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Abstract—The problem of searching for hidden or missing objects (called targets) by autonomous intelligent robots in 
an unknown environment arises in many applications, e.g., searching for and rescuing lost people after disasters in 
high-rise buildings, searching for fire sources and hazardous materials, etc. Until the target is found, it may cause loss 
or damage whose extent depends on the location of the target and the search duration. The problem is to efficiently 
schedule the robot’s moves so as todetect the target as soon as possible. The autonomous mobile robot has no operator 
on board, as it is guided and totally controlled by on-board sensors and computer programs. We construct a 
mathematical model for the search process in an uncertain environment and provide a new fast algorithm for 
scheduling the activities of the robot which is used before an emergency evacuation of people after a disaster. 
Keywords – intelligent robot; search-and-rescue; emergency evacuation; scheduling algorithm. 

INTRODUCTION 

     During the last decades, research interest in planning, scheduling, and control of emergency response 

operations, especially people evacuation from high-rise and super high-rise buildings, has increased 

dramatically. In this paper we consider modeling and algorithmic aspects of the first component of the triad 

“detection-rescue-evacuation”. A modern technology developed in recent years for solving the detection 

problem is the autonomous intelligent mobile robot equipped with on-board smart sensors and 

corresponding computer programs ([1]-[4]). Published research on the design of smart (“intelligent”) robots 

and wireless sensor networks (WSNs) in emergency situations has recently grown exponentially.   

    Suppose a target like a fire or gas leakage has occurred somewhere in a large building. Until it is found 

and removed, the target may cause loss and damage to the whole building, the extent of which depends on 

the search time. The problem is to efficiently detect and remove the target as soon as possible with the help 

of an autonomous mobile robot (AMR) equipped with smart sensors and advanced communications 

systems. The AMR has no operator on board, i.e., it is fully autonomous, and is guided and controlled by 

on-board sensors and corresponding computer programs. The AMR can also be used for other detection-

and-rescue missions that are dangerous, complicated or impossible for manned staff. 
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   Typical objectives of the search problem are to maximize the probability of detection or to minimize the 

cost (or time) of the search (see, e.g., [5]-[8]). The problem of defining the best search strategy is 

fundamentally hard due to its probabilistic nature and combinatorial structure, and the nonlinearity induced 

by the detection probability. In particular, looking twice into the same location by a searcher does not 

necessarily double the detection probability. The corresponding combinatorial problem with general time 

and resource constraints is NP-hard ([9]). There are many published works providing different models, 

algorithms, and applications of the discrete search problem (see, e.g., [5]-[8], and the numerous citations in 

these works). In this paper we consider a simple but realistic setting happening in practice, namely we seek 

to minimize the incurred loss or damage with logistical and operational constraints limiting the search time.  

   In an unknown environment, the AMR’s search-and-detection activity is subject to two types of error, 

namely a “false-negative” detection error wherein a target object is overlooked in spite that the robot is in a 

close neighborhood of the target, and a “false-positive” detection error, also called “a false alarm”, in which 

a “clean” place or area is wrongly classified by the AMR as a target. As the general resource-constrained 

search problem is NP-hard, we restrict our study to finding local-optimal strategies under the specific 

scenario described below. We provide an algorithm for the AMR adopting a greedy search strategy in 

which, in each step, the on-board computer computes a current search effectiveness value for each location 

in the area and sequentially searches for a location with the highest search effectiveness value. 

      We organize the remainder of the paper as follows: The next section we review the related work. In 

Section III we present the search scenario and the mathematical model. In Section IV we analyze the 

problem and introduce the solution algorithm. In Sections V and VI we present a numerical example and   

discuss the computational results, respectively. In Section VII we conclude the paper.    

   

II. PREVIOUS WORK  

   The optimal search problem is a well-known problem in Operations Research, Computer Science, and 

Artificial Intelligence (see, e.g., [5]-[8]). Many classical optimization techniques have been applied for 

solving various versions of the problem, such as, the Lagrange multipliers, mathematical programming, 

dynamic programming, game theory, branch-and-bound, and the local search. Our paper complements this 

stream of research. Note that our work is more selective, being restricted to discrete search by an 

autonomous device for a stationary target under imperfect inspections. Specifically, we apply a greedy 

solution method whereby robot’s search moves are performed sequentially, step by step for each 
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consecutive location. The greedy scheduling algorithm makes the AMR proceed by always searching, in the 

next step, a location with the highest search effectiveness value.  

   Given the chance that the AMR’s inspection of a location containing the target may yield no definite 

information on whether or not the target is indeed in the inspected location, and, therefore the robot may 

visit the location (infinitely) many times, this type of scheduling problem may have an infinite sequence of 

steps in its solution process. Thus, the problem is to find an optimal strategy for the AMR to determine the 

next best search location dynamically, depending on the random parameters occurring up to the current step. 

Putting these next best search locations together will result in the overall locally optimal sequence. 

   A stopping rule in earlier works dictates the searcher to stop in the step when the target is found for the 

first time. However, this rule is obviously invalid when the positive-false error occurs. Other criteria for 

terminating the search process are treated in [5]-[8]; however, the termination conditions only correctly 

capture the false-negative search operations, i.e., under the assumption that the false-positive detection 

probabilities are zero. More detailed analysis of the early works can be found in the excellent texts [6]-[7].   

   In [10], the authors presented a Bayesian construction for the problem of searching for multiple targets by 

imperfect autonomous devices such as smart robots, using the probabilities of detection of these targets. [5] 

and [10] are the first works known to us wherein the authors addressed both false-negative and false-

positive detection errors under the discrete search scenario. A major contribution of this work is the 

evaluation of several proposed (myopic and biology-inspired) search strategies minimizing the search time. 

Our paper complements that study in the case where the interference of a human verification team is 

expensive, complicated, or impossible, which leads to the case of exploiting autonomous smart robots.   

  Complementary to the search model in [10] in which the objective is to maximize the probability of 

detecting the target or to minimize the search time, we study another practical situation where no human 

team interference is involved, and consider the objective function of the “min-loss” type. We investigate a 

different search scenario and a stopping rule, develop a new greedy index-based search strategy, and 

establish its properties. In contrast to [6] and [10], our model does not require human interference. 

Specifically, the decision to stop the search is made automatically by the on-board computer program based 

on the input data and search history. The main contribution of the present work, in comparison with our 

previous works [11, 12], is that we introduce two types of the confidence levels for two error types, which 

permits us to reduce an infinite-horizon scheduling problem to a finite-horizon problem.  
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   Under the scenario studied in this paper, we derive a locally optimal strategy. Being attractive because of 

its simplicity and computational efficiency, such a strategy guarantees the finding of an “almost optimal” 

search sequence with a given confidence level of target identification. Several earlier search models, in 

particular, the search model with only false-negative outcomes ([8], [11]) and the search model for perfect 

inspections ([13]) are special cases of our model. 

III. PROBLEM FORMULATION AND MODEL 

   A search area of interest (AOI) is a complex area in a large smart home that contains a set of N possible 

locations (or “cells”) of a stationary target. Given the stationary nature of the target, it does not leave the 

search area and new targets do not appear. The inspections by the AMR are imperfect. This means that there 

is a given prior probability αi of a false alarm (if a target is falsely found when location i is clean) and, in 

addition, there is a given prior probability βi of overlooking the target when actually location i contains a 

target, i =1,…, N. The imperfect quality of the inspections implies that examination of each location can 

happen more than once. Hence, the number of search steps, in general, may be infinite.  

  The durations and costs of the inspections of all the locations are known in advance and the goal of the 

search is to determine a search strategy for the AMR to employ in order to locate the target at the minimum 

cost. 

  The search area contains N cells or modules: 1, 2, …, N. The input data are the following:   

• pi  - prior probability that location i contains a target; 

• αi  - prior probability of a “false alarm”, or a false-positive outcome; this is a conditional probability that 

a sensor of the AMR inspecting location i declares that the target is discovered in location i whereas, in 

fact, it is not in this location;  

•  βi  - prior probability of overlooking or a false-negative outcome; this is a conditional probability that the 

sensor of the AMR declares that the target is not in location  i whereas, in fact, it is exactly there; 

• ti – expected time to inspect location i; 

• ci - search cost rate per unit time when searching location i; this is the amount (in monetary or physical 

units) of loss or damage incurred during one time unit of the search; 

• CL+ – a required positive confidence level, which is a pre-specified measure of the confidence that the 

target is identified correctly;  
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• CL- – a required negative confidence level, which is a pre-specified measure of the confidence that the 

target is indeed not in the current location. The confidence level values are provided by experts and 

should be closed to 1; their roles will be discussed in more detail below. 

     The search strategy is defined as an infinite-horizon sequence of locations, where, in each step n, location 

s[n] is tested as to whether it contains the target: 

s = <s[0], s[1], …, s[n],…>. 

Here s(0) is an initial sub-sequence specified in advance by the human decision maker.  

   The problem is to find an optimal sequence sopt of the search steps for detecting the target at the minimum 

total cost. We show below that, under the given confidence level values, it is sufficient to search for a 

certain finite sequence of steps s:  

s = <s[0], s[1], s[2], …, s[M]>, 

where the finite value M is found depending on the input probabilities and the given confidence levels.  

   In order to exactly define the stopping rule of the search process, we first explain the notion of the 

confidence level. Without loss of generality, we suppose that in each step of s, say n, the on-board sensors 

examine a current location, say i, and the on-board computer can count and memorize the search history of 

the number of times, denoted by hi, the sensors have already observed that location i contains the target 

(note that due to the presence of false positive outcomes, we are not obliged to immediately stop searching 

in that case). Similarly, by gi
 we denote the number of times during the search process, up to a current step, 

the sensors have reported that the current location i does not contain the target. 

   Under our search scenario, the human team is not involved in verifying the search quality of the imperfect 

device. Instead, we consider a search process provided by a completely autonomous smart robot. In order to 

enhance automatically the search quality level, the on-board computer analyzes the input data and the 

overall search history, and then computes the following conditional probabilities  [ ]ihia ,  and [ ]igib , :   

- [ ]ihia , , the conditional probability that the examined location (cell) i indeed contains the target under the 

condition that, during previous sequential inspections, the imperfect AMR’s sensors have already 

declared hi times that the cell i contains the target; 
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- [ ]igib , , the conditional probability that the examined location i does not contain the target under the 

condition that, during the previous sequential inspections, the imperfect AMR’s sensors have repeatedly 

declared gi times that the cell i does not contain the target. 

   The conditional probabilities [ ]ihia ,  and [ ]igib ,  should be sufficiently high. Formally, we require that a[i,h]  

should not be less than a pre-specified value called the positive confidence level CLi
+ (e.g., CLi

+ = 0.95 or 

0.99). A similar requirement is imposed on the probability [ ]igib ,  and the negative confidence level. Below 

we study how the a[i,h] and b[i,g] values change when parameters hi and gi grow.  

   The confidence levels CLi
+ and CLi

- can be either equal or different for different locations. Without loss of 

generality, we suppose that the on-board computer of the AMR, in each step of s, say n, may count and 

memorize the search history of the number of times the sensors have already claimed, before the considered 

step, that location i contains (or does not contain) the target. These numbers accumulated up to step n 

(including that step) and associated with each location searched in that step in s are called the heights of the 

location s[n] = i in step n and denoted by hi
 and gi, respectively. For notational simplicity, in the heights the 

index n is omitted. Notice that due to the existence of false alarms, the search should not stop when in step n 

the sensor declares for the first time that it discovers the target. We need to continue the search until the 

probability a[i,h] reaches (or exceeds) the pre-specified value CLi
+.  

   Now we discuss the role of confidence levels in more detail. For any step n of strategy s, the positive 

confidence level CLi
+ is defined as the desired lower bound for the conditional probability [ ]ihia ,  that location 

s[n] = i indeed contains the target under the condition that the sensors have declared hi times that the target 

is located in location i (i.e., this happens hi -1 times in the previous steps 1,…, n-1 plus once more in the 

current step n). Similarly, the negative confidence level CLi
- in step n is defined as the desired lower bound 

for the conditional probability [ ]igib ,  that the sensors did not detect the target in location s[n] = i under the 

condition that such a situation has happened totally gi times in steps 1,2,…, n. The on-board computer can 

compute the number of times during their sequential inspections the AMR’s sensors should declare that cell 

i does (does not) contain the target, so as to guarantee that [ ]ihia , ≥ CL+ (and, respectively, [ ]igib ,  ≥ CL-). 

   The minimum positive integers hi and gi such that the probabilities [ ]ihia ,  and [ ]igib , exceed or equal the 

corresponding confidence levels CL+ and, CL-, respectively, are called the critical heights, and denoted by 

Hi and Gi, respectively. They will be precisely calculated below. In what follows, for brevity’s sake, the 
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inspection of location i in which the sensor declared that it discovered the target for the hi-th time (where hi 

= 1,…, Hi) is called the hi-th positive test.   

   When the hi value in step n of s is known, there is a direct way to compute the corresponding conditional 

probability [ ]ihia , , for any hi, and [ ]igib , , for any gi  as the following claim states.   

    Claim 1.  The conditional probability [ ]ihia ,  and [ ]igib ,  relate to their heights hi and gi, respectively, as 

follows:                            
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   The proof is given in Appendix 1.   

    The search scenario is characterized by the following conditions: 

    (i) the cells are inspected sequentially and independently of one another; 

    (ii) for any target location, the outcomes of inspections are independent;  

    (iii) given a required value of the positive confidence level CLi
+, the search terminates when, in some step 

n for some location s[n] = i (and the corresponding height hi), the probability [ ]ihia ,  achieves its requested 

confidence level, i.e.,  

                       [ ]ihia , ≥  CLi
+;                                                                                            (3) 

    (iv) as soon as a pre-specified value of the negative confidence level CLi
- for probability b[i,g]  is reached, 

the corresponding cell i is considered “clean” and can be safely removed from further search, i.e., 

                                                          [ ]igib , ≥  CLi
-.                                                                                           (4) 

Claim 2. In each location i, the probabilities [ ]ihia , and [ ]igib ,  grow monotonically with n, for any given 

values of αi and βi with αi + βi ≤ 1 (i.e., if the error probabilities αi and βi are “not too big”).  
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   The proof follows immediately from the following two facts: (a) the heights hi and gi of any location i 

increase with n in any search strategy s, and (b) the functions 
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are increasing in hi and gi, respectively,  whenever αi/(1- βi)  ≤ 1.   

    By virtue of Claim 2, since the CLi
+ and CLi

- values are given in advance, the Hi and Gi values can be 

computed from (1)-(4) for all the locations before the AMR starts its search.  

   The logic of the considered scheduling scenario is the following. First, the positive and negative 

confidence levels, i.e., CLi
+ and CLi

-, respectively, for each location i are determined in advance, before the 

search starts, as the desired bounds for the corresponding probability to discover the target and the 

probability to discover that the location i does not contain the target, respectively. Then, knowing the CLi
+ 

and CLi
- values, and using (1)-(4), the robot’s on-board computer finds the corresponding critical heights Hi 

and Gi (i.e., the minimum integer hi and gi satisfying, respectively, (3) and (4)), for any cell searched by the 

robot. After that, the greedy Algorithm A defined in the next section selects the locations to be searched one 

by one. Under our scenario, instead of having human involvement, the AMR stops its search automatically 

when, for some cell i, the outcome of the current inspection is as follows: “for the Hi
 -th time cell i is 

discovered to contain the target”. Note that in this case the probability of the correct decision is guaranteed 

to be sufficiently high, without additional human-made testing. On the other hand, as soon as the height gi
  

achieves its critical value Gi, we accept that this location is clean and can be removed from further search.    

Now we are able to precisely formulate the stopping rule.  

   The search process stops in the step when either (i) the number of positive tests provided by the 

sensors for some location, say i, reaches, for the first time, its critical height value Hi or (ii) all the cells are 

deleted from the search due to the negative tests. Therefore, our model does not require human operator’s 

interference for defining the termination moment. It is worth noticing that, due to the presence of the 

confidence levels, as soon as the robot visits any cell, say i, at most Hi + Gi -1 times, either the algorithm 
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terminates the search or such a cell i is removed. Thus, under our premises, the search process is finite and 

the total number of steps does not exceed Σi (Hi+Gi-1). 

 

IV. PROBLEM ANALYSIS 

   In the following analysis we need the following notation: 

• Ts[n] = T(s[n], s) - (accumulated) time spent by the AMR when moving from s[1] to location s[n] in 

the n-th step of strategy s; Ts[n] =  ∑
=

n

m 1
ts[m], 

• F(s) - the expected total loss incurred by the target before the latter is found and neutralized. 

We compute the expected total loss F(s) as the mathematical expectation in the space of the following 

conditional probabilities defined in each step of the search: 

- Ps[1] = P(hs[1] = Hs[1]) - probability to discover the target in the first step of the search; 

- Ps[2] = P(hs[2] = Hs[2]│ hs[1] < Hs[2]) - probability to discover the target in the second step of the 

search under the condition that the robot did not discover the target in the cell visited in the first 

step;  

                        … ;  

-  Ps[n] = P(hs[n] = Hs[n] │ hs[k] < Hs[k] for k = 1,…, n-1) - conditional probability that in the sequence 

<s[1], s[2], …, s[n-1]. s[n]> in location s[n] the robot has discovered the target for the Hs[n]-th 

time (so the on-board computer commands the robot to stop at this step) under the condition that 

the robot did not discover the target in any cell in its previous steps in sequence <s[1], s[2], …, 

s[n-1]> (i.e., under the condition that the robot does not stop in any cell prior to step n). 

   (The values Hs[n] depending on the parameters pi, αi, and βi, and guaranteeing the required confidence 

level CL+ are computed in the previous section, and the Ps[n] is computed below.)     

    In accordance with conditions (i) and (ii) of the considered search scenario given in the previous 

section, the expected (linear) total loss F(s) is defined as follows: 

F(s) = [ ] [ ]∑
∞

=1n
nsns cP Ts[n]. 
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   In the above notation, we wish to solve the finite-horizon search problem under uncertain inspection 

data, i.e., to find a finite sequence sopt of the search steps minimizing the expected total loss F(s) 

incurred by the target before it is found: sopt = <s[0], s[1], s[2], …, s[M]>. As noticed above, under the 

given confidence levels, the total number of steps, denoted by M, does not exceed Σi(Hi +Gi - 1). 

   This scheme is an extension, for the case of two types of possible errors, of the classic infinite-horizon 

(single-error-type) search analysis by De Groot [14]. 

   For any given sequence s and the location s[n] inspected by the sensors in step n, let [ ]s nA be the total 

number of inspections of the location s[n] (not necessarily successively) up to the nth step of strategy s.  

   Claim 3. The probability Ps[n] is computed as follows: 

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]( ) [ ]

1
(1 )

1
s ns n s n

Hs n A H
s n s n s n

s n

A
P f f

H
−

− 
 = −
 − 

, for [ ]s nA ≥ Hs[n] and hs[i] < Hs[i] for all i = 1, …, n-1; and [ ] 0s nP = , 

otherwise. 

      This claim immediately follows from the above definitions of Hs[n] and [ ]s nA . Indeed, the robotic search 

under investigation can be re-stated as a sequence of independent Bernoulli trials such that a “success” 

corresponds to the event that the robot discovers the target during a single inspection. It is known that the 

probability of Hs[n] successes in a location s[n] within the total number [ ]s nA  
of inspections of the location 

s[n] occurring during n trials, i.e., n steps of s, has a negative binomial distribution (for the corresponding 

definition and details, we refer the reader to [15] –[18]. 

     Define the ratio [ ]nsQ  as follows: 

                                          [ ] [ ] [ ]
[ ]

[ ]
[ ]( ) [ ] [ ]

[ ]
[ ]

1
( / ) 1

1
s n s n s n

A Hs n H
s n s n s n s n s n

s n

A
Q c t f f

H
−− 

 = − ⋅
 − 

 .                                       (5) 

   For any location i, the above ratio can be re-written as Qi = (ci/ti)Pi, representing a measure of 

“attractiveness” of each location from the searcher’s point of view, which is proportional to the probability 

of successful detection and the search value, and inversely proportional to the search time. 
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   Algorithm A. The greedy fast algorithm A is constructed as follows: The robot searches the locations 

sequentially in the search sequence s* in such a way that the ratio [ ]nsQ *  has the maximum possible value in 

each step for all n ≥1.   

   The key result of this work is formulated as follows: 

   Theorem. The strategy s is locally optimal if, in each step n, the location with the maximum ratio  

 
[ ] [ ] [ ]

[ ]

[ ]
[ ]( ) [ ] [ ]

[ ]
[ ]

1
( / ) 1

1

1

s n s n s n
A Hs n H

s n s n s n s n s n
s n

A
Q c t f f

H

n

−− 
 = − ⋅
 − 

≥

 

 is selected among all the possible locations. That is, the location s[n] = i is selected such that 

 
[ ] [ ]

1
, 1maxs n i s n j

j N
Q Q n= =

≤ ≤

= ≥ . 

   The proof is given in Appendix 2. 

      The search procedure in the theorem is greedy, or index-based, so far as in each step the on-board search 

program selects for inspection the next maximum-ratio location. Notice that under the considered scenario 

the on-board computer uses only partial information about the history of all the search outcomes. A 

numerical example illustrating the work of the algorithm is given in the next section.  

   

 

V. NUMERICAL EXAMPLE 

   Consider an example with N = 5 locations. The input data are given in Table 1. The confidence levels 

equal 0.95.   

Table 1. Input data 
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    The probabilities fi and critical heights Hi and Gi are computed using (1)-(4) and presented in Table 2. 

                                        Table 2. Auxiliary parameters  

 

 

 

     

   The initial sub-sequence [ ],0sU  is defined by the expert, e.g., according to the following rule:  

[ ]


1 2

,0
1 1 1

1,1, , ,1, 2, 2,...2,..., , ,...
N

s
H H H

U N N N
− − −

  =  
  

 

. 

   Hence, in this example, [ ],0sU  defines the first seven steps: [ ],0sU = {1, 2, 3, 3, 4, 5, 5}. 

    In the next step, n = 8, using (5), we obtain the following ratio candidates Q: Q1 = 0.43146, Q2 = 0.18804, 

Q3 = 0.01707, Q4 = 0.04896, and Q5 = 0.31640. Therefore, the location to be selected after [ ],0sU  is location 

1: s[8] = 1. Continuing the process in the same way (and omitting the intermediate calculations), we obtain: 

s[9] = 5 and then s[10] = 5.  

Location 1 2 3 4 5 

( )ii CPp =  0.2 0.45 0.75 0.6 0.25 

( )iii CBP /=β  
0.4 0.07 0.05 0.03 0.3 

( )iii CBP /=α  
0.04 0.06 0.12 0.2 0.1 

it (min) 
5 8 10 7 8 

ic ($) 
3 5 10 3 6 

fi 0.152 0.4515 0.7425 0.662 0.25 

Hi 2 2 3 2 3 

Gi 2 2 2 2 2 
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    A non-trivial situation is encountered at this stage: Up to this step, the greedy algorithm dictates to the 

robot the following sequence of locations to be searched: s = {1,2,3,3,4,5,5,1,5,5}. After that the robot 

inspects location 5 (we see that this is, in fact, the fourth sequential inspection of this location in the 

obtained sequence), one of two possible outcomes can occur in the uncertain environment: either (a) the 

sensors claim for the third time that location 5 contains the target; in this case the search can be stopped, 

with the confidence level being successfully achieved; or (b) during the searches, the sensors twice 

discovered that location 5 does not contain the target; it follows that within the given (negative) confidence 

level value 5 0.95CL− = , location 5 can be removed from further search, and the search process is continued 

with the remaining locations.  

    Continuing computation in the same way (with the remaining locations), comparing the Q values, we find 

that s[11] = 2 and then s[12] = 2. Up to this step, location 2 turns out to be inspected three times. Two 

options are possible: either the sensors declared twice that the target is in location 2, in which case we 

accept that the robot discovered the target with the given level of confidence and the search can be stopped 

in this step 12; or the sensors declared twice that location 2 does not contain the target, in which case 

location 2 can be removed from further search, and the search process is continued with the remaining 

locations. 

   In the next step, comparing the Q values, we find that s[13] = 1. Up to this step, location 1 is inspected 

three times. Two options are possible: either the sensors declared twice that the target is in location 1, in 

which case we accept that the robot discovered the target with the given level of confidence and the search 

can be stopped in this step 13; or the sensors declared twice that location 1 does not contain the target, in 

which case the location can be removed from further search, and the search process is continued with the 

remaining locations. 

       In the next step, comparing the Q values, we find that s[14] = 4 and then s[15] = 4. Up to this step, 

location 4 is inspected three times. Two options are possible: either the sensors declared twice that the target 

is in location 4, in which case we accept that the robot discovered the target with the given level of 

confidence and the search can be stopped in this step 15; or the sensors declared twice that location 4 does 

not contain the target, in which case the location can be removed from further search, and the search process 

is continued with the remaining locations. In the next step, comparing the Q values for the remaining 

locations, we find that s[16] = 3 and after that s[17] = 3. We observe that, up to this step, location 3 is 

inspected 4 times. Two options are possible: either the sensors declared twice that the target is in location 3, 

in which case we accept that the robot has discovered the target in location 3 with the given level of 

confidence, and the search can be stopped; or the sensors declared twice that location 4 does not contain the 
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target, in which case the location can be removed from further search, and the search process may be 

continued for the remaining locations. However, in this example, no locations are left, and the search stops. 

So we arrive at the outcome that, for the given set of input data, including the confidence levels, the robot 

cannot find the target. In this case, if needed, the human decision maker can change the input data and 

repeat the search.  

   For the reader’s convenience, we present Table 1 that summarizes the above computation. The locations 

inspected during the first seven steps of the optimal sequence are provided by [ ],0sU = {1, 2, 3, 3, 4, 5, 5}. 

The next ten locations are presented in Table 1. 

Table 1. The locations inspected in steps 1 to 17. 

Step  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Location 1 2 3 3 4 5 5 1 5 5 2 2 1 4 4 3 3 

   The suggested search algorithm quickly terminates. The following locally optimal search sequence is 

obtained, in at most 17 steps: sopt ={1,2,3,3,4,5,5,1,5,5,2,2,1,4,4.3,3} and F(s opt) = $1,275.8.  

   We compare the obtained solution with another solution, obtained by using a manual greedy search 

strategy of selection according to the maximum probability of detecting the target in each step. In this 

numerical example, we obtain s0 = <551133344225511> with F(s0)=1,559.4 (K$), i.e., the proposed 

algorithm essentially outperforms the manual algorithm.    

  

VI. COMPUTATIONAL RESULTS 

     We implemented the developed greedy algorithm using MATLAB v. 7.1 and executed it on the 

following hardware platform: Dell PowerEdge R410 server, CPU - 2x Intel Xeon X5660 @ 2.8GHz (12 

cores total), and 64 GB RAM. We randomly generated the probabilities in the interval (0.2, 0.9).  

    We carried out an extensive computational experiment over a total of 2,000 different randomly generated 

problem instances. The calculation time was limited to 0.01 CPU-hour per problem instance.  

Table 2 shows the characteristics of input data.  

Table 2. The input data characteristics. 

Data Type Range 

Number of locations Unif (10,40) 

Search time (in min.) Unif (1,20) 
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Location probabilities Unif (0.01, 0.90) 

Probabilities of errors (type I and II)   Unif (0.01, 0.04) 

Probabilities of overlooking Unif (0.02, 0.04) 

Search costs Unif (10,30) 

 

  For each instance, we compared two different solutions produced by the solver: a locally optimal solution 

yielded by the suggested algorithm and a best solution generated by the full search over 1,000 randomly 

generated feasible solutions for each instance. The following fact similar to the well-known “80/20 Pareto 

rule” (see [18]) has been empirically observed, according to which for about 80% of the instances solved by 

our locally optimal algorithm the average cost is within 20% of the best value produced by the random 

search.  

   Figure 1 gives the results for different average cost values (from $10 to $500).  

 

 
  Figure 1. The average number of strategies yielding a better solution than the greedy solution. 
  

 VII.  CONCLUSIONS 

     The suggested greedy algorithm is simple, user-friendly, and computationally efficient. Not only does it 

provide a good enough cost of the search, it is extremely fast and practicable. Although deploying search-

and-rescue robots in the urban and building environment is still in its infancy, the first use of smart robots 

for search and rescue in emergency evacuation was successful ([1]-[4]). In contrast to many other stochastic 

search scenarios under uncertain inspection in which the search sequence is infinite, the suggested scenario, 

for any given confidence levels, has a finite number of steps. 
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  In our future research we will extend the suggested approach to cover a wider range of practical search 

scenarios (e.g., with multiple mobile robots and multiple targets). It could be combined with more general 

solution methods such as dynamic programming, branch-and-bound, and nature-inspired algorithms. 

Another important future research topic is to embed into and integrate the proposed analysis with a general 

model of the triad “search-rescue-evacuation”.  
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Appendix 1. Proof of Claim 1. 

    Let us introduce the following additional notation: 

     Event Bi = {after a single inspection, the AMR’s sensors declare that location i contains the target}.  

     Event Ci ={location i indeed contains the target}. 

   In terms of these events, the location probabilities pi and the probabilities of the two types of error are 

expressed as follows: 

             pi = P(Ci);  αi = ( )ii CBP / ;  βi = ( )ii CBP / . 

The probability fi that the sensor declares that location i is detected as containing the target is 

                        fi =  P(Bi ) = ( )ii CBP / P(Ci)  + ( )ii CBP / P(C i) = (1- βi) pi+ αi(1- pi). 

  The conditional probability of the event that location i contains the target under the condition that the 

sensor has declared that location i contains the target in a single inspection is 

        ( ) =ii BCP / ( ) ( )
( ) ( ) ( ) ( ) =+ iiiiii

iii

CBPCPCBPCP
CBPCP

//
/ ( )

( ) ( ) .
11

1
iiii

ii

pp
p

αβ
β
−+−⋅

−⋅     

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-11366-X
https://doi.org/10.1007/s10479-018-2923-y
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    We need to prove that the conditional probability [ ]ihia ,  of the event that location i indeed contains the 

target under the condition that the sensor has declared in exactly hi steps of the sequence s that location i 

contains the target satisfies the following relation: 

                   [ ]
( ) ( ) ( )( )i

i

h
iiiihi BBBCPa ∩∩∩= .../ 21

,  ( )
( ) ( ) ii

i

h
ii

h
ii

h
ii

pp
p

αβ
β
−+−⋅

−⋅
=

11
1 . 

     Since the sequential inspections of locations made by the robot are independent, for any pair of indices i, 

j ∈{1,2,…,N}, we have the following equalities: 

( ) ( )( ) ( )( )
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   Therefore, 
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   The second part of the Claim 1 is proved along the same line.  
      

 

 

Appendix 2. Proof of the Theorem  

 

[ ] [ ] [ ] [ ] [ ],...1,,...,2,1, 11110,1 1
+= nsnsssUs s  

  

[ ] [ ] [ ] [ ] [ ],...,1,...,2,1, 11110,2 1
nsnsssUs s +=  

 

   To prove the theorem, it suffices to prove the following relation: 
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( ) ( ) [ ] [ ]121 11 +≥⇔≤ nsns QQsFsF . 

   We have:   
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   We obtain that  
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   The theorem is proved. 
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