference model along

with a single edge server which is a smaller special case of

the bigger problem. Additionally, the time dimension

which is important for real-time applications, is not

addressed. The work in [13] provides a broader coverage of

the problem at hand by leveraging the dynamicity offered

by deploying multiple inference models in the edge device

while respecting a time constraint. Their work however,

lacks the dimension of energy, which is important for

battery-powered edge devices. Furthermore, their system

only handles offloading to a single edge server. This leaves

a research gap, in which the broader problem needs to be

addressed where both time and energy dimensions are

respected while maximizing the accuracy of inference by

assigning inference models from a set of local and edge

server models to inference tasks.

In this paper, we propose a novel metaheuristic algo-

rithm for addressing the challenge of inference task

scheduling and offloading in edge computing environments

under time and energy constraints. Our primary objective is

to devise an efficient algorithm which offers decision-

making strategies that dynamically assign inference tasks

between local edge models and centralized edge server

models, aiming to maximize accuracy while respecting

real-time requirements and energy limitations. Through a

combination of theoretical analysis, algorithm design, and

empirical evaluations, we seek to provide a practical

solution that optimizes the allocation of computational

resources in edge computing systems, thereby advancing

the state-of-the-art in edge computing research and facili-

tating the development of intelligent and energy-efficient

edge applications.

The main contributions of this paper can be summarized

as follows:

Fig. 1 Inference model selection between local models and the edge

server

123

Cluster Computing (2024) 27:12965–1298112966

• We formulate the problem of inference model schedul-

ing and offloading in parallel under time and energy

constraints by providing an accuracy, inference time

and energy models and propose an optimization

problem.

• We propose HGSTO a hybrid genetic algorithm (GA)

leveraging the accuracy of GA and the speed of

Simulated Annealing (SA) which help accelerate the

evolution process and converge to the best solution in

fewer generations.

• We perform experiments and compare the performance

of HGSTO against GA, SA, and Particle Swarm

Optimization (PSO) where we prove the efficiency

and accuracy of HGSTO.

The rest of this paper is organized as follows. Section 2

presents the related works. In Sect. 3 we describe the

system model. In Sect. 4 we propose HGSTO and explain

the solution steps. In Sect. 5 we present the experiment

setup and results in addition to analysis of the obtained

results. Finally, we conclude this work in Sect. 6.

2 Related works

The problem of task offloading in edge computing has

garnered significant attention in recent literature due to its

crucial role in optimizing resource utilization and

enhancing system performance. Various approaches have

been proposed to address different aspects of task

offloading [14]. For instance, works such as [15–17] focus

on offloading decisions based on data characteristics and

network conditions, aiming to minimize latency and max-

imize throughput. Similarly, [18–20] explore task offload-

ing strategies considering energy consumption and device

capabilities, with a focus on energy-aware scheduling

algorithms. Other works, such as [21–23] targeted both

energy and latency as an objective where the aim to reduce

both latency and energy or strike a compromise between

them. These works however, are not suitable for real-time

applications where strict deadlines and energy budgets

must be met.

Few works have explicitly considered time and energy

constraints, either individually or in combination. For

instance, [24–26] propose a time-aware task offloading

framework that prioritizes tasks based on their deadlines

and dynamically allocates resources to meet real-time

requirements. Similarly, [27, 28] introduce an energy-

aware task offloading approach that optimizes energy

consumption by balancing workload distribution across

edge devices and servers. Furthermore, [29–31] investigate

the joint optimization of time and energy constraints in task

offloading decisions, employing mathematical modeling

techniques to formulate the problem as a multi-objective

optimization task. These works underscore the importance

of considering both time and energy constraints in task

offloading decisions, highlighting their interdependence

and the need for holistic optimization approaches in edge

computing environments.

Various methods have been employed to address the

task offloading problem in edge computing, reflecting the

diverse nature of the challenges involved. Traditional

optimization techniques, such as mixed linear program-

ming (MLP) [32, 33] and branch and bound [33], have

been utilized to formulate task allocation as a mathematical

optimization problem, enabling the derivation of exact or

near-optimal solutions under specific constraints. Addi-

tionally, machine learning approaches have gained promi-

nence for their ability to adaptively learn and optimize task

offloading decisions based on historical data and real-time

observations [34, 35]. Furthermore, metaheuristic algo-

rithms, including genetic algorithms, simulated annealing,

and particle swarm optimization, have been applied to

tackle the NP-hard nature of the task offloading problem by

efficiently exploring the solution space and identifying

high-quality solutions [36, 37]. Each of these methods

offers distinct advantages and trade-offs, depending on the

specific characteristics of the problem instance and the

requirements of the edge computing environment.

The only two works in the literature that try to improve

the inference accuracy of an edge computing system

through offloading to edge servers, are the work by [12],

where the authors propose a data selection scheme for IoT

devices in which an edge device can decide to offload data

that would likely lead to inaccurate inference if processed

locally and thus improving the overall accuracy of the

whole system. Their data scheme performs the selection

under a given energy constraint. The proposed

scheme shows promising results, however, it does not

consider the time constraint and thus renders it unsuit-

able for real time applications. In addition, their

scheme only considers a single inference model in the edge

device which does not offer many options in terms of

maximizing accuracy. On the other hand, the authors of

[13] studied the inference task offloading under a time

constraint in a system where edge devices are equipped

with multiple inference models varying in size and accu-

racy in addition to an edge server. Their system leverages

the fact that they have two parallel machines namely the

edge device and the edge server. They proposed AMR2, a

scheduling scheme based on LP-Relaxation and rounding

which considers all possible cases of scheduling two tasks

between the edge device and the edge server. They relax

the problem’s constraint to take fractional values and then

perform rounding to get the result. In the edge device they

123

Cluster Computing (2024) 27:12965–12981 12967

use dynamic programming to schedule the tasks. Their

proposed scheme performed better than the greedy

approach. However, their system does not take into con-

sideration the energy constraint of the edge device.

Although, using the edge device’s onboard inference

models along with offloading tasks to the edge server can

reduce the total inference time of the system, in the case of

battery-powered edge devices, it costs a significant amount

of valuable energy. These works leave a research oppor-

tunity for the more general and practical problem of con-

sidering both time and energy constraints while leveraging

the dynamicity of having multiple local inference models

in addition to multiple edge servers. This problem is sig-

nificantly more challenging however it better represents

real-world applications.

As far as we know, no other work has considered the

problem of inference task offloading to maximize the

accuracy under both time and energy constraints. There-

fore, this work is designed to fill this research gap by

providing a practical solution to this problem.

3 System model

Considering a system (see Fig. 2) where each edge

device is equipped with a set of local inference models

denoted as L ¼ f1; . . .; Lg. Every edge node is connected

to a set of edge servers E each equipped with a single

inference model. The set of server inference models is

denoted as S ¼ f1; . . .; Sg. An edge node have access to a

set of inference models M ¼ f1; . . .;Mg ¼ S
S
L con-

sisting of both S and L. At each time slot the edge node

receives a set of inference tasks denoted as J ¼ f1; . . .; Jg.

3.1 Inference accuracy

The inference models deployed in edge nodes can be a

single tunnable model where adjusting the input hyperpa-

rameters changes the accuracy and inference times.

Another option is to deploy multiple instances of a similar

type models with different internal structures such as layer

sizes in the case of Deep Neural Networks (DNNs).

Alternatively, different types of models varying in size and

top-1 average accuracy also can be used. Since the real top-

1 accuracy of each model for a given inference task is not

known prior to performing the inference we use the aver-

age accuracy estimated over historical measured top-1

accuracy. The average top-1 accuracy of model i is denoted

as Ai where i 2 M. The average top-1 accuracy of edge

server models is set to be significantly higher than edge

device local inference models.

Aj [Ai 8i 2 L; j 2 S

3.2 Time delay model

Similar to the estimated average accuracy we estimate

average inference time for each model i denoted as T inf
i

where i 2 M obtained by averaging historical measured

inference times. Data preporcessing time is considered to

be part of T inf
i .

Let T lat
i be the average communication latency of edge

server i which can be estimated from historical measured

data and is continuously updated after every transmission.

We define Toff
ij to be the estimated time to offload task

j where i 2 J to edge server i. Toff
ij can be estimated

from the connection bandwidth and the size of task j

denoted as sizej. T
off
ij is given by:

Toff
ij ¼ sizej

bi
þ T lat

i

where bi is the bandwidth of the communication channel

between the edge device and edge server i. The value of bi
can be measured and updated regularly by probing the edge

server.

We define T task
ij as the total time it takes to process task j

using model i including inference and offloading times.

T task
ij ¼ T inf

i 8i 2 L j 2 J

T task
ij ¼ T inf

i þ Toff
ij þ T resp

i 8i 2 S j 2 J

where T resp
i represents the average response time from edge

server i given by:

T resp
i ¼ sizer

bi
þ T lat

i

Fig. 2 HGSTO system model (Color figure online)

123

Cluster Computing (2024) 27:12965–1298112968

where sizer is a constant representing the response size.

Let xij ¼ f0; 1g be a variable representing whether an

inference model i is assigned to inference task j. We define

T slot
k as the total time to process a complete time slot k 2 D.

Since the local inference and offloading are performed in

parallel, we define T slot
k as the max between the total local

inference time denoted as T local
k and the total server time

which includes offloading, inference and response times of

all offloaded tasks denoted as Tserver
k .

T slot
k ¼ maxðT local

k ; Tserver
k Þ 8k 2 D

where

T local
k ¼

XL

i¼1

XJ

j¼1

xijtij

T server
k is calculated using Algorithm 1.

Algorithm 1 Steps to calculate T server
k

T server
i is the total offload, inference and response times

for all tasks offloaded to edge server with model i.

Toff accu is a variable to accumulate and track offload

times for all edge servers. T inf accui is a variable that

accumulates and tracks inference times for each edge ser-

ver with model i.

The edge devices including normal edge nodes and edge

servers, are assumed to have two queues as depicted in

Fig. 3, one for performing computation and another for

communication. This allows for parallel inference and

offloading or receiving. In Fig. 4, we show an example of a

schedule for 10 inference tasks where 4 tasks are processed

using local inference models and 6 are offloaded to 3 dif-

ferent edge servers. At t1 we have:

Toff accu ¼ Toff
1;1

T inf accu1 ¼ maxðT inf accu1; T
off accuÞ þ T inf

1;1

T inf accu1 ¼ Toff accuþ T inf
1;1 ¼ Toff

1;1 þ T inf
1;1

T server
1 ¼ maxðT server

1 ; T inf accu1Þ þ T resp
1

T server
1 ¼ T inf accu1 þ T resp

1;1 ¼ Toff
1;1 þ T inf

1;1 þ T resp
1;1

Following the steps in Algorithm 1 on the example shown

in Fig. 4, we find T server
i values shown in Table 2. The value

of T server is taken as the maximum value of all edge server

total times. Finally, the total slot time Tslot is found by

taking the larger value between total time of local inference

T local and Tserver.

Table 1 Symbols and notations

Notation Description

L The set of edge device local inference models

E The set of available edge servers

S The set of edge server inference models

M The set of all inference models available to the edge

device

J The set of inference tasks for each time slot

Ai The average top-1 accuracy of model i

T inf
i

The Average inference time of model i

T lat
i

The average communication latency for edge server i

Toff
ij

The estimated time to offload task j to the edge server i

sizej The size of task j

bi The bandwidth of the communication channel for edge

server i

T task
ij

The total time it takes to process task j using model i

T
resp
i The average response time from edge server i

xij Represents whether an inference model i is assigned to

task j

Tslot
k

The total time to process a complete time slot k

T local
k

The total local inference time

Tserver
k The total server time for time slot k

Toff accu Offloading time accumulator

T inf accu Inference time accumulator

Eoff
i j The energy cost of offloading task j to edge server i

ci The average energy cost of transmitting data to edge

server i

E
resp
i The energy cost of the inference response

Einf
i

The average energy cost of inference using model i

Etask
i j The total energy cost of processing task j using model i

Aslot
k

The total accuracy for time slot k

Eslot
k

The total energy for time slot k

P Population of solutions

s solution or schedule

f Fitness function

N Number of past generations to check for termination

condition

paccept Acceptance probability

l Mutation probability

c Mutation probability fading parameter

u Number of elite individuals passed to next generation

e Minimum fitness gradient to consider termination

condition

w Tournament selection size

123

Cluster Computing (2024) 27:12965–12981 12969

T server ¼ maxðT server
1 ; T server

2 ; T server
3 Þ ¼ T server

2

T slot ¼ maxðT local; Tserver
2 Þ ¼ Tserver

2

3.3 Inference energy

Let Eoff
ij be the energy cost of offloading task j to edge

server i. Eoff
ij depends on the offload time Toff

ij and ci the

average energy cost of transmitting data to edge server i in

one time unit. ci depends on several factors, including the

communication medium such as Wi-Fi, Cellular, Blue-

tooth, or Zigbee, affects energy consumption. Each med-

ium has different power requirements, data rates, and

transmission ranges, which influence the overall energy

cost. The energy consumption of a wireless device is sig-

nificantly influenced by its transmission power level.

Typically, higher transmit power levels lead to increased

energy usage, particularly when maintaining communica-

tion over longer distances or in challenging environments

with obstacles or interference. Additionally, the power

consumed by the device while idle or in standby mode adds

to the overall energy cost. Furthermore, signal strength and

quality play crucial roles in determining energy consump-

tion, particularly in systems where transmission power

adapts based on signal conditions. In scenarios where

reliable communication is essential, such as environments

with weak or noisy signals, higher power levels may be

necessary, resulting in heightened energy consumption.

Moreover, environmental factors like interference, obsta-

cles, and electromagnetic noise can further impact energy

consumption by influencing signal propagation and recep-

tion quality. Various common optimization techniques are

must also be taken into consideration such as data com-

pression, packet aggregation, adaptive modulation, and

power control algorithms To mitigate energy consumption

during wireless communication which significantly impact

energy consumption.

We assume that ci can be calculated internally by

monitoring battery usage and the network adapter’s con-

figurations such as the transmission power. By averaging

these measured power usage metrics we can estimate ci.

Eoff
ij is given by:

Eoff
ij ¼

Toff
ij

ci

Similarly, the energy cost of the inference response deno-

ted by E
resp
i is given by:

E
resp
i ¼ T resp

i

ci

Let Einf
i be the average energy cost of performing the

inference of an inference task using model i. The inference

energy cost is negligible compared to the offloading energy

cost. Therefore it is defined as a constant which can be

estimated using the inference time and the maximum

power consumption of the edge device’s CPU in the worst

case under full load. Let Etask
ij be the total energy cost of

processing task j using model i given by:

Etask
ij ¼ Einf

i 8i 2 L j 2 J

Etask
ij ¼ Einf

i þ Eoff
ij þ Eresp

i 8i 2 S j 2 J

Finally, we define Eslot
k as the total energy consumption for

slot k given by:

Eslot
k ¼

XM

i¼1

XJ

j¼1

xijE
task
ij

3.4 Problem formulation

In this section, we model the inference models allocation

for inference tasks under time and energy constraints while

maximizing accuracy as a single objective optimization

problem. The optimization problem is formulated as

follows:

Maximize Aslot
k ¼

XM

i¼1

XJ

j¼1

xijAi ð1Þ

Where Aslot
k is the total accuracy for a time slot k. Let Eslot

k

be the total energy consumption of slot k. Given E and T as

the energy and time constraints respectively, Eq. (1) is

subject to:

T slot
k � T 8k 2 D ð2Þ

Eslot
k �E 8k 2 D ð3Þ

XM

i¼1

xij ¼ 1 8j 2 J ð4Þ

Using Eq. (2) we guarantee each parallel processing time

of each slot is respecting the time constraint. Similarly,
Fig. 3 Edge device model

123

Cluster Computing (2024) 27:12965–1298112970

Eq. (3) ensures energy consumption for a time slot respects

the given energy constraint. Finally, Eq. (4) guarantees

each inference task is assigned an inference model which

produces a complete solution.

This problem could be thought of as an instance of the

well known classic knapsack problem (KP). In which, we

are trying to fill our schedule (i.e. a knapsack) with infer-

ence models (i.e. pieces) to maximize the accuracy (i.e.

profit) while respecting time and energy constraints (i.e.

knapsack weight and volume capacities). In this case, the

pieces and the knapsack have 2-dimensions and therefore

this problem is an instance of the multi-dimensional KP.

Additionally, inference models (i.e. pieces) can be reused

to construct a schedule therefore the problem becomes an

instance of the unbounded multi-dimensional KP

(UMdKP). However, since we are considering parallel

schedules where inference tasks can be processed locally

and in edge servers in parallel, which in UMdKP terms

means pieces can be overlapping in the weight dimension

(i.e. time) but not in the volume dimension which renders

this similarity useless. Alternatively, multiple knapsacks

can be considered for each edge server which makes this

problem an instance of the multi-knapsack problem

(MKP). However, the problem becomes much more

difficult to model specially when trying to uphold the time

constraint over all knapsacks.

4 A hybrid genetic algorithm for selective
inference task offloading (HGSTO)

In this section we propose a hybrid genetic algorithm for

selective task offloading (HGSTO) using genetic algo-

rithms (GA) and simulated annealing (SA). The rationale

for incorporating GAs into our methodology stems from

their inherent capability to efficiently explore complex,

multidimensional solution spaces, particularly in opti-

mization problems characterized by diverse and interre-

lated variables. Despite their effectiveness in traversing

vast search spaces, GAs are susceptible to convergence

towards local minima, potentially limiting the discovery of

globally optimal solutions. To mitigate this limitation, we

augment the GA framework with a simulated annealing

local search step. Simulated annealing, renowned for its

ability to escape local optima through probabilistic transi-

tions, offers a complementary mechanism to the deter-

ministic exploration of GAs. By incorporating SA as a

local search mechanism within the GA framework, we

enhance the algorithm’s ability to escape local minima

while accelerating the evolution process. This synergistic

combination harnesses the accuracy of GAs for multidi-

mensional problems while leveraging the speed and

robustness of SA to prevent premature convergence and

promote the discovery of high-quality solutions [38, 39].

The main steps of HGSTO are illustrated in Fig. 5.

Fig. 4 An example of a

schedule for 3 edge servers and

10 inference tasks (Color

figure online)

Table 2 Example values of T server
i for time steps 2–5

t2 T server
1 ¼ Toff

1;1 þ T inf
1;1 þ T inf

1;2 þ T resp
1;2

t3 T server
2 ¼ Toff

1;1 þ Toff
1;2 þ Toff

2;1 þ T inf
2;1 þ T

resp
2;1

t4 T server
2 ¼ Toff

1;1 þ Toff
1;2 þ Toff

2;1 þ T inf
2;1 þ T

resp
2;1 þ T

resp
2;2

t5 T server
3 ¼ Toff

1;1 þ Toff
1;2 þ Toff

2;1 þ Toff
2;2 þ Toff

3;1 þ T inf
3;1 þ T resp

3;1

123

Cluster Computing (2024) 27:12965–12981 12971

4.1 Population initialization

Considering a population of solutions (i.e., schedules) P of

size P where each solution s is a vector of model indices

corresponding to each task given by s ¼ fi; 8i 2 Mg such

that jsj ¼ jJ j. The initial population can greatly impact the

speed of convergence of the genetic algorithm where

higher coverage of the solution space is critical to finding

the best solution. Furthermore, increasing the population

density in promising areas can also accelerate the conver-

gence of solutions. However, in this work our main goal is

to design a fast algorithm which renders complex initial-

ization schemes unsuitable options. We experimented with

multiple initialization schemes including the Latin hyper-

cube sampling and uniform random initialization and found

that these schemes only add runtime overhead while not

providing any improvements to either the accuracy or the

convergence speed of the genetic algorithm, therefore in

our solution we favor using a simple pseudo-random

numbers generator based on a modified version of Donald

E. Knuth’s subtractive random number generator algorithm

[40].

4.2 Fitness evaluation

The fitness function f of a solution sk for a time slot k is

calculated using T slot
k , Aslot

k and Eslot
k in addition to time and

energy constraints denoted as T and E respectively. We

define f ðskÞ as follows:

dT ¼ Tslot
k � T

T

dE ¼ Eslot
k � E

E

xT ¼
1 if ðdT\0Þ and ðjdEj � dminÞ

1� jdT j otherwise

�

ð5Þ

xE ¼
1 if ðdE\0Þ and ðjdT j � dminÞ

1� jdEj otherwise

�

ð6Þ

x ¼ 1

2
xT þ 1

2
xE ð7Þ

f ðskÞ ¼ xAslot
k ð8Þ

dT and dE represent the distance ratio of T slot
k and Eslot

k from

the given constraints T and E respectively. dmin is the

minimum distance ratio where we consider the constraint is

met. xT and xE are the time and energy penalties

respectively. The penalties are designed such that they

scale with the distance (either larger or smaller) from the

given constraints which forces the solution to minimize the

distance and thus take advantage of the given constraints

budget. However, in some cases we can face a limitation

from a single constraint in which Eqs. (5) and (6) ensure

that we do not force the solutions to maximize both con-

straints by dropping the penalty for the other constraint as

long as it is respected.

4.3 Termination condition

The termination condition of a GA is a critical stopping

criterion that determines when the optimization process

should stop. Common termination conditions include

reaching a specified number of max generations, achieving

a desired level of fitness improvement, or surpassing a

predefined computational budget. Choosing the appropriate

termination condition is crucial to the performance of

HGSTO. Therefore, we use a solution stagnation moni-

toring method to halt the evolution when the algorithm fails

to produce significantly improved solutions over a certain

number of generations, indicating that further iterations are

unlikely to yield substantial improvements. By monitoring

solution stagnation, the GA can dynamically adjust its

exploration-exploitation trade-off, allocating computa-

tional resources more efficiently towards promising regions

of the search space. This termination condition helps pre-

vent the algorithm from wasting computational resources

on unproductive iterations, thereby improving convergence

speed and solution quality. The fitness of the top-1 ranking

solution of each generation is compared against solutions

from the last N generations to determine whether there is

Fig. 5 HGSTO steps flow diagram

123

Cluster Computing (2024) 27:12965–1298112972

any significant improvement [41]. The termination condi-

tion steps are presented in Algorithm 2.

Algorithm 2 Termination condition

4.4 Neighborhood exploration

GAs are known to be susceptible to falling into local

minima due to their reliance on deterministic mechanisms

for solution exploration and exploitation. As GAs itera-

tively evolve a population of candidate solutions through

processes such as selection, crossover, and mutation, they

tend to converge towards regions of the search space that

offer locally optimal solutions. However, this deterministic

exploration can inadvertently lead to premature conver-

gence, trapping the algorithm in suboptimal solutions

known as local minima. To mitigate this limitation,

incorporating simulated annealing as a local search (i.e.,

neighborhood exploration) method offers a complementary

approach. SA introduces stochasticity into the optimization

process, allowing the algorithm to explore regions beyond

local optima with a certain probability, thereby escaping

local minima. By leveraging SA’s probabilistic transitions,

GAs can effectively navigate complex solution spaces,

balancing exploration and exploitation to promote the

discovery of globally optimal solutions. This synergistic

combination of GA and SA not only enhances the algo-

rithm’s robustness against local minima but also acceler-

ates convergence towards high-quality solutions in

challenging optimization problems [39].

Simulated annealing (SA) is an optimization technique

inspired by the physical process of annealing in metallurgy,

where a material is heated and then slowly cooled to reach

a low-energy state. In the context of optimization, SA

iteratively explores the solution space to find the optimal

solution by mimicking this annealing process. The steps of

simulated annealing are presented in Algorithm 4. It starts

by initializing the algorithm with an initial solution and

setting parameters such as the initial temperature t0 and

cooling rate cr. The initial temperature controls the level of

exploration in the early stages of the algorithm, while the

cooling rate determines how the temperature decreases

over iterations. At each iteration, we generate a neighbor-

ing solution snew by applying a perturbation to the current

solution as shown in Algorithm 3. This perturbation could

involve randomly modifying one or more components of

the solution, such as swapping two elements or perturbing

values within a certain range. snew is then evaluated and

compared against the current solution scurrent to determine

whether to accept it as the current solution if its fitness

value f ðsnewÞ is better than f ðscurrentÞ. Otherwise, if the

neighboring solution is worse, accept it with a probability

given by Eq. (9) which is based on the difference in

objective function values and the current temperature. The

temperature is then updated according to the cooling rate cr
which controls the rate at which the algorithm transitions

from exploration to exploitation, gradually reducing the

likelihood of accepting worse solutions as the algorithm

progresses [42].

Algorithm 3 SA get neighbor algorithm

Algorithm 4 SA algorithm

pacceptðeold; enew; tÞ ¼
1:0 if ðenew [eoldÞ

e
enew�eold

t otherwise

(

ð9Þ

4.5 Reproduction process

A crossover operator plays a crucial role in generating new

offspring solutions by combining information from two

parent solutions. One common approach is the uniform

crossover operator, where the offspring solution o is con-

structed by randomly selecting values from each parent

123

Cluster Computing (2024) 27:12965–12981 12973

solution with equal probability. In this process, for each

inference model index in the offspring solution, a random

choice is made between the corresponding values from the

two parents p1 and p2. This crossover mechanism promotes

diversity in the offspring population by recombining

genetic information from different parent solutions,

potentially leading to the discovery of novel and high-

quality solutions in the search space. The parents are

selected from the population using tournament selection,

where a number w of individuals, referred to as tournament

size, are randomly chosen from the population. These

individuals then compete against each other, and the one

with the highest fitness value is selected as a parent. This

process is repeated until the desired number of parents for

mating is reached. Tournament selection offers several

advantages, including simplicity of implementation, com-

putational efficiency, and robustness against premature

convergence. By allowing weaker individuals to participate

in the tournament, tournament selection maintains diversity

in the population, enabling the algorithm to explore a wider

range of solutions. Additionally, the tournament size

parameter allows for control over the selection pressure,

with larger tournaments favoring stronger individuals and

smaller tournaments promoting diversity.

The newly generated offspring undergo probabilistic

mutations to keep the population diverse and help nudge

solutions out of local minima. A mutation probability

parameter d is introduced to determine whether an off-

spring undergoes a mutation. A higher mutation probability

increases the chances of introducing more random changes,

which can be beneficial for exploration but may also dis-

rupt promising solutions. Conversely, a lower mutation

probability might lead to slower exploration but can help

preserve promising solutions. Using a fading parameter c to
reduce the mutation probability d over iterations, helps to

initially promote exploration with a higher mutation rate to

discover diverse regions of the solution space and gradu-

ally decrease it to allow for exploitation and refinement of

promising solutions.

Instead of applying random mutations to the offspring,

we use a hill climbing algorithm (see Algorithm 6) which

guarantees that the mutation is guiding the offspring

solutions out of any local minima towards the global

optimal solution. This helps further accelerate the evolu-

tion of solutions to converge in fewer iterations.

We employ an elitism mechanism to preserve the best

solutions from one generation to the next. In elitism, a

number u of the fittest individuals from the current gen-

eration are directly carried over to the next generation

without undergoing any genetic operations, such as cross-

over or mutation. This ensures that the best solutions found

so far are not lost during the evolution process which in

turn accelerates the evolution process.

Putting all steps together we provide HGSTO’s pseudo

code in Algorithm 5.

Algorithm 5 HGSTO algorithm

Algorithm 6 Hill climbing algorithm

4.6 Complexity analysis of HGSTO

Assuming the fitness function has a time complexity of

O(F) for a single solution, we can analyse the impact of

evaluating the fitness function on the overall time com-

plexity of the GA with SA as a local search by finding the

complexity of each algorithm separately. Let G be the

number of generations, P be the population size, J be

number of inference model indexes per solutions, which is

123

Cluster Computing (2024) 27:12965–1298112974

also the number of inference tasks per time slot, Q be the

number of iterations in SA, F be the time complexity of the

fitness function for a single solution.

Genetic algorithm operations: Selection, crossover, and

mutation: OðP� JÞ per generation. Fitness evaluation:

OðP� FÞ per generation. SA is performed once per gen-

eration with A iterations. Each iteration involves generating

a neighboring solution, evaluating its fitness, and accepting

or rejecting it based on a probabilistic criterion. Consid-

ering A iterations, the time complexity of SA per genera-

tion is approximately OðA� ðJ þ FÞÞ.
Combining the time complexities of genetic algorithm

operations and simulated annealing, the overall time

complexity of the GA with SA as a local search is

approximately OðG� ðP� F þ A� ðJ þ FÞÞÞ.
It is important to note that this is the time complexity of

the worst case scenario in which the termination criterion is

never used. In practice and in most cases, HGSTO con-

verges before reaching G generations.

5 Experimental results

In this section, we assess the performance of the proposed

HGSTO algorithm through testbed experiments. The fol-

lowing algorithms are examined as reference points.

First, Particle Swarm Optimization (PSO) is one of the

classic metaheuristics used in the literature for the MdKP

[43, 44], particularly renowned for its efficacy in exploring

high-dimensional and complex search spaces which makes

a it a suitable baseline method. PSO mimics the social

behavior of bird flocks or fish schools, where individuals,

known as particles, navigate the search space by iteratively

adjusting their positions based on their own experiences

and the collective knowledge of the swarm. This cooper-

ative search mechanism enables PSO to efficiently explore

diverse regions of the search space, adapt to dynamic

environments, and converge towards optimal solutions. By

comparing the performance of our proposed algorithm

against PSO, we can assess its effectiveness and competi-

tiveness in addressing the optimization problem at hand.

PSO in its original form is primarily designed for searching

continuous search spaces, where solutions are represented

by real-valued vectors. However, in our experiments, we

adapt PSO to effectively handle discrete search spaces by

using integer position vectors representing inference model

indexes. In addition, to integer velocity vectors where after

every update to the position vector we perform clipping on

the new values to make sure they stay in the permitted

range.

Second, simulated annealing (SA) has been used in the

literature for both task scheduling [45, 46] and the MdKP

[47, 48] and proven to be effective. Additionally, its

stochastic nature in which it uses a probabilistic acceptance

criterion that allows it to escape local optima and explore

diverse regions of the search space, making it particularly

well-suited for handling complex and multimodal opti-

mization problems and a compelling baseline choice.

Furthermore, since HGSTO uses SA as step to accelerate

convergence, it makes it important to see a direct com-

parison of HGSTO against the standalone SA. SA is

implemented similar to HGSTO following Algorithms 4

and 3.

Finally, we compare against the unmodified version of

GA to observe the improvements HGSTO provides on top

of GA. GA is implemented similar to HGSTO with no

additional modifications. All compared algorithms includ-

ing HGSTO use the same fitness function given in Eq. (8).

Parameters for all implemented algorithms are presented in

Table 4. The language used for implementing all algo-

rithms is Python version 3.12, in addition to PyTorch for

inference models. Parameters such as population size and

swarm size for HGSTO, GA and PSO have been set to the

minimum values that offer the highest performance, higher

values than these only increase execution times while

providing no improvement to performance.

We conduct a real-world case study where we use a

Raspberry Pi 5 as the edge device, which is equipped with

a quad-core Arm Cortex A76 processor @ 2.4GHz and

8GB of RAM. The edge device is connected to an access

point through WiFi (802.11ac) which has a set of edge

servers consisting of desktop computers connected by

Ethernet. In showcasing the efficacy of the proposed

algorithm for real-world scenarios, it is important to

highlight that, to mitigate potential traffic contention with

other devices, the experiments were carried out in an

environment devoid of concurrent devices competing for

network resources. In our experiments, we use power as a

constraint measured in watts instead of energy measured in

kWh for convenience.

The case study consists of an object detection applica-

tion using the ImageNet-Mini dataset [49] as a source of

data with 3923 images ranging in size from 10KB to

10MB. The edge device is assumed to receive 10 inference

tasks (i.e., images) per time slot. We deploy three light-

weight object classification models namely ResNet18 and

ResNet34 [50], in addition to ShuffleNetV2 [51] on the

edge device used for local inference. More inference

models have been considered such as AlexNet, GoogleNet,

MobileNetV2 and SqueezeNet1.1. However, these models

did not offer high enough accuracy to inference time ratios

(i.e., inefficient) compared to the chosen models which

resulted in algorithms never using them in any solutions

and thus, they were eliminated from the experiment. In the

edge servers we deploy ResNeXt101 [52] which is a larger

and more accurate model. During the deployment phase we

123

Cluster Computing (2024) 27:12965–12981 12975

run tests on these models to estimate the average inference

time and energy consumption of each inference model on

each machine (see Table 3).

5.1 Evaluation metrics

We employ four metrics to assess the performance of

HGSTO: scheduling time, accuracy, execution time, and

power consumption. Scheduling time, quantified in mil-

liseconds, denotes the duration required by the algorithm to

generate a schedule for a given time slot. This metric is

measured individually for each time slot and subsequently

averaged across all slots. Similarly, accuracy, execution

time, and power consumption determine the quality and

adherence of the schedules generated by the algorithm to

the prescribed constraints. Each schedule for every time

slot undergoes evaluation through inference utilizing the

designated inference models. Subsequently, these metrics

are aggregated across all time slots to yield a comprehen-

sive assessment across the dataset.

5.2 Performance under different number
of iterations

We initially assess the algorithms’ performance across

varying numbers of iterations from 10 to 500 iterations in

order to determine optimal values for subsequent experi-

ments and ensure fair comparisons. Figure 6 subplot 1,

illustrates the scheduling time trends for GA, PSO, and SA,

demonstrating a linear increase in scheduling time with

distinct slopes relative to the number of iterations. Notably,

while SA exhibits a slower increase, it is bound to surpass

HGSTO given enough iterations. In contrast, HGSTO

maintains a consistent scheduling time as a result of its

termination condition, which effectively halts the algo-

rithm when no improved solutions are discerned. In Sub-

plot 2, it is evident that HGSTO yields schedules with

comparable or superior average accuracy compared to GA,

despite the latter’s advantage of running for more itera-

tions. Conversely, SA demonstrates an enhancement in

accuracy as the number of iterations increases, resulting in

schedules with noticeable improvement. In Subplot 3, it

becomes apparent that all algorithms are well adhering to

the prescribed time constraint of 500 ms, except for SA in

which it is observed that with fewer than 200 iterations,

schedules consistently exceed the specified constraint,

surpassing the 500 ms threshold. However, as the number

of iterations surpasses 200, SA begins to generate sched-

ules that conform more closely to the prescribed constraint.

Finally, in subplot 4, both HGSTO and GA exhibit optimal

utilization of the given power constraint of 30w, leading to

superior average accuracy and reduced scheduling times

compared to SA and PSO. This superiority stems from

HGSTO and GA’s ability to discover high-quality solutions

that leverage extensive offloading, as opposed to solely

relying on local inference. Notably, HGSTO demonstrates

slightly higher power consumption than GA, yet it adheres

to the power constraint due to the aforementioned reason of

optimizing for superior solution quality.

5.3 Performance under different time
constraints

In Fig. 7, we analyse the performance of HGSTO under

varying time constraints from 200 to 500 ms while the

power constraint is set to 30 W. We note that HGSTO

exhibits a marginally higher scheduling time in comparison

to SA and GA, yet it delivers superior average accuracy

relative to PSO, GA, and SA. Subplot 3 indicates that all

methods under the specified parameters conform impec-

cably to the time constraint provided. Moreover, Subplot 4

highlights that HGSTO excels in identifying solutions that

maximize utilization of the designated power constraint

(i.e., 30 W), consequently yielding enhanced average

accuracy.

5.4 Performance under different power
constraints

In Fig. 8, we observe the performance of HGSTO while

varying the power constraint from 10 to 50 W with the time

constraint set to 500 ms. In Subplot 2, HGSTO demon-

strates superior accuracy compared to other algorithms.

Subplot 3 unveils a consistent behavior across all compared

algorithms: at 10 W, schedules are characterized by a 450

ms duration due to the power limitation, leading to reliance

Table 4 Algorithms parameters

Algorithm Parameter Value

HGSTO Mutation probablity l 0.25

Mutation fading c 0.90

Termination count N 10

Improvement threshold e 0.5

Population P 20

Generations G 20

Tournament size w 5

Hill climbing iterations H 10

Number of elites u 3

Annealing iterations 10

PSO Swarm size 50

Iterations 100

SA Initial temperature t0 1e3

Cooling rate cr 1e-1

Iterations 500

123

Cluster Computing (2024) 27:12965–1298112976

on local inference over offloading. However, at 15 W, there

is a notable reduction in average time to 350 ms, driven by

the optimization of solutions transitioning certain tasks

from inferior local inference to offloading onto the most

optimal edge server with minimal latency and maximal

accuracy. This shift exhausts the power budget of the edge

device, rendering it idle and unable to utilize the remaining

time. Beyond 15 W, a gradual rise in both average time and

accuracy ensues as the power budget expands, until it

reaches 30 W, where the edge device becomes time-con-

strained, rendering additional power futile in further

enhancing accuracy.

5.5 Performance under varying number of edge
servers

In Fig. 9, we present the results of experiments conducted

with varying numbers of available edge servers, ranging

from 1 to 10, while maintaining constant time and power

constraints at 500 ms and 30 W, respectively. In Subplot 2,

it is evident that HGSTO capitalizes on the increasing

number of edge servers by generating solutions that

leverage offloading, resulting in higher accuracy compared

to GA, SA, and PSO. Subplot 3 illustrates that GA, and

HGSTO provide solutions with the closest average times to

the given time constraints. However, HGSTO is noticeably

better with smaller distances between the average time and

the given time constraint. Subplot 4 shows that HGSTO is

finding solutions with similar power consumption to GA

until 5 edge servers, where HGSTO starts finding superior

solutions with higher average power as a result of its ability

to better search the solution space.

In our research, we employed the t-test as a pivotal

statistical method to ascertain the significance of our

findings regarding the performance of our proposed algo-

rithm, HGSTO, in comparison to GA, SA, and PSO.

Through extensive experimentation conducted over the

ImageNet-Mini dataset, iterated 100 times, we meticu-

lously evaluated the fitness and accuracy of solutions

produced by each algorithm. The resulting statistical

analysis, as depicted in Table 5, revealed that all calculated

p-values were below the conventional significance thresh-

old of 0.05. This compelling evidence underscores the

statistical significance of our results, affirming that the

superiority of HGSTO over its counterparts is not merely

coincidental but substantively rooted in the efficacy of our

proposed approach.

Table 3 Models average accuracies and inference times on the ImageNet-Mini dataset using our HW

Average accuracy (%) Average inference time (ms) Size (mb) Numberof parameters

ShuffleNetV2 [51] 66.15 19.44 5.3 1,366,792

ResNet18 [50] 72.01 28.07 44.7 11,689,512

ResNet34 [50] 76.79 42.45 83.3 21,797,672

ResNeXt101 [52] 87.05 – 319.3 83,455,272

Fig. 6 Performance comparison

under varying iteration numbers

with time constraint set to 500

ms and power constraint set to

30 W (Color figure online)

123

Cluster Computing (2024) 27:12965–12981 12977

6 Conclusion

In this work, we investigated the intricate problem of

selective inference task offloading in edge computing

environments constrained by both time and energy con-

siderations. Specifically, we delved into the decision-

making process at the edge devices, where they determine

whether to execute inference tasks locally using multiple

inference models or offload them to edge servers, aiming to

maximize overall accuracy. Demonstrated to be NP-Hard,

this problem necessitated the development of an efficient

solution approach. To address this challenge, we

introduced HGSTO, a hybrid metaheuristic algorithm that

amalgamates the accuracy and versatility of genetic algo-

rithms (GAs) with the stochasticity inherent in simulated

annealing (SA). By leveraging the strengths of both tech-

niques, HGSTO harnesses the evolutionary optimization

capabilities of GAs while integrating the adaptive search

mechanisms of SA, thereby providing a powerful tool for

navigating the complex solution space of selective infer-

ence task offloading. Through extensive experimentation

and evaluation on the ImageNet-Mini dataset, we demon-

strated the effectiveness of HGSTO in producing high-

quality solutions that optimize both accuracy and resource

utilization in edge computing environments.

Fig. 7 Performance comparison

under varying time constraints

with power constraint set to 30

W (Color figure online)

Fig. 8 Performance comparison

under varying power constraints

with time constraint set to 500

ms (Color figure online)

123

Cluster Computing (2024) 27:12965–1298112978

As a future work, we are considering enhancing HGSTO

by integrating deep reinforcement learning (DRL) agents

into its framework. By leveraging the capabilities of DRL,

HGSTO could potentially benefit from improved decision-

making processes and enhanced adaptability to dynamic

network environments.

Acknowledgements This article was funded by National Natural

Science Foundation of China 61872038.

Author contributions A.B. designed the proposed system. All authors

conducted and validated the comparison. All authors wrote the

manuscirpt.

Funding Open Access funding provided by the IReL Consortium.

Data availability No datasets were generated or analysed during the

current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge

computing: a survey. Future Gener. Comput. Syst. 97, 219–235
(2019)

2. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge

computing: a survey. IEEE Internet Things J. 5(1), 450–465

(2017)

3. Lin, H., Zeadally, S., Chen, Z., Labiod, H., Wang, L.: A survey

on computation offloading modeling for edge computing.

J. Netw. Comput. Appl. 169, 102781 (2020)

4. Khelloufi, A., Ning, H., Naouri, A., Sada, A.B., Qam-

mar,A., Khalil, A., Mao, L., Dhelim, S.: A multimodal latent-

features-based service recommendation system for the social

Internet of Things. IEEE Trans. Comput. Soc. Syst. 1–16 (2024).

[Online]. Available: https://ieeexplore.ieee.org/document/

10440644/

5. Singh, R., Gill, S.S.: Edge AI: a survey. Internet Things Cyber-

Phys. Syst. 3, 71–92 (2023)

6. Liu, D., Kong, H., Luo, X., Liu, W., Subramaniam, R.: Bringing

AI to edge: from deep learning’s perspective. Neurocomputing

485, 297–320 (2022)

7. Dhelim, S., Aung,N., Kechadi, M.T., Ning, H., Chen, L., Lakas,

A.: Trust2Vec: large-scale IoT trust management system based

on signed network embeddings. IEEE Internet Things J. 10(1),
553–562 (2023). [Online]. Available: https://ieeexplore.ieee.org/

document/9866814/

8. Aung, N., Dhelim, S., Chen, L., Lakas, A., Zhang, W., Ning,

H., Chaib, S., Kechadi, M.T.: VeSoNet: traffic-aware content

caching for vehicular social networks using deep reinforcement

Fig. 9 Performance comparison

under different number of

available edge servers with time

constraint set to 500 ms and

power constraint set to 30 W

(Color figure online)

Table 5 Statistical T-test p-value results of HGSTO compared to GA,

PSO and SA in terms of fitness and accuracy over 100 test runs

HGSTO against Fitness p-value Accuracy p-value

GA 3.96e�36 6.10e�3

PSO 7.13e�150 1.35e�31

SA 3.56e�208 2.87e�16

123

Cluster Computing (2024) 27:12965–12981 12979

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://ieeexplore.ieee.org/document/10440644/
https://ieeexplore.ieee.org/document/10440644/
https://ieeexplore.ieee.org/document/9866814/
https://ieeexplore.ieee.org/document/9866814/

learning. IEEE Trans. Intell. Transp. Syst. 24(8), 8638–8649

(2023). [Online]. Available: https://ieeexplore.ieee.org/docu

ment/10070376/

9. Xiao, H., Xu, C., Ma, Y., Yang, S., Zhong, L., Muntean, G.-M.:

Edge intelligence: a computational task offloading scheme for

dependent IoT application. IEEE Trans. Wirel. Commun. 21(9),
7222–7237 (2022)

10. Unhelkar, B., Joshi, S., Sharma, M., Prakash, S., Mani, A.K.,

Prasad, M.: Enhancing supply chain performance using RFID

technology and decision support systems in the industry 4.0—a

systematic literature review. Int. J. Inf. Manag. Data Insights 2(2),
100084 (2022)

11. Kaiwartya, O., Abdullah, A.H., Cao, Y., Lloret, J., Kumar, S.,

Shah, R.R., Prasad, M., Prakash, S.: Virtualization in wireless

sensor networks: fault tolerant embedding for internet of things.

IEEE Internet Things J. 5(2), 571–580 (2018)

12. Nikoloska, I., Zlatanov, N.: Data selection scheme for energy

efficient supervised learning at IoT nodes. IEEE Commun. Lett.

25(3), 859–863 (2020)

13. Fresa, A., Champati, J.P.: Offloading algorithms for maximizing

inference accuracy on edge device under a time constraint. arXiv

preprint arXiv:2112.11413 (2021)

14. Islam, A., Debnath, A., Ghose, M., Chakraborty, S.: A survey on

task offloading in multi-access edge computing. J. Syst. Archit.

118, 102225 (2021)

15. Yang, T., Chai, R., Zhang, L.: Latency optimization-based joint

task offloading and scheduling for multi-user MEC system. In:

29th Wireless and Optical Communications Conference

(WOCC). IEEE 2020, pp. 1–6 (2020)

16. Liu, C.-F., Bennis, M., Debbah, M., Poor, H.V.: Dynamic task

offloading and resource allocation for ultra-reliable low-latency

edge computing. IEEE Trans. Commun. 67(6), 4132–4150 (2019)
17. Zhang, H., Yang, Y., Huang, X., Fang, C., Zhang, P.: Ultra-low

latency multi-task offloading in mobile edge computing. IEEE

Access 9, 32569–32581 (2021)

18. Chen, X., Zhang, J., Lin, B., Chen, Z., Wolter, K., Min, G.:

Energy-efficient offloading for DNN-based smart IoT systems in

cloud-edge environments. IEEE Trans. Parallel Distrib. Syst.

33(3), 683–697 (2021)

19. Li, J., Dai, M., Su, Z.: Energy-aware task offloading in the

internet of things. IEEE Wirel. Commun. 27(5), 112–117 (2020)

20. Xu, Z., Zhao, L., Liang, W., Rana, O.F., Zhou, P., Xia, Q., Xu,

W., Wu, G.: Energy-aware inference offloading for DNN-driven

applications in mobile edge clouds. IEEE Trans. Parallel Distrib.

Syst. 32(4), 799–814 (2020)

21. Cozzolino, V., Tonetto, L., Mohan, N., Ding, A.Y., Ott, J.:

Nimbus: towards latency-energy efficient task offloading for AR

services. IEEE Trans. Cloud Comput. 11(2), 1530–1545 (2022).

https://doi.org/10.1109/TCC.2022.3146615

22. Abdenacer, N., Abdelkader, N.N., Qammar, A., Shi, F., Ning,

H., Dhelim, S.: Task offloading for smart glasses in healthcare:

enhancing detection of elevated body temperature. In: 2023 IEEE

International Conference on Smart Internet of Things (SmartIoT).

IEEE, pp. 243–250 (2023)

23. Younis, A., Tran, T.X., Pompili, D.: Energy-latency-aware task

offloading and approximate computing at the mobile edge. In:

2019 IEEE 16th International Conference on Mobile Ad Hoc and

Sensor Systems (MASS). IEEE, pp. 299–307 (2019)

24. Li, Z., Chang, V., Ge, J., Pan, L., Hu, H., Huang, B.: Energy-

aware task offloading with deadline constraint in mobile edge

computing. EURASIP J. Wirel. Commun. Netw. 2021, 1–24

(2021)

25. Tajallifar, M., Ebrahimi, S., Javan, M.R., Mokari, N., Chiar-

aviglio, L.: Energy-efficient task offloading under e2e latency

constraints. IEEE Trans. Commun. 70(3), 1711–1725 (2021)

26. Liu, K., Peng, J., Li, H., Zhang, X., Liu, W.: Multi-device task

offloading with time-constraints for energy efficiency in mobile

cloud computing. Future Gener. Comput. Syst. 64, 1–14 (2016)

27. Zhao, M., Yu, J.-J., Li, W.-T., Liu, D., Yao, S., Feng, W., She, C.,

Quek, T.Q.: Energy-aware task offloading and resource allocation

for time-sensitive services in mobile edge computing systems.

IEEE Trans. Veh. Technol. 70(10), 10925–10940 (2021)

28. Jiang, H., Dai, X., Xiao, Z., Iyengar, A.: Joint task offloading and

resource allocation for energy-constrained mobile edge comput-

ing. IEEE Trans. Mob. Comput. 22(7), 4000–4015 (2022)

29. Mohammad, U., Sorour, S., Hefeida, M.: Task allocation for

mobile federated and offloaded learning with energy and delay

constraints. In: 2020 IEEE International Conference on Com-

munications Workshops (ICC Workshops). IEEE, pp. 1–6 (2020)

30. Azizi, S., Othman, M., Khamfroush, H.: DECO: a deadline-aware

and energy-efficient algorithm for task offloading in mobile edge

computing. IEEE Syst. J. 17(1), 952–963 (2022)

31. Wang, Q., Guo, S., Liu, J., Yang, Y.: Energy-efficient compu-

tation offloading and resource allocation for delay-sensitive

mobile edge computing. Sustain. Comput. Inform. Syst. 21,
154–164 (2019)

32. Alameddine, H.A., Sharafeddine, S., Sebbah, S., Ayoubi, S., Assi,

C.: Dynamic task offloading and scheduling for low-latency IoT

services in multi-access edge computing. IEEE J. Sel. Areas

Commun. 37(3), 668–682 (2019)

33. Ni, W., Tian, H., Lyu, X., Fan, S.: Service-dependent task

offloading for multiuser mobile edge computing system. Electron.

Lett. 55(15), 839–841 (2019)

34. Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C., Fortino, G.:

Task offloading and resource allocation for mobile edge com-

puting by deep reinforcement learning based on SARSA. IEEE

Access 8, 54074–54084 (2020)

35. Huang, L., Feng, X., Zhang, C., Qian, L., Wu, Y.: Deep rein-

forcement learning-based joint task offloading and bandwidth

allocation for multi-user mobile edge computing. Digit. Com-

mun. Netw. 5(1), 10–17 (2019)

36. Li, Z., Zhu, Q.: Genetic algorithm-based optimization of

offloading and resource allocation in mobile-edge computing.

Information 11(2), 83 (2020)

37. Abbas, A., Raza, A., Aadil, F., Maqsood, M.: Meta-heuristic-

based offloading task optimization in mobile edge computing. Int.

J. Distrib. Sens. Netw. 17(6), 15501477211023020 (2021).

https://doi.org/10.1177/15501477211023021

38. Ezugwu, A.E., Pillay, V., Hirasen, D., Sivanarain, K., Govender,

M.: A comparative study of meta-heuristic optimization algo-

rithms for 0–1 knapsack problem: some initial results. IEEE

Access 7, 43979–44001 (2019)

39. Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Chapter 10—

metaheuristic algorithms: a comprehensive review. In: Sangaiah,

A.K., Sheng, M., Zhang, Z. (eds.) Computational Intelligence for

Multimedia Big Data on the Cloud with Engineering Applica-

tions, ser. Intelligent Data-Centric Systems, pp. 185–231. Aca-

demic Press, New York (2018)

40. Knuth, D.E.: The Art of Computer Programming: Seminumerical

Algorithms, vol. 2. Addison-Wesley Professional, Boston (2014)

41. Alhijawi, B., Awajan, A.: Genetic algorithms: theory, genetic

operators, solutions, and applications. Evol. Intell. 17(3),
1245–1256 (2023)

42. Delahaye, D., Chaimatanan, S., Mongeau, M.: Simulated

annealing: from basics to applications. In: Gendreau, M., Potvin,

J.-Y. (eds.) Handbook of Metaheuristics, pp. 1–35. Springer,

Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_1

43. Haddar, B., Khemakhem, M., Hanafi, S., Wilbaut, C.: A hybrid

quantum particle swarm optimization for the multidimensional

knapsack problem. Eng. Appl. Artif. Intell. 55, 1–13 (2016)

123

Cluster Computing (2024) 27:12965–1298112980

https://ieeexplore.ieee.org/document/10070376/
https://ieeexplore.ieee.org/document/10070376/
http://arxiv.org/abs/2112.11413
https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1177/15501477211023021
https://doi.org/10.1007/978-3-319-91086-4_1

44. Bansal, J.C., Deep, K.: A modified binary particle swarm opti-

mization for knapsack problems. Appl. Math. Comput. 218(22),
11042–11061 (2012)

45. Tanha, M., Hosseini Shirvani, M., Rahmani, A.M.: A hybrid

meta-heuristic task scheduling algorithm based on genetic and

thermodynamic simulated annealing algorithms in cloud com-

puting environments. Neural Comput. Appl. 33, 16951–16984
(2021)

46. Fanian, F., Bardsiri, V.K., Shokouhifar, M.: A new task

scheduling algorithm using firefly and simulated annealing

algorithms in cloud computing. Int. J. Adv. Comput. Sci. Appl.

9(2), 195–202 (2018)

47. Chen, Y., Hao, J.-K.: Memetic search for the generalized quad-

ratic multiple knapsack problem. IEEE Trans. Evol. Comput.

20(6), 908–923 (2016)

48. Kierkosz, I., Luczak, M.: A hybrid evolutionary algorithm for the

two-dimensional packing problem. CEJOR 22, 729–753 (2014)

49. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wier-

stra, D.: Matching networks for one shot learning. In: Lee, D.,

Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R.Advances in

Neural Information Processing Systems, vol. 29, Curran Associ-

ates, Inc. (2016)

50. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (2015)

51. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet v2: practical

guidelines for efficient CNN architecture design. In: Proceedings

of the European Conference on Computer Vision (ECCV) (2018)

52. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated

residual transformations for deep neural networks. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2017)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Abdelkarim Ben Sada Received

his BSc in Computer Science in

2014 from the University of

Djelfa Algeria, and his MSc

degree in 2016 majoring in

Networking and Distributed

Systems from the University of

Laghouat Algeria. He is cur-

rently pursuing his PhD degree

at the University of Science and

Technology Beijing China. His

research interests include Com-

puter Vision, Machine Learning

and Internet of Things.

Amar Khelloufi Received the

B.S. degree (Hons.) in computer

science from the Faculty of

Sciences and Technology, Ziane

Achour University of Djelfa,

Djelfa, Algeria, in 2012, and the

M.S. degree in distributed

information systems from the

Faculty of Sciences, University

of Boumerdès, Boumerdès,

Algeria, in 2014. He is currently

pursuing the Ph.D. degree with

the School of Computer and

Communication Engineering,

University of Science and

Technology Beijing, Beijing, China. His current research focuses on

Internet of Things, blockchain applications, edge computing, and

distributed systems.

Abdenacer Naouri He is cur-

rently a Ph.D. candidate at the

University of Science and

Technology Beijing China,

Beijing, China. He received his

B.S. degree in computer science

from the University of Djelfa

Algeria, in 2011, and the M.Sc.

degree in networking and dis-

tributed systems from the

University of Laghouat Algeria,

Laghouat, Algeria, in 2016. His

current research interests

include Cloud computing, Smart

communication, machine learn-

ing, Internet of vehicles and Internet of Things.

Huansheng Ning Received his

B.S. degree from Anhui

University in 1996 and his

Ph.D. degree from Beihang

University in 2001. Now, he is a

professor and vice dean of the

School of Computer and Com-

munication Engineering,

University of Science and

Technology Beijing, China. His

current research focuses on the

Internet of Things and general

cyberspace. He has presided

many research projects includ-

ing Natural Science Foundation

of China, National High Technology Research and Development

Program of China (863 Project). He has published more than 150

journal/conference papers, and authored 5 books. He serves as an

associate editor of IEEE Systems Journal (2013-Now), IEEE Internet

of Things Journal (2014-2018), and as steering committee member of

IEEE Internet of Things Journal (2016-Now).

123

Cluster Computing (2024) 27:12965–12981 12981

	Hybrid metaheuristics for selective inference task offloading under time and energy constraints for real-time IoT sensing systems
	Abstract
	Introduction
	Related works
	System model
	Inference accuracy
	Time delay model
	Inference energy
	Problem formulation

	A hybrid genetic algorithm for selective inference task offloading (HGSTO)
	Population initialization
	Fitness evaluation
	Termination condition
	Neighborhood exploration
	Reproduction process
	Complexity analysis of HGSTO

	Experimental results
	Evaluation metrics
	Performance under different number of iterations
	Performance under different time constraints
	Performance under different power constraints
	Performance under varying number of edge servers

	Conclusion
	Author contributions
	Data availability
	References

