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Abstract
Drivers’ improper driving behavior plays a vital role in road accidents. Different approaches have been proposed to classify
and evaluate driving performance to ensure road safety. However, most of the techniques are based on neural networks which
work like a black box and make the logical reasoning behind the classification decision unclear. In this paper, we propose a
rule-based machine learning technique using a sequential covering algorithm to classify the driving maneuvers from time-
series data. In the sequential covering algorithm, the impact of each rule is measured as the metrics of coverage and accuracy,
where the coverage and accuracy indicate the amount of covered and correctly identified instances in a maneuver class,
respectively. The final ruleset for each maneuver class is formed with only the significant rules. In this way, the rules are
learned in an unsupervised manner and only the best performance of the rules are included in the ruleset. The set of rules
is also optimized by pruning based on the performance of the test data. Application of the proposed system is beneficial
compared to the traditional machine learning and deep learning approaches which typically require a larger dataset and
higher computational time and complexity.

Keywords Rule-based machine learning · Driving maneuver · Driving behavior classification · Sequential covering ·
Rule learning · Explainable AI · Interpretable machine learning

1 Introduction

With the immense technological advancements in the field
of automobile, companies are developing vehicles with
increased efficiency and performance. However, traffic
safety could not be ensured entirely yet. Drivers’ aggressive
driving behavior is one of the main reasons for road
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accidents [1, 2]. A predictive driving assistant system
serves to notify about aggressive driving behavior. So,
the classification of aggressive and non-aggressive driving
maneuvers is important. A good number of research studies
have been conducted to classify drivers’ behavior in the
last several years. Among those, fuzzy inference, machine
learning (ML), and deep learning (DL) approach [3]-[7] are
the most commonly proposed methods by other researchers.

Typically, the fuzzy inference systems [8–10] calculate
scores and notify about the dangerous events. However,
these systems have some limitations. A particular dangerous
event is very circumstantial and can take place for many
reasons. A driver can perform an aggressive maneuver from
a positive intention too; for instance, saving a passer-by
from hitting. If a system takes an instant decision about
the drivers’ driving behavior and notifies, it should not
be considered drivers’ unintentional driving behavior just
based on this single observation. For this reason, data
science is concerned about the analysis of drivers’ driving
maneuver time-series data to understand their regular
driving practice before reaching out to a decision. Thus, it is
important to gather a good amount of driving data over time
and analyze to know about someone’s driving behavior.
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Besides, with the availability of rich and larger datasets,
several approaches have become unclear due to the recent
highly influential data-driven deep neural techniques [11].
The challenges lie in the acceptance of the trusted output of
the predictive model to the end-user. It emphasizes the sig-
nificance of research to ensure the clarity of the output of the
predictive deep learning models. Besides, the performances
of the deep learning models are highly dependent on the tun-
ing of the hyperparameters and sufficient training, however,
optimizing the hyperparameters is a crucial but challenging
and time-consuming task. It also requires high performance
computing system to implement.

Although Artificial Neural Networks (ANN) [12] or
Random Forests (RF) [13] are popular due to their
high predictive performance, this scenario is changing as
the attention towards explainability, interpretability, and
understandability of machine learning models are increasing
[14, 15]. Rule-Based Machine Learning (RBML) models
promote understanding along with logically exploring
the reasons behind decision making and predictions in
comparison to other black box type techniques [16, 17].
RBML requires less dataset and less time to process the
dataset in comparison to the ML and DL. RBML aims to
express the knowledge base in the form of the IF-THEN
rule; hence, it can be trustworthily used for data analysis
tasks in machine learning and data mining [16, 18]. Since
typically people express their knowledge in the form of
rules, domain experts extract significant input during the
learning process of historical data through rule learning
[19]. In prior studies, various rule learning approaches have
been explained [20, 21]. However, rule learning approaches
may be vary depending on the problem domain.

Therefore, the research question addressed in this paper
is - “How to develop an interpretable RBML model
to classify driving maneuvers from sensor fusion time
series data?”. To address this research question, we
develop a rule-based machine learning framework using
a sequential covering algorithm for the classification of
driving maneuvers from the sensor fusion time series
dataset.

The three main contributions made in this paper can be
summarized as the following:

– We develop a rule-based machine learning model for
the classification of driving maneuvers from time-series
data.

– We utilize an unsupervised sequential covering
approach for rule learning.

– We ensure the compactness of the learned ruleset
by pruning redundant and insignificant rules and
evaluating the performance of the learned rules.

The rest of the paper is organized as follows. The state-
of-the-art methods for driving maneuver classifications are

discussed in Section 2. The theoretical background of the
framework is discussed in Section 3. The methodology of
the proposed RBML techniques is discussed in Section 4.
Section 5 presents the and preparation of the dataset, exper-
imental results and analyses. Section 6 draws conclusions
with some future recommendations.

2 Literature review

Driving maneuver classification involves classifying various
types of maneuvers a driver typically performs while
driving, such as turning, passing, parking, and yielding to
others on the road. In the recent years, automatic driving
maneuver classification has received increasing attention
for detecting aggressive driving patterns on the road [22].
A good number of research studies on driving maneuver/
behavior classification have been published in the last
several years, which we discussed below.

Castignani et al. [8] developed an application that used
Fuzzy Inference in the form of IF-THEN rules to analyze
driving behavior and classify the behaviors into normal,
moderate, and aggressive that corresponds to a score
between 0 and 100. The authors used 18 IF-THEN rules
for this classification. The limitations of this work are that
the rules set have not been extensively evaluated using test
data and some other useful rules might have been missed.
Saiprasert et al. [9] proposed a driver’s profiling algorithm,
which considered road condition and Safety Index (SI). The
four ranges of SI categorized driving behaviors into four
safety levels which include very safe, safe, aggressive, and
very aggressive. However, setting up the threshold values
for the SI is challenging in this research study.

Van Ly et al. [10] proposed a system to provide timely
feedback to drivers about aggressive driving maneuvers. To
develop individual driver’s profiles the authors collected
Controller Area Network (CAN) bus data from a vehicle
equipped with sensors and vision systems such as front
side radar and CAN signal of the vehicle. Finally, SVM
and K-mean clustering have been used for the driving
maneuver classification. Due to high availability the
authors utilize smartphones; however, the author utilized
inertial sensor data to capture lateral acceleration (left and
right), longitudinal acceleration (forward and backward)
acceleration, and yaw angular velocity. A ground truth label
has been associated with the data captured to train and
test the classifier model. The authors also considered 951
events data and labeled the data of the events based on some
threshold values. For example, starting of a braking event
was defined by the brake light indicator that turns from off
(0) to on (1). Similarly, the end of a braking event was
defined by the brake light indicator is 0 or when the vehicle
speed is 0. However, the manual process of the association
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of data labeling can be better done with a rule-based system
more efficiently.

Cervantes-Villanueva et al. [3] applied random forest
(RF), support vector machines (SVM), and fuzzy rule-
based classifier (FRC) to develop a speed-based breakout
detection agent for the classification of driving maneuvers
from accelerometer data. RF is a combination of decision
trees [13] that randomly selects a small group of input
features at each tree’s node. The authors have developed an
android application to read, store and label accelerometer
sensor measurements. While a person drove the subject
vehicle, another person used the application to label the
accelerometer sensor data. Time statistical features were
collected from a labeled dataset with 110200 timestamped.
However, the labeling process of the accelerometer data by
the smartphone application and the parameter settings for
the fuzzy rule-based classifiers are challenging, which have
not been explained well in this research study.

A multi-label supervised learning classification problem
has been modeled by Ferreira et al. [5] to identify the
best combination from 35 combinations of inertial sensors,
machine learning models, different parameters, and varying
sliding window frames to detect individual driving event
types from 69 events. Authors evaluated the quantitative
performance of four machine learning models- Multi-Layer
Perceptron (MLP), SVM, RF and Bayesian Networks in
the classification of driving maneuvers from smartphone
sensors, and found that the best result has been achieved by
the RF.

Carvalho et al. [4] investigated the performance of
three variants of Recurrent Neural Network (RNN) which
are RNN, Long Short Term Memory (LSTM), and
Gated Recurrent Unit (GRU) in order to classify seven
driving maneuvers using data collected by smartphone
accelerometer. The authors examined the performance of
the classifier with a varying number of units in the hidden
layers; however, the other hyperparameters tuning such as
batch size, optimizer, learning rate, and dropout rate were
not explained well. Authors indicate that the SimpleRNN
and LSTM are more susceptible to the number of hidden
units.

Alvarez-Coello et al. [6] considered the problem of
classifying driving style into aggressive or non-aggressive
as a binary classification problem and applied RF in a time
window. This method also applied RNN for classifying
seven driving maneuvers. In this study, statistical features
(e.g., mean, median, standard deviation, and trend) are
extracted with varying window size (e.g., 2, 4,. . . , 10)
to use with the RF classifier while the RNN was used
with varying hyperparameters settings, such as the number
of hidden layers, recurrent units, optimizer, and dropout.
However, the authors concluded that the collection of
sample data for aggressive driving is time-consuming and

heavily dependent on some other external factors (e.g.,
dedicated track, qualified drivers, and correct labeling).

Wang et al. [23] proposed a semi-supervised support
vector machine (S3VM) approach to classify aggressive
and non-aggressive driving styles. In order to label a
few data instances, the authors used rule-based k-means
clustering. For optimization, a differentiable surrogate of a
loss function was proposed, quasi-Newton algorithm was
used to assign a label. The authors manually set certain
thresholds for some of the features, such as vehicle speed
and the throttle opening, in a simulated dataset.

Mammeri et al. [24] proposed a coarse thresholding
technique to label some CAN bus data, removed labeling
error and trained a simple Convolutional Neural Network
(CNN) to classify ten driving maneuvers which are stop,
move, acceleration, deceleration, constant speed, left/right
turning, left/right curving, and constant direction.

Martinelli et al. [25] proposed a supervised approach
based on the nearest neighbor classifier and a set of rules
that differentiate between an actual owner and a fake owner
of a vehicle data. In this study, six features were extracted
from on board diagnostic (OBD) [26] data which include
the amount of CO2, percentage of the engine load, angular
rotation of engine, fuel flow rate, amount of fuel remaining,
turbo boost and vacuum gauge. Analyzing the extracted
features set, this method differentiated aggressive and non-
aggressive driving behavior to identify the actual owner and
fake owner. However, a major limitation of this study is that
an actual owner can also have aggressive driving behavior.
Moreover, the vehicle might have more than one user and
each user might have different driving patterns.

Sarker et al. [7] discussed the significance of domain-
specific features and proposed a supervised learning
approach using LSTM model. The model was trained with
both domain-specific features and statistical features and
found that the proposed model outperformed the other
supervised deep neural models. This work was extended
in [27] where a transfer learning approach had been used
that combined an unsupervised LSTM autoencoder with
a supervised model similar to [7]. The compressed latent
representation learning of the LSTM autoencoder was
transferred to train the LSTM model. This approach also
developed seven maneuver class functions that contain the
maneuvers’ time series changing patterns [28]. In another
work, Sarker et al. [29] proposed an algorithm for labeling
unlabeled driving maneuvers from sensor fusion time series
data. Similar to some other rule based models of [25, 45]
and [46], the rules were extracted from domain knowledge
of driving events. However, in this approach, the decision is
made based on a fixed ruleset. The time-series data patterns
described in [7] and [27] can be expressed as the IF-THEN
rule and can be used in RBML based driving maneuver
classification system as done in this research study.
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3 Theoretical background

Moving vehicle time series data changing rules and rule-
based machine learning techniques are two important
concepts of this study. We discussed these two concepts in
detail in the below subsections. We specifically elaborated
more on some important domain knowledge and its relation
with the time series data and various common driving
maneuvers. We interpret all the important symbols and their
definitions used throughout the paper in Table 1.

3.1 Moving vehicle time series data changing rules

ML and DL models can be used to classify the time series
data; however, the intermediate processing steps of these
models are unclear. On the other hand, the RBML model
learns rules from domain expert knowledge of a problem
area and expresses rules with logical reasoning. Hence,
understanding the underlying issues of a problem domain
is important while developing the RBML model. However,
classifying time series data in the form of rules is very
challenging.

When a vehicle in concern moves, the mounted sensors
capture the movement information as a form of time
series data. In this work, we consider accelerometer and

gyroscope data for the rule-based classification of seven
driving maneuvers. It is observed that when a vehicle
moves, the time series data maintains a specific pattern
for a particular driving maneuver [29]. Figure 1 shows the
non-aggressive range of all the maneuvers. The changing
pattern of the time series data during longitudinal, lateral
and angular movement of a vehicle is presented by ax , ay

and wz, respectively. The underlying rules are demonstrated
along with the maneuvers in Fig. 1. During non-aggressive
acceleration of the vehicle, the ax lies between 0 and 2 and
while in the non-aggressive braking, it lies between 0 and
−2. On the other hand, the left turn (LT), right turn (RT), left
lane change (LLC) and right lane change (RLC) maneuvers
are related to the lateral and angular changes of a motion.
Therefore, while performing LT and RT, ay increases more
than 1.5 and decreases more than −1.5, respectively. At the
same time, wz increases more than 0.4 and decreases more
than −0.4 for LT and RT, respectively. During LLC and
RLC, the amount of angular velocity is less than that of LT
and RT and lies between 0.2 and 0.4 for LLC and −0.2
and −0.4 for RLC. These patterns can be expressed using
some IF-THEN rules. Besides, statistical features of time
series data such as slope, energy, variance can improve the
accuracy of the rules. In this paper, the proposed approach
learns the rules and measure the performance of the rules

Table 1 Interpretation of
symbols Symbol Interpretation

−→
a Acceleration
−→w Angular velocity

ax , ay , az Accelerometer data in x, y and z axis

wx , wy , wz Gyroscope data in x, y and z axis

axslp
, ayslp

Slope of accelerometer in x and y axis

wzslp
Slope of gyroscope in z axis

axeng , ayeng Energy of x and y axis of accelerometer

wzeng Energy of z axis of gyroscope

T Sax Set of time series data from the ax

T Say Set of time series data from the ay

T Swz Set of time series data from the wz

Cnon Non-aggressive driving maneuver class

Cacl Aggressive Acceleration driving maneuver class

Cbrk Aggressive Brake driving maneuver class

Clt Aggressive LT driving maneuver class

Crt Aggressive RT driving maneuver class

Cllc Aggressive LLC driving maneuver class

Crlc Aggressive RLC driving maneuver class

R Ruleset

Cprior Class priority

Rprior Rule priority

A Set of attributes of time series
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Fig. 1 Illustration of time series
with simple rules

over the dataset. The pattern of LLC and RLC consists of
both LT-RT (RT after LT) and RT-LT (LT after RT) patterns.
So, the rules for LLC and RLC are a bit critical.

3.2 Rule basedmachine learning techniques

The automatic induction of rules for classification is
drawing attention in machine learning and data mining
decision support and decision-making applications [30].
Rule-based machine learning approaches learn and make
interpretable classification decisions based on some simple
but effective if-else rules. The characteristic of a rule-based
machine learning approach is the identification of a set of
rules that contain the knowledge base of a specific domain
and utilize the knowledge to predict or classify a new
data set of rules that have not been seen before by the
deployed system. There are various rule-based classification
techniques such as Zero-R [31], One-R [32], decision trees
[33], Ripper Down Rule Learner, Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) [31]. A
commonly used rule-based technique is the decision tree
where each branch of the tree corresponds to a rule and
based on the highest weighted rules, the dataset is repeatedly
split into the smallest portion.

Since, we are dealing with the classification of driving
maneuvers by analyzing time-series dataset, in this paper,
we focus on rule learning approaches from time-series
data. Time series data contains a collection of precise and
distinct values gained from subsequent calculations over
time. Time series rule mining intends to discover significant
patterns of sequential data holding quantitative temporal
values [20]. Earlier enormous studies of time series rule
discovery have been conducted to various problems such

as sales performance prediction in business [34], epidemic
detection in healthcare [35], tourist demand forecasting in
tourism [36], cattle movement analysis in agriculture [37],
climate prediction [38], and so on.

A symbolic aggregate approximation (SAX) and matrix
profile method are proposed by Schwarz [39] to classify
the time-series pattern of naturalistic driving data. Zhang
et al. [40], proposed an unsupervised approach to learn
salient time series subsequences by regularized least-
squares technique and spectral analysis to learn shapelets.
A shapelet similarity minimization has been applied to
disregard learning similar Shapelet and a descent algorithm
has been applied to get the label concurrently. Similarly, in
[41] a novel mathematical formulation has been proposed
for shapelet learning through an objective function and
a learning algorithm to learn optimal shapelets. Wang et
al. [42] proposed a shapelet mining technique where a
shapelet layer, a distance layer, and a softmin layer have
been used to learn parameters to determine incubation
period, trends of transmission, and predict the upcoming
new COVID-19 cases in geographically adjacent locations.
In [43] a combination of extreme learning machine and
decision rule has been proposed for ECG heart beat PQRST
time-series unsupervised clustering. The author calculated
Poffset and Tonset by applying Chan Slope method, Ponset
and Toffset by applying a combination of Chan method and
ecgpuwave software. In [44] a method has been proposed
to discover time series classification rules that are similar to
fuzzy rules and the situation where uncertainty associated
with motif has been also considered.

Mehtab et al. [45] proposed a rule-based machine
learning framework incorporating Adaboost with Decision
tree [33] for classifying benign and malicious behavior
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of the android applications. Jamian et al. [46] proposed
a classification method using Random Forest (RF) and
regression tree (CART) to categorize systemic sclerosis
patients from electronic health record databases. Vojı́ř et al.
[19] focused on rule-based machine learning models that
are interpretable and editable. They designed a web-based
rule editing software to generate an association rule list from
an uploaded dataset that is editable and users can evaluate
the predictive performance of the ruleset on a test dataset
through a scoring procedure to ensure the explainability of
the rule model. This work was an extension of EasyMiner
[47] that is a web-based machine learning system for
anomaly detection in Foreign Portfolio Investment (FPI)
and its variation. The system worked based on association
rule learning [48] and Classification Based on Association
Rules Algorithm (CBA) [49].

The prior research of time series pattern discovery
or classification techniques have utilized the temporal
features of time series for segmentation and to discover
significant patterns; however, have lack of interpretability
and explainability. On the other hand, in rule mining
research, rules were extracted not learned based on
the underlying domain. Hence, there is a possibility of
redundant and missing promising rules in the ruleset.
Moreover, a fixed ruleset may not perform as good on
the test dataset as in the training dataset. Therefore,
optimization of the ruleset needs to be focused on.

In this paper, we apply a sequential covering algorithm
which is an unsupervised rule-based machine learning
technique. It learns one attribute or rule at a time and
uncovers data points that are matched with the learned
one rule and remove those points from the sample dataset.
This process continues until all the data is classified. Each
new rule serves as a cover hypothesis [50]. Rather than
splitting the dataset like decision trees, a sequential covering
algorithm find the most promising rule one at a time, apply
to the dataset and remove the positive data points. This
procedure continues for the next promising rules. At a
point when the discovered rule is not much significant, the
process stops. Therefore, in this paper, we focused on unsu-
pervised non-redundant rule learning and optimization for
the classification of driving maneuvers from time-series data.

4Methodology

4.1 Definitions and notations

This section defines the major symbols and notions that
are used to describe the various concepts throughout the
paper concerning the rule-based machine learning method

to discover rules of individual driving maneuvers from
sensor fusion time series data.

At a time instance, t both the accelerometer and the
gyroscope sensor produces three time series data in x, y and
z axis. The set of time series data from the x and y-axis
of accelerometer sensor is T Sax = {ax1 , ax2 , . . . , axn} and
T Say = {ay1 , ay2, . . . , ayn}, respectively and the set of Time
Series data from the z-axis gyroscope sensor is defined as
T Swz = {wz1 , wz2 , . . . , wzn}. In these 3 time series data n

represents the total number of instances data captured by the
sensors.

Time series contains certain attributes and depending
on attributes, rules are learned. A set of attributes, A =
A1, A2, . . . , Aj where j is the number of attributes or
aspects of the time series data. Each time series data point
represents an individual maneuver class. The maneuver
classes are defined as, C = {Cnon, Cacl , Cbrk , Clt ,
CrtCllc, Crlc} where Cnon, Cacl , Cbrk , Clt , Crt , Cllc and
Crlc are non-aggressive, aggressive acceleration, aggressive
braking, aggressive LT, aggressive RT, aggressive LLC and
aggressive RLC, respectively.

A rule, R covers a set of data points at time, t if the
characteristics of the data points satisfy the condition of the
rule, R. Let, R = R0, R0 . . . , Rn is applied to the data points
of time series T Sax , T Say and T Swz . A rule that covers an
instance of a time series data for a particular maneuver class
is denoted as [Ri ⇒ Ci] where R is antecedent or the body
of the rule (i.e., condition) and C is consequent (i.e., driving
maneuver class).

Class priority, Cprior is presented as Cprior =
{1, 2, . . . cp} where 1 and cp represents the most and least
frequent class priority value.

Since we follow a rule based ordering, depending on
the quality of the rules an priority is associated to each
learned rule for maneuver classes and denoted by Rprior =
1, 2, . . . , rp where 1 and and rp represents the most and
least promising rule that can classify highest number of time
series data points.

The knowledge base is an essential element of a
knowledge-based system that holds the underlying facts
of a problem domain [16]. In a rule-based system,
the rules can be learned from the knowledge of the
domain. Therefore, as our problem domain deals with
time series data, therefore, during preprocessing temporal
features are extracted. Let the set of temporal feature
set, f = {mean(ax,ay,wz), var(ax ,ay ,wz), std(ax ,ay ,wz),
slp(ax ,ay ,wz), eng(ax ,ay ,wz), max(ax ,ay ,wz), min(ax ,ay ,wz)}

Hence, the proposed Rule Base Driving Maneu-
ver System classifies a time series data points t ∈
(T Sax , T Say , . . . T Swz) into a class Cm ∈ C where m is a
particular driving maneuver.
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4.2 Proposed rule based drivingmaneuver classifier

In this paper, we develop a rule-based machine learning
technique using a sequential covering algorithm. In
sequential covering algorithm, the learning approach can be
of two types: general to strategic and strategic to general.
Typically, in the general to strategic approach, the rules are
learned from the most frequent class to the least frequent
class. In the strategic to general approach, the rules are
learned from the least frequent class to the most frequent
class. We start with the most general hypothesis and then
go through the specialized steps. We conjunct attributes to
a rule to improve the performance of rules on the dataset.
For a particular class, multiple rules are learned by the
algorithm and a rule can be satisfied by the instances of
the other classes. Hence, there is a possibility of conflict
among classes. Considering this challenge, the rules can be
ordered in two ways: rule-based ordering and class-based
ordering. We use rule-based ordering for simplification of
the ruleset and class-based ordering for the avoidance of
conflicts among the classes.

In order to learn rules, the proposed algorithm consists
of four major modules which are class rule growing,
rule evaluation, instance elimination, and rule pruning. An
abstract view of the proposed rule-based driving maneuvers
classifier model is shown in Fig. 2. For each class, these
four modules continue to learn the rules until the stopping
criteria are met for a considering class.

The rule learning starts from the most frequent class.
For our dataset, the non-aggressive class is the most
frequent class and typically drivers do non-aggressive
maneuvers more frequently than the aggressive maneuvers.
We calculated the number of data instances in each class
and set priority for the classes from the most frequent to

less frequent. This rule learning process is called general-
to-strategic rule learning in RBML.

Class rule growing, rule evaluation, instance elimination,
and rule pruning need to be done for each class. However,
we discussed each of the steps only for the non-aggressive
maneuver class to avoid redundancy. Only the learned rule,
measured accuracy, coverage and gain will vary for the other
classes.

4.2.1 Rule growing

We use an unsupervised process for rule growing in rule
learning for each class. The pseudo code for rule learning
is presented in Algorithm 1. The input of the algorithm is a
set of time series data and a set of attributes, A. Initially, the
ruleset is initialized as an empty set, R = {∅} and over time
the new rules, Rj are learned and added to this set from the
attribute set. The new rules are added to the rule depending
on its performance on the dataset for the considering class.
For instance, a few simple attributes are observed in the
data change pattern of time series driving maneuvers and
demonstrated in Fig. 1. For non-aggressive class, as stated
earlier in this paper, the value of ax data increases upto
2 (i.e., ax ≤ 2) while non-aggressive acceleration and
decreases upto −2 (i.e., ax ≥ −2) during non-aggressive
braking, so these phenomena can be considered as two
individual simple rule for non-aggressive maneuver.

In Fig. 3, a general-to-strategic rule growing process is
shown where rule growing starts from the empty ruleset that
is indicated as the root node in the tree. Each simple single
rule is being applied to the dataset during the rule learning
process for non-aggressive class and either added to the
ruleset or discarded. Sometimes, multiple rules are conjunct
or disjunct to improve the performance.

Fig. 2 Rule-based driving maneuvers classifier model
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Fig. 3 Rule growing for
non-aggressive class

4.2.2 Rule evaluation

In the rule evaluation process, the performance of each
learned rule on the training dataset is measured using a
function evaluate() before including it in the ruleset, R.
The function calculates the coverage and accuracy of a
rule on the training dataset. The coverage of a rule is the
fraction of records that are covered by the antecedent of
the rule. The accuracy of a rule is the fraction of records
that can be satisfied by both the antecedent and consequent.
The coverage and accuracy are defined by (1) and (2),
respectively.

Coverage(r) = ncover

D
(1)

Accuracy(r) = ncorrect

ncover

(2)

where, ncover and ncorrect are the number of records that
are triggered (i.e., satisfy only the antecedent) and the
number of correct records that satisfy both the antecedent
and the consequent by the rule, r . D is the number
of records in the dataset. Coverage and Accuracy can
measure the performance of a single rule on dataset. Gain
is another significant performance measuring metric that
is used to measure the performance of multiple rules
which are combined with conjunction or disjunction by
propositional logic. Gain of two or more rules on a
dataset can be measured by FOIL(First Order Inductive
Learner)’s information gain measure. FOIL’s information
gain is defined by (3).

Gain(r0, r1) = t[log(
pos1

pos1 + neg1
) − log(

pos0

pos0 + neg0
)]

(3)

In (3), t is the number of positive instances triggered
by both r0 and r1, pos0 and neg0 is the number of the
positive and negative instances triggered by r0, respectively.

pos1 and neg1 is the number of the positive and negative
instances triggered by r1, respectively.

Based on the performance of the rules, the highest
promising rule is used to positively classify the class. In
the next iteration, another adjunct simple rule is added with
logical propositional relation and the performance of the
newly formed rule is measured. The gain of two simple rules
is calculated by the algorithm. If the gain is significant (i.e.,
above the threshold) means that the combination of both
rules improves the performance. Otherwise, the added rule
is discarded. A list of performance evaluations of a few rules
is shown in Table 2. In Fig. 3, rules, r1, r2 and r9 have the
(accuracy, coverage) on the training dataset is (84%, 27%),
(87%, 26%) and (55%, 41%), respectively. After combining
the rules r1 and r2, a new rule, r8 is created. The gain
of r1 and r2 is calculated as 137.95 by (3). In order to
increase the gain, another single rule r7 is disjunct with r8

by logical OR operation and the calculated gain is 1335.38
which is greater than other gain calculated from all other
rules. Therefore, the non-aggressive class is classified by r1,
r2 and r7; hence, the combined rule can be expressed by
[(r1 ∧ r2) ∨ r7]⇒ Cnon where Cnon is the non-aggressive
class.

In this rule, (r1 ∧ r2) implies that the value of any data
instances of x axis of accelerometer i.e., ax is greater than /
equal to −2 but ax less than 2, jointly means data instance of
ax lies between −2 and +2. Similarly, r7 can be expressed
as (engax <= 2) means that the values of energy of data
instances of ax those are less than / equal to 2. Collectively,
(r1 ∧ r2) ∨ r7 is satisfied by the data instance of ax when a
non-aggressive maneuver is performed.

4.2.3 Instance elimination

Instance elimination is the process of removing the positive
instance covered by a rule on a dataset. A data point or
instance that adapts to both the antecedent and consequent
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Table 2 List of performance evaluation of few rules

Rule Attribute Coverage(%) Accuracy(%) Gain(%)

R1 ax >= −2 27.40 83.97 —

R2 ax <= 2 25.99 87.05 —

R3 ay <= 1.5 27.86 83.47 —

R4 ay >= −1.5 28.37 80.91 —

R5 wz <= 0.2 27.66 82.99 —

R6 wz >= −0.2 28.36 80.95 —

R7 engax = 2 28.47 55.36 —

R8 R1 ∧ R2 26.88 84.02 137.95

R9 R3 ∧ R4 40.59 55.39 217.98

R10 R5 ∧ R6 35.90 63.94 115.78

R11 R1 ∧ R2 ∨ R7 38.24 66.78 1335.38

of a rule is called a positive data point for that rule.
Otherwise, it is called a negative instance for that class
covered by the rule. When considering the highest priority
class, all other classes are considered as a negative class
by the rule. The positive instances are being removed
from the dataset and the rule learning process iterates until
all the negative points of a class are covered. Figure 4.
illustrated the positive and negative instances by rule [(r1 ∧
r2) ∨ r7]⇒ Cnon i.e., for the non-aggressive maneuver. The
positive instances are removed from the dataset and negative
instances will participate in the next rule learning process.
However, in Fig. 4, few data points are falsely classified
as non-aggressive by the rule. To overcome the problem of
conflicts with classes, we utilize class priority value.

4.2.4 Stopping criteria and rule pruning

The next step we applied is the rule pruning. Rule pruning
is the process to discard any rule that does not improve the
performance of the classifier. The discard of any rule can
be done based on a stopping criterion. We have iteratively

experimented with several percentages of accuracy for each
rule and monitored the performance of each rule separately
on the dataset. In Fig. 6 we plotted the number of rules
associated with and the number of data instances positively
satisfied by the rules against the accuracy of those rules. It
is clear that selecting a lower threshold values, the number
of positively predicted instances is high, but it increases
the number of redundant rules in the ruleset. On the other
hand, selecting accuracy threshold value of 60% to 85% the
number of positively predicted data instances is the highest
and redundancy of rules is the least. Hence, we chose
accuracy>60% as the threshold value of accuracy. Besides,
we also noticed whether any simple rule can get the highest
gain value when combined with other rules. If a simple
rule with below threshold accuracy can bring the highest
gain after combining with other rules, then we consider that
simple rule as significant. For example, the accuracy of r7
is lower than the accuracy threshold, but combining it with
r8 i.e., ((r1 ∧ r2)) we get the highest gain (i.e., 1335.38). So,
finally, we consider [(r1 ∧ r2) ∨ r7]⇒ Cnon and prune the
other rules during the optimization process.

Fig. 4 Instance elimination for Non aggressive class
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In Fig. 3. simple rules of ax , ay and wz cover above
25% of the dataset and among the covered dataset, above
80% of data are accurately covered. If any rule covers less
than 20% and accuracy less than 60% then the rule can be
discarded. For the non-aggressive class, when the most gain
is calculated the other rules are pruned from the tree.

4.2.5 Optimize ruleset

The final ruleset is applied to the test data for classifying
each class. If any ruleset provides less satisfactory
performance to classify a class on test the data, the ruleset
is optimized by using rule pruning.

4.3 RBML drivingmaneuver classifier

The RBML driving maneuver classifier determines the class
of driving maneuvers from new time series test data. In
order to classify, new unlabeled data is fed to the classifier
and the pre-learned ruleset is applied to the test data. The
performance of the ruleset on test data is measured. If
performance is not satisfactory then the ruleset is being
optimized by pruning to improve the accuracy of the
classifier.

5 Result and analysis

In Section 5, we provide the description of the dataset,
experimental setup, and results and analyse of the work.

We measure the performance of the proposed model both
quantitatively and qualitatively.

5.1 Dataset description

In this research study, we used two datasets for our
experiments: Dataset 1 [51] and Dataset 2 [52].

– Dataset 1 [51] We use a sensor fusion time series driver
behavior dataset collected from four road trips by two
drivers. The dataset contains 156512 records where
only 11077 records have class label information. Time
series data is collected from accelerometer, gyroscope
and magnetometer sensor. These sensors are previously
installed on a smartphone and the smartphone was
placed steadily on the windshield of a moving vehicle.
However, we only utilize accelerometer, gyroscope and
ground truth data. While moving, the driving events
were recorded by a camera, the ground truth data
was included with the time-series data later on. We
use the labeled data because we need to measure
the performance of the classifier on the dataset. The
data contains seven driving maneuvers which are
aggressive acceleration, aggressive braking, aggressive
LT, aggressive RT, aggressive LLC, aggressive RLC and
non-aggressive.

– Dataset 2 [52] Driving behavior dataset [52] was
collected by three male drivers for two weeks and their
age was 27, 28 and 37 years. The dataset contains 1114
records and all are labeled. Time series data is collected
from Raspberry Pi Model B with MPU6050 (3-axis
accelerometer and 3-axis gyroscope) sensor. During
data collection, the device was mounted in front of the
dashboard. The road was dry asphalt and the weather
was sunny. The data contains four driving maneuvers
which are aggressive acceleration, aggressive braking,
aggressive LT and aggressive RT. The vehicle speed was
30-40 kmph and 70-80 kmph for aggressive turn and
aggressive acceleration, deceleration, respectively.

The instance distributions of maneuver classes of the
two datasets (dataset 1 and dataset 2) that we use in
our experiments, are shown in Fig. 5 The classes are
sorted in ascending order of the prevalence and assigned
a value from class priority set, Cprior for each class. In
dataset 1, non-aggressive maneuver class, Cnon is the most
frequent class and rules are learned for this class first.
The algorithm assigns class priory for the dataset 1 in the
following order: non-aggressive, aggressive acceleration,
aggressive RT, aggressive LT, aggressive LLC, aggressive
RLC, aggressive braking as shown in Fig. 5a. For the dataset
2, the order is as follows: aggressive LT, aggressive RT,
aggressive acceleration, aggressive braking as depicted in
Fig. 5b.
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Fig. 5 Frequencies of data
instances in each maneuver class
for (a) dataset 1 and (b) dataset 2

5.2 Evaluationmetrics

For quantitative performance, we measure the accuracy,
precision, recall, and F-1 score of the model. For evaluation
of the performance of each rule, we calculate the coverage,
accuracy, and gain of the rule. Tables 3 and 4 demonstrate
the evaluation scores for each class of the classifier
on the dataset [51] and [52], respectively. Accuracy,
recall, precision and F1-score can be defined by (4)-(7),
respectively.

Accuracy = T P + T N

T P + T N + FP + FN
(4)

Recall = T P

T P + FN
(5)

Precision = T P

T P + FP
(6)

F1 − score = Recall × Precision

Recall + Precision
(7)

Fig. 6 Number of rules and positively predicted instances for rules
accuracy (%)

where T P is the True Positive i.e., the number of instances
predicted positive is actually positive, FP is the False
Positive i.e., the number of instances predicted positive is
actually negative, T N is the True Negative, i.e., the number
of instances predicted negative is actually negative and FN

is the False Negative i.e., the number of instances predicted
negative is actually positive.

5.3 Experimental setup

We use the Python programming language (python ==
3.8.3) and Jupyter notebook IDE to implement the proposed
work. The model is implemented in a CPU instance with
RAM 8GB in a core i−5 processor.

We use 10-fold cross-validation which randomly selects
9 fold as train set and the remaining fold as testing set in
each iteration to deal with class imbalance. On the contrary,
if we split the data in a certain percentage (e.g., 70%
training data and 30% testing data) the class imbalance
could negatively impact the overall performance of the
classification model.

In our experimental setup, we select threshold accuracy>

60%, threshold coverage> 20% and highest gain value
as stopping criteria after iterating with various accuracy,
coverage and gain values and prune the rule during the
optimization process. We plot the number of positive
instances covered by a rule and the number of rules for a
corresponding accuracy value in Fig. 6. The graph indicates
that when there is more number of rules combined and
we select a low accuracy threshold value (i.e. 10%) the
number of covered positive instances for a class is high.
When we gradually increase the threshold value, the number
of combined rules decreases as not all the rules have a
high accuracy, which means they are less significant to
cover data instances positively. We get the optimal value
of the threshold from 60% to 80% where the number of
positive instances is high and the number of rules is also
nominal.
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Table 3 Evaluation scores for each maneuver class for dataset [51]

Class Evaluation Metrics

Accuracy Precision Recall F1-score

Non-aggressive 0.8388 0.5321 0.8884 0.6656

Aggressive Acceleration 0.8508 0.6467 0.5197 0.5763

Aggressive Braking 0.9089 0.7473 0.4595 0.5690

Aggressive LT 0.8419 0.5327 0.5561 0.5442

Aggressive RT 0.8411 0.5111 0.4742 0.4919

Aggressive LLC 0.9625 0.5217 0.2791 0.3636

Aggressive RLC 0.9406 0.2963 0.1429 0.1928

5.4 Result and discussion

In section 5.4 we present and discuss the experimental
results including the performance of the ruleset. We apply
10-fold cross-validation on our dataset to measure the
performance of the proposed approach. The proposed
algorithm learns rules from the train set and the performance
of the learned rules is evaluated on the validation set. Based
on the performance, the ruleset is being optimized.

This section aims to answer the following research
questions to justify the proposed classifier on test data.

– Does the proposed classifier able to learn rules from the
sensor fusion time-series driving dataset?

– Does the learning approach able to remove redundancy
while learning rules?

– How efficient the proposed rule-based machine learning
model is compared to any other relative model.

In order to estimate the quantitative efficiency of the pro-
posed rule-based machine learning approach, we compute
the efficiency of learned rules, the predictive accuracy of
the developed method for unseen test data. The predictive
performance indicates rules’ quality as well.

Table 2 shows the list of the most significant learned
rules and their corresponding accuracy, coverage and gain
on the trained data for non-aggressive class. Single rules
do not have gain; therefore, from R1 to r7, empty gain
values are indicated as dashed line. Rule R1 covers 27.40%
of the training dataset and the amount the covered data

83.97% belongs to the non-aggressive class. Similarly, the
accuracy and coverage of each rule are calculated. Rules
that have accuracy < 60% are not considered significant for
our classifier. Rule R7 has 55.36% accuracy which is less
than the threshold accuracy value, but it increases the gain
(1335.38) while combined with r1 and r2. After learning
all the rules for a class, rules are being sorted according to
ascending order of their performance.

Table 3 presents the evaluation results of each maneuver
class for the dataset [51]. From this Table 3, we can see
that the highest accuracy has been achieved for the class
aggressive LLC (i.e., 0.9625). For aggressive braking, a
few negative data is covered as positive (i.e., FP is low)
so, the precision is better than other maneuvers. On the
other hand, aggressive RLC contains the most wrongly
positively covered data instance (i.e., FP is high); hence,
precision is lowest (i.e., 0.2963) than other maneuver
classes. As aggressive RLC contains a combination of
aggressive acceleration and sharp braking, the rules create
conflicts between two different classes.

Table 4 presents the evaluation scores of the proposed
model with the dataset [52]. We can see that the accuracy
for almost all of the maneuvers is above 80% and precision,
recall and F1-score is also better than the dataset [51].
As the dataset [52] contains less amount of data than the
dataset [51], there are less variety in the dataset and less
conflicts among the rules for the classes.

Table 5 listed a qualitative comparison of the proposed
work with ML, DL and fuzzy rule-based approaches. In

Table 4 Evaluation scores for each maneuver class for dataset [52]

Class Evaluation Metrics

Accuracy Precision Recall F1-score

Aggressive Acceleration 0.8408 0.6140 0.6731 0.6422

Aggressive Braking 0.8952 0.8125 0.5909 0.6842

Aggressive LT 0.8945 0.8133 0.8472 0.8299

Aggressive RT 0.8987 0.7627 0.8182 0.7895

16911



M. M. Haque et al.

Table 5 Comparison of the proposed work with previous related work

Metric Tech- Features Process- System Hyperpar- Explain-

niques ing Time ameters ability

Tuning

Proposed RBML Domain know- High No specif- Not High

Work ledge, Stati- ication required

stical features

[3] RF, Speed, Statis-, Moderate HPC Required Moderate

SVM, tical features,

Fuzzy

Rule

[4] RNN, Not menti- High HPC Required Low

LSTM, oned

GRU

[5] ANN, Statistical High HPC Required Low

SVM, features,

RF, tendency

BN

[6] RF+ Statistical High HPC Required Low

RNN features,

trend

[7] LSTM Domain- High HPC Required Low

knowledge,

Statistical

Features

[8] Fuzzy Jerk, orientat- Low SQLite Not High

Inference ion rate, speed database, required

Rules and bearing smart-

variation, time, phone

weather data

[9] Pattern Acceleration, Moderate HPC Not Moderate

matching GPS data required

[10] SVM, Acceleration, High HPC Required Low

K-means yaw angular

Clustering velocity

[23] Rule-based Vehicle Speed, High HPC Required Moderate

k-means Throttle

clustering, Opening

S3VM

[27] AE+LSTM Domain- High HPC Required Low

knowledge,

Statistical

Features

Table 5, the comparison is done based on the applied
techniques, considered features, required time and system
for processing, the necessity of hyperparameters tuning and
the ability to explain. Typically, deep learning based models
i.e., [4–7, 27] need high performance computer (HPC) and
the sufficient amount of time to train the model after tuning

several optimum hyperparameters and models’ structure
such as the number of layers, the number of units in each
hidden layers, activation function, learning rate, drop out
rate, and so on. In machine learning based techniques i.e.,
[3, 10, 23] are also required to set parameters, for example,
C, gamma value, etc. So, processing time and system cost
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are high; however, explainability is low. On the other hand,
fuzzy inference rule-based [8] and pattern matching [9]
techniques required comparatively low processing time and
cost.

6 Conclusion

This paper proposed an unsupervised learning technique
using the sequential covering algorithm and classifying
driving maneuvers from time-series data. In this method,
we evaluated the performance of the learned ruleset and
eliminated the redundant and low significant rule. The
ruleset was also optimized based on the performance of test
data using rule pruning. To handle the conflict between classes
for the same time series instance, we chose the highest pri-
ority class for that instance. We evaluated the performance
of the proposed rule-based classifier with some related
works. As time-series holds many ambiguous patterns, it
is difficult to classify a complete event altogether. Many
events are a combination of multiple separate events. In
this scenario, our proposed technique classified a whole
event as multiple separate events. Though machine learning
and deep learning based models gain the highest accuracy,
the drawbacks of these methods have been compared and
alleviated by the proposed method. Hence, our proposed
model can be adopted for driving maneuver classification
while labeled data is insufficient and required to reduce
system cost and processing time. This work can further be
extended as follows: implementing the classification task
with Explainable AI tools to understand which features are
contributing to get the output class without compromising
the accuracy; collecting more datasets from varieties of
situations; and using ensemble classifiers and features,
such as moods of drivers’ from different signals (e.g., EEG
signal, eye tracking, activity signal etc.).
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