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Abstract

The Grundy and the b-chromatic number of graphs are two important chro-
matic parameters. The Grundy number of a graph G, denoted by Γ(G) is
the worst case behavior of greedy (First-Fit) coloring procedure for G and
the b-chromatic number b(G) is the maximum number of colors used in any
color-dominating coloring of G. Because the nature of these colorings are dif-
ferent they have been studied widely but separately in the literature. This
paper presents a comparative study of these coloring parameters. There ex-
ists a sequence {Gn}n≥1 with limited b-chromatic number but Γ(Gn) → ∞.
We obtain families of graphs F such that for some adequate function f(.),
Γ(G) ≤ f(b(G)), for each graph G from the family. This verifies a previous
conjecture for these families.

Keywords Graph coloring . First-Fit coloring . Grundy number . Color-dominating
coloring . b-chromatic number

Mathematics Subject Classification (2000) 05C15 . 05C35

1 Introduction

All graphs in this paper are undirected without any loops or multiple edges. We
refer to [1] for notations and concepts not defined here. By a Grundy coloring of a
graph G we mean any partition of V (G) into independent color classes C1, . . . , Ck

such that for each i, j ∈ {1, . . . , k} with i < j, each vertex in Cj has a neighbor in
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Ci. The maximum integer k such that there exists a Grundy coloring with k colors,
is called the Grundy number (also the First-Fit chromatic number) and denoted by
Γ(G) (also χFF (G)). It can be observed that Γ(G) is equal to the maximum number
of colors used by the greedy coloring procedure in G [14]. The literature is full
of papers concerning the extremal and algorithmic aspects of the Grundy number
e.g. [5, 6, 14, 15]. The Grundy number is an NP -complete quantity even for very
restricted families of graphs [14]. As proved in [14], for every integer k there exists
a unique tree Tk (called tree atom of Grundy number k) such that Γ(Tk) = k and
Tk is the smallest tree having Grundy number k. Also, for any tree T , Γ(T ) ≥ k if
and only if Tk is isomorphic to a subtree of T . Tree atoms are also introduced in [5].

By a color-dominating coloring of G we mean any partition of V (G) into independent
subsets C1, . . . , Ck such that for each i, the class Ci contains a vertex say v such
that v has a neighbor in any other class Cj , j 6= i. Also by a color dominating
vertex u of G we mean the vertex u has at least one neighbor in each color class
of the color-dominating coloring of G. Denote by b(G) the maximum number of
colors used in any color-dominating coloring of G. The b-chromatic number has
been widely studied in graph theory [2, 3, 4, 7, 8, 10, 11, 12, 13]. For a survey on
b-chromatic number, we refer to [9]. In this paper we call a graph G b-monotone if
for each induced subgraph H of G we have b(H) ≤ b(G). This concept is similar
to the concept of quasi-monotonous graphs, introduced in [10], where a graph G is
called quasi-monotonous if for any two subgraphs H1 and H2 of G such that H1 is
a subgraph of H2, one has b(H1) ≤ b(H2).

Obviously, every quasi-monotonous graph is also b-monotone. There is a useful
quantity denoted by m(G) which is used in study of b-chromatic number. Let the
vertex degrees of G be ordered in a non-increasing form d1 ≥ d2 ≥ . . . ≥ dn. Define
m(G) = max{k : dk ≥ k− 1}. It is easily seen that b(G) ≤ m(G), since otherwise if
b(G) > m(G), there is a color c such that all the vertices with color c have degree
≤ m − 1. Hence all vertices of color c have degree less that b(G) − 1 and none of
them can be a color dominating vertex, a contradiction.

A natural question concerning comparison of Grundy and b-chromatic numbers is
to explore or generate families of graphs {Gn}n≥1 and {Hn}n≥1 such that b(Gn) −
Γ(Gn) → ∞ and Γ(Hn) − b(Hn) → ∞. It was proved in [16] that both of the
above-mentioned situations happen in the universe of graphs. Given any family F ,
it was also proved in [16] that there exits a function f(.) such that Γ(G) ≤ f(b(G)),
for each graph G ∈ F if and only if for any sequence {Gn}n≥1 from F , Γ(Gn) → ∞
implies b(Gn) → ∞. The following conjecture was made in [16].

Conjecture 1. There exits a function f(.) such that Γ(G) ≤ f(b(G)) for any

b-monotone graph G.

As proved in [16], the conjecture is not valid for the family of non b-monotone graphs.
In this paper we prove validity of the conjecture for some families of graphs. But in
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the following we first obtain a sequence of graphs with limited b-chromatic number
and unbounded Grundy number.

Let m ≥ 2 be any fixed integer and n an arbitrary positive integer. Consider first
the complete m-partite graph Kn,...,n in which each partite set has exactly n vertices.
Name the partite sets by B1, . . . , Bm. Set Bi = {vi,1, vi,2, . . . , vi,n}. Consider n −
1 (edge disjoint) cliques A1, . . . , An−1, where V (Aj) = {v1,j, v2,j, . . . , vm,j}. Now,
remove the edges of these cliques from the graph and call the resulting graph Gm,n.
In the following we prove that Gm,n satisfies the desired properties.

Proposition 1. For anym ≥ 2 and n ≥ 1, Γ(Gm,n) ≥ m+(n−1) and b(Gm,n) = m.

Proof. Assign the colors 1, 2, . . . , n − 1 to the vertices vi,1, vi,2, . . . , vi,n−1, respec-
tively, in each partite set Bi, i ∈ {1, . . . , m}. For each i, assign the color n+ i−1 to
vi,n. The resulting coloring is a Grundy coloring using n +m− 1 colors. It follows
that Γ(Gm,n) ≥ n+m− 1.

To prove the equality concerning b-chromatic number, first assign color j to all
vertices in Bj, j ∈ {1, 2, . . . , m}. In this coloring, the vertices v1,n, v2,n, . . . , vm,n are
color-dominating vertices with m different colors. It implies b(G) ≥ m. Assume
on the contrary that b(G) = m + t, for some t ≥ 1. Let C be a b-coloring of the
graph with m + t colors. Assume that the colors in the clique An are i1, i2, . . . , im.
At least one color, say c, c ∈ {1, . . . , m + 1}, is missing in An. It implies that no
color-dominating vertex of color c exists, because if a vertex vj,k, j ∈ {1, . . . , m} and
k ∈ {1, . . . , n− 1}, is color-dominating of color c, then this vertex has a neighbor of
color c(vj,n), by the definition of b-coloring. But the only partite set containing a
vertex of color c(vj,n) is Bj, a contradiction. �

We now show that Gm,n is not b-monotone.

Proposition 2. For any m ≥ 2 and n ≥ 1, Gm,n is not b-monotone.

Proof. By Proposition 1, b(Gm,n) = m. Then, to prove Proposition 2 we obtain
a subgraph of Gm,n with b-chromatic number more than m. Remove the vertices
vm,3, vm,4, . . . , vm,n from the partite set Bm and call the resulting subgraph G′. Note
that after this removal, G′ has only two vertices in the m-th partite set. Now, in
each partite set Bi, 1 ≤ i ≤ m − 1, assign color i to all vertices vi,3, vi,4, . . . , vi,n
and color the vertices vi,1, vi,2, respectively with colors m,m + 1 in each partite
set Bi, 1 ≤ i ≤ m. This is a b-coloring of G′ with m + 1 colors and the vertices
v1,n, v2,n, . . . , vm−1,n, vm,1, vm,2 are color dominating vertices. �

Let G be any graph and C a Grundy coloring of G using k colors. We define a
colored subgraph of G as follows. Let vk be a vertex of color k in C. Choose a set
consisting of k− 1 neighbors of vk, say v1, . . . , vk−1 with distinct colors 1, . . . , k− 1,
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respectively. Define L1 = {vk} and L2 = {v1, . . . , vk−1}. Now, for each i and j
with 1 ≤ i < j ≤ k − 1, any vertex of color j in L2 needs a neighbor of color i in
C. If such a vertex say u is not found in L2 then put u in a newly defined set L3.
The set L3 consists only of such vertices. Repeat the above procedure for L3. Any
vertex v ∈ L3 of color say j needs a neighbor of color i for each i < j. If such a
neighbor w is not found in L2∪L3 then put w in a newly defined set L4. The set L4

consists only of such vertices. We continue this procedure and obtain the other sets
L5, . . .. Let t be an integer such that in Lt the corresponding set S is empty. For
each i ∈ {1, . . . , t}, define Hi as the subgraph of G induced by L1∪ . . .∪Li. Set also
H = G[L1 ∪ . . . ∪ Lt]. We call H a subgraph corresponding to the Grundy coloring
C. For each i ≥ 1, the presence of a vertex v of color j in Li means that there exists
a vertex u in Li−1 such that v is adjacent to u and the color of u is greater than
j. In this situation v is said to be a child of u and we write v ∈ CH(u). Clearly,
CH(u) ⊆ Li for every u ∈ Li−1.

The outline of the paper is as follows. In this paper we prove Conjecture 1
for trees, cactus graphs, (K4 \ e, C4)-free b-monotone graphs and graphs of girth at
least 6. In Sections 2 and 3, we obtain an upper bound in terms of b-chromatic
number for the Grundy number of trees and cacti, respectively. These bounds are
almost sharp. In Section 4, we obtain a similar result for graphs of girth five and
six and for another family which is defined by some forbidden induced subgraphs.

2 Results for trees

It was proved in [8] that m(T )− 1 ≤ b(T ) ≤ m(T ) for any tree T . A vertex v of T
is called dense if dT (v) ≥ m(T ) − 1. A tree T is said to be pivoted in [8] if T has
exactly m(T ) dense vertices, and T contains a distinguished vertex v such that:
(i) v is not dense.
(ii) Each dense vertex is adjacent either to v or to a dense vertex adjacent to v.
(iii) Any dense vertex adjacent to v and to another dense vertex has degreem(T )−1.

Note that a corollary of (iii) is the following.

(iii)′ The vertex v must be adjacent to at least two dense vertices.

The following result was proved in [8].

Proposition 3. For any non-pivoted tree T , b(T ) = m(T ).

We are going to prove Proposition 5 and then Corollary 1 concerning all trees. We
need a proposition concerning m(Tk) of tree atoms Tk. We define the k-atom tree
Tk, by induction on k. The T1 and T2 are isomorphic to the complete graphs on one
and two vertices, respectively. Suppose that we have constructed Tk on n vertices.
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Figure 1: T2, T3, T4, T5, from left to right

To construct Tk+1, attach a leaf to each vertex of Tk. It follows that |V (Tk)| = 2k−1.
The tree Tk is illustrated in Figure 1, for k = 2, 3, 4, 5. It can be shown that for
each k, Γ(Tk) = k and for any tree T , Γ(T ) ≥ k if and only if Tk is isomorphic to
a subtree of T . Also note that for every positive integer k, there exists a unique
non-negative integer i such that 2i + i ≤ k ≤ 2i+1 + i. The reason is that the set of

natural numbers N is partitioned into disjoint integer intervals
⋃

i≥0
[2i+ i, 2i+1+ i].

We need the following proposition.

Proposition 4. Let k be any positive integer and let i be the unique integer such

that 2i + i ≤ k ≤ 2i+1 + i. Then m(Tk) = k − i.

Proof. Assume that the vertex degrees in Tk are in a non-increasing form d1 ≥ d2 ≥
· · · ≥ dn. For T2 and T3 the related lists are 1, 1 and 2, 2, 1, 1, respectively. Note
that if d1, d2, . . . , dn is a degree sequence of Tk, then the degree sequence of Tk+1 is
d1 + 1, d2 + 1, . . . , dn + 1, 1, . . . , 1

︸ ︷︷ ︸

n

, by its construction.

It follows that the size of the degree sequence of Tk is 2k−1, |Tk| = 2k−1, and the
degree sequence is as follows:

k − 1, k − 1
︸ ︷︷ ︸

2

, k − 2, k − 2
︸ ︷︷ ︸

2

, k − 3, . . . , k − 3
︸ ︷︷ ︸

4

, . . . , 2, · · · , 2
︸ ︷︷ ︸

2k−3

, 1, . . . , 1
︸ ︷︷ ︸

2k−2

We obtain the following result for the non-increasing degree sequence d1, d2, . . . , dn
of Tk. Let j be any integer with 1 < j ≤ n such that 2t−1 < j ≤ 2t, for some integer t.
Then dj = k−t = k−⌈log j⌉ also we have d1 = k−1. We show this by the induction
on k. At first we consider d1. In T1, which is a single vertex, we have d1 = 0. Suppose
that in Ti we have d1 = i− 1. As we mentioned before, in the degree sequence of Ti+1,
the greatest degree is d1+1 which means in Ti+1 we have d1 = i. Consider now dj for
1 < j ≤ n. For k = 2, T2, we have d2 = 1 = k − ⌈log 2⌉. In Ti, we have |Ti| = 2i−1.
Assume that the vertex degrees in Ti are in a non-increasing form d1, d2, · · · , d2i−1.
Suppose that for any integer j, with 1 < j ≤ 2i−1, we have dj = i− ⌈log j⌉. In Ti+1
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the vertex degree sequence will be as d1+1, d2+1, · · · , d2i−1 +1, 1, · · · , 1. Denote by
d′j the j-th vertex degree in the degree sequence of Ti+1. For any j with 2 ≤ j ≤ 2i−1

we have d′j = dj + 1 = i − ⌈log j⌉ + 1. Also for any j with 2i−1 < j ≤ 2i we have
d′j = 1 which means d′j = i− ⌈log j⌉+ 1.

Write for simplicity k−i = p. To prove the proposition, it suffices to show dp ≥ p−1
and dp+1 < p. Let k = 2i+ i+ r for some 0 ≤ r ≤ 2i+1−2i, hence p = k− i = 2i+ r.
By the above expression for dj we obtain dp = d2i+r = k − i− 1 = p− 1. From the
other side,

dp+1 = d2i+r+1 = k−⌈log (2i + r + 1)⌉ = (2i+ i+r)−⌈log (2i + r + 1)⌉ < 2i+r = p.

�

We use Proposition 4 in the following result.

Proposition 5. For any positive integer k, k − ⌊log(k − 1)⌋ ≤ b(Tk).

Proof. It follows from Proposition 4 that k−⌊log(k−1)⌋ ≤ m(Tk) ≤ k−⌊log k⌋+1
since ⌊log k⌋−1 ≤ i ≤ ⌊log(k−1)⌋. Note that dense vertices of Tk induces a subtree
of Tk. Hence every other vertex of Tk has at most one neighbor in this subtree.
Therefore the distinguished vertex v does not exist by the condition (iii)′ and Tk is
not pivoted. By Proposition 3, b(Tk) = m(Tk) and the above-mentioned inequalities
for m(Tk) hold for b(Tk), i.e.

k − ⌊log(k − 1)⌋ ≤ b(Tk) ≤ k − ⌊log k⌋ + 1.

�

It can be easily proved that trees are b-monotone. This result can also be deduced
from a result of [10] that graphs of girth at least five are quasi-monotonous. We
obtain the following corollary which validates Conjecture 1 for trees.

Corollary 1. Let T be a tree graph. Then

Γ(T )− ⌊log(Γ(T )− 1)⌋ ≤ b(T ).

3 Cactus graphs

A graph G is cactus if each block of G is isomorphic to an edge or a cycle, where by
a block we mean any maximal 2-connected subgraph in the graph. The b-chromatic
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Figure 2: A cactus graph which is not b-monotone.

number of cactus graphs was studied in [2]. Cactus graphs are not necessarily
b-monotone. Figure 2 illustrates a cactus graph which is not b-monotone, where
b(G \ v) = 4 and b(G) = 3.

Suppose that G is any cactus graph with Γ(G) = k and C be any Grundy coloring
of G using k colors. Let H be the subgraph of G corresponding to C, as defined
previously in the introduction.

Lemma 1. Let G be a cactus graph and i with 2 ≤ i ≤ t be a fixed integer and v be

any vertex of Li. Denote by CH(v) the set of children of v. Let w, z ∈ CH(v). If

w is adjacent to some vertex in Hi+1 \ CH(v), then z is not adjacent to any vertex

of Hi+1 \ CH(v).

Proof. Suppose that x and y are two vertices in Hi+1 \ CH(v) such that w is
adjacent to x and z is adjacent to y. There exist three paths P , Q and R from vk to
v, x and y, respectively. We obtain two cycles C : vkQxwvPvk and C ′ : vkRyzvPvk
which intersect in at least two vertices. In other possibilities too, we obtain two
cycles intersecting in at least two vertices. This contradicts the fact that G is a
cactus graph. �

The next theorem validates Conjecture 1 for the cactus graphs.

Theorem 1. Let G be a b-monotone cactus graph. Set Γ(G) = k. Then b(G) ≥
k − 2⌊log k⌋.

Proof. The assertion obviously holds for k ≤ 6. For 7 ≤ k ≤ 9 we can easily check
that a cactus graph of Grundy number k has either a triangle or an induced P5

or C5. Each of which has b-chromatic number 3. Since G is b-monotone then the
assertion holds for k ≤ 9.
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Assume hereafter that k > 9. Let C be any Grundy coloring of G with k colors
and H be the subgraph corresponding to C. Recall that H is consisted of the levels
L1, . . . , Lt, for some t in which L1 = {vk} and L2 = {v1, . . . , vk−1}. The color of vi
is i and vi is adjacent to vk for each i 6= k. Let p = k− 2⌊log k⌋. In the following we
obtain an induced subgraph of G which admits a b-coloring using p colors. In fact
we obtain such an induced subgraph of G by recoloring some portion of G so that
the resulting coloring is a b-coloring with p colors.

Recoloring Process:

As we mentioned, we are going to perform a recoloring on a portion of G. The
colors are coming from a set of colors, S. We describe the recoloring process by
using cases. Each case corresponds to the recoloring process for L1, L2, L3, L4 and
Li, i ≥ 5. Then we prove that for each i with p − 1 ≤ i ≤ k − 1, the vertex vi has
all colors 1, . . . , p in its closed neighborhood N [vi] and after recoloring of L4, any
recolored vertex u of L3 with initial color p − 1 has all colors 1, . . . , p in its closed
neighborhood. Likewise, we prove that after recoloring of Li, each recolored vertex
u of Li−1 with c(u) ≥ p− 1 has all colors 1, . . . , p in its closed neighborhood.

Let S = {1, . . . , 2p−k−1, . . . , p−1, p} be an ordered set of colors to be used in the
recoloring process. At each step of the recoloring process, some colors are removed
from S and S is updated by this removal. Note that the procedure of recoloring
stops whenever S is empty. Also note that the following recoloring process may
cause two adjacent vertices with a same new color. This problem is resolved later
by a trick. Denote the resulting recoloring by C ′ and the new color of any vertex v
is denoted by c′(v). In L1, assign the color p to vk and remove the value p from S.
In L2, recolor vp−1, . . . , vk−1 by 2p−k−1, . . . , p−1, respectively. Remove the values
of the set {2p− k − 1, . . . , p− 1} from S. The color of other vertices in L2 remains
unchanged. The situation is depicted in Figure 3. We should mention that for all
values 13 < k, we have 2p− k− 1 = k − 4⌊log k⌋ − 1 ≥ 1. For the case 10 ≤ k ≤ 13
(in which 2p− k − 1 = k − 4⌊log k⌋ − 1 < 1), we have S = {1, . . . , p− 1, p} and we
recolor vertices v7, v8, . . . , vk−1, vk by 1, 2, . . . , p− 1, p, respectively. It means that in
the vertex v7 ∈ L2 the set S becomes empty and therefore the procedure is finished
in L2 .

We recolor the vertices of L3. Assume that the vertices of L3 are presented according
to an arbitrary but fixed ordering. Let w be a vertex of L3 whose color is c(w) in
the Grundy coloring C. Then w belongs to CH(vi), for some vi ∈ L2. Assume
that c(w) ≤ p − 2. If c(w) is the same as the new color of vi, then change the
color c(w) to p − 1. Otherwise, the color of w remains unchanged. Note that if
c(w) ≥ p − 1 and the new color of vi equals c(w) then c(w) = p − 1. In case that
none of the above situations happen, assign the greatest color in S to w, update S
by removing this color from S and go to another vertex in L3. In this step for each
i with p− 1 ≤ i ≤ k, the vertex vi has all colors 1, . . . , p in its closed neighborhood.
This is because, for each i with p − 1 ≤ i ≤ k − 1, the vertex vi has all colors
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Figure 3: Recoloring process in cactus graphs (related to Theorem 1)

1, . . . , p− 2 in its neighborhood in the primary Grundy coloring. In the recoloring
process these colors remain unchanged unless for the neighbor of vi, say u, with color
c(u) = c′(vi). Here in the recoloring process the vertex u receives new color p − 1,
i.e. c′(u) = p− 1. Also vk with new color p is in the neighborhood of vi. Therefore
in this step vi has all colors 1, . . . , p in its closed neighborhood, N [vi]. In the case
i = k, vk is adjacent to v1, . . . , vp−2 with colors respectively 1, . . . , p − 2 and note
that these colors do not change in the recoloring process. Also vk, itself, has new
color p and is adjacent to vk−1 which is recolored newly by p− 1. Therefore in this
step vk has all colors 1, . . . , p in its closed neighborhood, N [vk].

Now consider the vertices of L4 according to a fixed ordering. Let y be a vertex in
L4 with color c(y) in the coloring C. Then, y belongs to CH(x) for some x ∈ L3

and x belongs to CH(vi) for some vi ∈ L2. If the color of x is unchanged, do not
change the color of y. Now suppose that x has been recolored. If c(y) ≤ p− 2 and
c′(x) 6= c(y) or c′(vi) 6= c(y) then, the color of y remains unchanged. If c(y) ≤ p− 2
and x is recolored by c(y) then, we recolor y by p. If c(y) ≤ p−2 and vi is recolored
by c(y) then, we recolor y by p − 1. If none of the above situations happens (i.e.
c(y) ≥ p− 1) then, assign the greatest color in S to y as its new color. Update S by
removing the assigned color from it and go to another vertex in L4. Note that after
recoloring of L4, any recolored vertex u of L3 with c(u) ≥ p−1 has all colors 1, . . . , p
in its closed neighborhood. We argue this for the case c(u) = p−1. Let u ∈ CH(vi).
The vertex u has all colors 1, . . . , p− 2 in its neighborhood in the primary Grundy
coloring. In the recoloring process these colors remain unchanged unless for some
neighbors of u, say y and z, for which we have c(y) = c′(u) and c(z) = c′(vi). Here
in the recoloring process the vertices y and z receive new colors p and p − 1, i.e.
c′(y) = p and c′(z) = p− 1.

Now we explain a general case Li. Let y be any vertex in Li. Then y belongs to
CH(x) for some vertex x ∈ Li−1 and x belongs to CH(w) for some w ∈ Li−2. If x has
not been recolored in previous levels, then keep the color of y unchanged. Suppose
that the color of x has been changed in the previous stage. If c(y) ≤ p−2 and x or w
are not recolored by c(y) then, its color remains unchanged. If c(y) ≤ p− 2 and x is
recolored by c(y) then, we assign the color p to y. If c(y) ≤ p− 2 and w is recolored
by c(y) then, we recolor y by p−1. If none of above situations happens then, assign
the greatest color in S to y as its new color. Update S and go to another vertex
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in Li. Note that each recolored vertex u of Li−1 with c(u) ≥ p − 1 has all colors
1, . . . , p in its closed neighborhood.

We continue the recoloring process until we confront with at least p vertices whose
primary colors (i.e. in C) is at least p. It will be shown, later in a claim, that if
we continue the recoloring process until at most the level ⌊log k⌋+ 3, i.e. L⌊log k⌋+3,
then p vertices of color ≥ p are surely visited.

Pruning stage:

In this stage we prune (remove) some vertices from the recolored subgraph.

Note that the desired induced subgraph we are looking for, is finally constructed
on the remained vertices. Therefore the following removal of some vertices does not
make any problem. Starting from L3, we remove all vertices w in L3 satisfying the
following properties. For some i ≤ p − 2, w ∈ CH(vi) and w /∈ CH(vj), for any
j > p− 2. In general, we remove all vertices w in Li, i ≥ 4, satisfying the following
properties. For some y with c(y) ≤ p− 2, w ∈ CH(y) but w /∈ CH(y′), for any y′

with p− 2 < c(y′). The pruning is continued until the level ⌊log k⌋ + 3. Hence, for
each i ∈ {3, 4, . . . , ⌊log k⌋ + 3} the level Li is pruned. Denote by L′

i the remaining
vertices in Li.

Properness of the recoloring:

As we mentioned before some adjacent vertices may receive the same color in the
recoloring process. We explain now some additional local recoloring to resolve this
problem. Recall that the primary color of each vertex is denoted by c(v) and in case
that its color is changed then its new color is denoted by c′(v). The recoloring of
L2 remains proper unless for some i and j, vi is adjacent to vj and c(vj) 6= c′(vj) =
i = c(vi) = c′(vi). Note that this is the only case where properness of color i in L2

fails, because each color c ∈ S is assigned to just one vertex of vi with primary color
i ≥ p − 1, and hence no pair of vertices from vp−1, . . . , vk−1 receive the same color
from S. In this situation, it’s enough to remove vi from L′

2.

Assume that the recolored C ′ is proper on L′
1 ∪L′

2 ∪ . . .∪L′
i−1. Now we discuss the

vertices in L′
i. The recoloring is proper in this level too unless some vertex v ∈ L′

i is
adjacent to a vertex u ∈ L′

i−1 ∪ L′
i with the same color, i.e. c′(u) = c′(v). We apply

the following final trick in order to make the coloring proper.

A trick to make the recoloring proper:

Let v ∈ CH(w) and u ∈ L′
j , j ∈ {i, i− 1}. We have the following possibilities.

Case 1. u /∈ CH(w).

i. If c(v) ≥ p− 1. In this case we have either c(v) 6= c′(v) = c′(u) = c(u) ≤ p− 2
or c(v) = c′(v) = c′(u) 6= c(u). In the first case, c(v) 6= c′(v) = c′(u) =
c(u) ≤ p− 2, let u ∈ CH(x). Since we have the vertex u in this case, we know
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that the vertices of CH(x) are not removed in the pruning stage. Therefore
c(x) ≥ p − 1 and consequently we have |CH(x)| ≥ p − 2. For any k ≥ 12,
we have p − 2 ≥ 4, which means there are at least 4 vertices in CH(x) with
primary color less than p − 1. On the other hand, based on the recoloring
method, at most two vertices among CH(x) with primary color less than p−1
are recolored. It follows that there exists a vertex y such that y ∈ CH(x),
y 6= u and c′(y) = c(y) ≤ p− 2. Also note that by Lemma 1, y is not adjacent
to any vertex of L′

i−1 ∪ L′
i (except x). In this case exchange the colors of u

and y. In case that k ∈ {10, 11}, we have already shown that the recoloring is
finished in L2. Hence such a possibility does not happen.

In the case c(v) = c′(v) = c′(u) 6= c(u), take a z ∈ CH(w) with c(z) ≤ p− 2.
Such a vertex exists because k > 9. Also by Lemma 1, z is not adjacent to
any vertex of L′

i−1 ∪ L′
i (except w). Exchange the colors of v and z.

ii. If c(v) < p − 1. Let x be any vertex in CH(w) with c(x) ≤ p − 2. Such a
vertex exists because k > 9. Also by Lemma 1, x is not adjacent to any vertex
of L′

i−1 ∪ L′
i (except w). Exchange the colors of v and x.

Case 2. u ∈ CH(w). In this case v and u are two adjacent vertices in CH(w) and
we may assume that c′(u) = c(u) = c′(v) 6= c(v). Remove u from L′

i.

Case 3. u = w. This case happens only when c(v) = c′(v), c(u) 6= c′(u). In this case
remove v from L′

i.

Denote by D the set of all vertices w with c(w) ≥ p−1 and c(w) 6= c′(w). Denote by
G′ the subgraph of G induced on the remaining vertices in L′

1 ∪L′
2 ∪ . . .∪L′

⌊log k⌋+3.
Note that for each vertex w ∈ D any color from {1, 2, . . . , p} appears in its closed
neighborhood N [w] in G′. Also note that by the method of recoloring, when a vertex
receives a color of S, the color is removed from S and therefore no other vertex gets
the same color in future. In other words, there are not two vertices in D with a
same color.

To complete the proof, it suffices to show |D| ≥ p. By proving this fact we conclude
that G′ admits a b-coloring using p colors, as desired.

Claim: |D| ≥ p.

Proof of the claim: We count the vertices in L′
1 ∪ L′

2 ∪ . . . ∪ L′
⌊log k⌋+3 of primary

color ≥ p−1. To do so, we first show by the induction on i ≥ 2 that for any primary

color j ≥ p− 1, there are at least
(k − j − i+ 1

i−2

)
many vertices in L′

i ∩D. We first
show validity of the induction hypothesis for i = 2.

Regarding to the recoloring of vertices in L′
2, note that vp−1, . . . , vk−1 satisfy member-

ship in D. In other words, there are exactly one vertex of each color p−1 ≤ j ≤ k−1
in L′

2 ∩D. This proves the assertion for i = 2.

Suppose now that the induction hypothesis holds in all levels L′
1, . . . , L

′
i. We prove
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it for the next level L′
i+1. We have

(k − j − i+ 1
i−2

)
vertices of primary color j in

L′
i ∩ D. We have to show that there are

(k − j − i
i−1

)
vertices of primary color j in

L′
i+1 ∩D.

First we are going to explain that there are at least k − p− (2i− 5) distinct colors
in L′

i ∩ D all greater than p − 1 and the largest one is at least k − 2i + 3. In
each level, a vertex with a greater color (a greater number in fact), requires more
number of neighbors. This forces the next level to contain more vertices with larger
colors. And this situation will be repeated for the other levels. Therefore, since we
desire to obtain a lower bound for |D|, we estimate the possible smallest size for
D among all possibilities for the edge connections in the subgraph of G induced on
L′
1∪L′

2∪ . . .∪L′
⌊log k⌋+3. Hence, in the following we look for a situation in which the

maximum color in each level L′
2, . . . , L

′
⌊log k⌋+3 is the possible smallest value, provided

that the whole coloring satisfies the Grundy coloring properties.

Based on the method of recoloring, there are all colors p− 1, . . . , k− 1 in L′
2. In L′

3,
k − 2 is the greatest color which is possible to appear (as a child of vk−1). Because
of the above-mentioned minimality requirement for the cardinality of D, we may
assume that vk−1 is adjacent to vk−2 and therefore the color k − 2 does not appear
in L′

3. On the other hand, among the vertices of L′
2, no more than two vertices are

adjacent (because the graph is a cactus). It means that the colors p − 1, . . . , k − 3
appear in L′

3 (actually we omitted the case in which color k − 2 appears in L′
i).

Similarly, in an arbitrary level L′
i, assume that c is the greatest possible color which

can be existed in L′
i. Consider a case in which the vertex with color c has its

neighbor with color c− 1 in the same level, L′
i. This way, we describe a coloring in

which the greatest color of a level is the smallest possible one. In fact we describe
the aforesaid situation in which D has the smallest possible size. Doing this for
L′
2, . . . , L

′
i, the greatest color in L′

i is at least k− 2i+3. Therefore there are at least
(k − 2i+ 3)− (p− 2) = k − p− 2i+ 5 distinct colors from color p− 1 to the color
k − 2i+ 3 in L′

i.

In L′
i the vertices are the children sets (i.e. all children of a vertex) of the vertices in

L′
i−1. Among the vertices of a children set of color at least j+1, at most one vertex

is adjacent to a color j in L′
1 ∪ L′

2 ∪ . . . ∪ L′
i (by Lemma 1). Therefore in a children

set, at most one vertex with color at least j+1 does not introduce a color j to L′
i+1.

Assume that in every children set there is a vertex which does not introduce color
j to L′

i+1. Without loss of generality, assume that none of the vertices with color
j+1 introduce a color j to L′

i+1 (in fact this is a situation with the smallest number
of colors j in L′

i+1). Hence each vertex of L′
i of color c, c ∈ {j + 2, . . . , k − 2i+ 3},

introduces one vertex of color j to be put in L′
i+1 ∩D. It follows that the number

of vertices of color j in L′
i+1 ∩D is at least
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(
k − j − i− 1

i− 2

)

︸ ︷︷ ︸

vertices of color j + 2

+

(
k − j − i− 2

i− 2

)

︸ ︷︷ ︸

vertices of color j + 3

+ · · ·+

(
i− 2

i− 2

)

︸ ︷︷ ︸

vertices of color k − 2i+ 3

=

(
k − j − i

i− 1

)

.

In the following we count the total number of vertices in a level L′
i ∩D. For every

i, there are at least
(k − j − i+ 1

i−2

)
many vertices in L′

i ∩ D with primary color j,
p− 1 ≤ j. Note that there are at least k − p− (2i− 5) distinct colors in L′

i ∩D all
more than p − 1 and hence the greatest one is at least k − 2i + 3. This argument
shows that there are overall at least

k−2i+3∑

j=p−1

(
k − j − i+ 1

i− 2

)

=

(
k − p− i+ 3

i− 1

)

vertices in L′
i ∩D. We end this process in L′

⌊log k⌋+3. Note that none of the removed
vertices in the pruning process, belongs to D, so removal of them does not decrease
the cardinality of D.

We obtain the following lower bound for D

|D| ≥

⌊log k⌋+3
∑

i=1

(
k − p− i+ 3

i− 1

)

.

By replacing k = 2m + t, 0 ≤ t ≤ 2m − 1, and k − p = 2m we have

|D| ≥

m+3∑

i=1

(
2m− i+ 3

i− 1

)

≥

m+3∑

i=1

(
m+ 1

i− 1

)

= 2m+1 ≥ 2m + t− 2m = k − 2m = p.

It implies that G′ admits a b-coloring using p colors, therefore b(G′) ≥ k − 2⌊log k⌋
and so b(G) ≥ k − 2⌊log k⌋. �

In the following we present an example of a b-monotone cactus graph having the
Grundy number k and arbitrarily large b-chromatic number.

For two positive integers 4 ≤ k and t, k < t, consider a set of t vertices v1, . . . , vt
such that every pair of vertices vi and vi+1, 1 ≤ i ≤ t− 1, are adjacent and there is
no other edge among the vertices. Attach t − 1 vertices ui,j, 1 ≤ j ≤ t j 6= i, to a
vertex vi for all 1 ≤ i ≤ t. Also attach a k-atom Tk by amalgamating u2,1 with one
vertex from Tk which has degree one. Call this graph G. There are not t+1 vertices
with degree at least t in G. Therefore b(G) ≤ t. Now we present a b-coloring for
G with t colors. Assign colors 1, . . . , t, respectively to the vertices v1, . . . , vt. Then
for every vertex ui,j put a color j. Now with any proper k-coloring of the subgraph
Tk, in which u2,1 has color 1, we have a b-coloring of G with t colors. On the other
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hand, for a Grundy coloring of G, the vertices ui,j (except u2,1) can not have color
more than 2 and therefore the vertices vi, 1 ≤ i ≤ t, can not have color more than
5. Also no vertex in the subgraph Tk can be colored with a color greater than k.
Therefore the Grundy number of G is at most k.

4 Some forbidden subgraphs

Let H1, . . . , Hk be any fixed set of graphs. A graph G is (H1, . . . , Hk)-free if G does
not contain any induced subgraph isomorphic to Hi, for each i. In the following by
K4 \ e we mean a graph obtained by removing any edge e from K4. Also C4 stands
for the cycle on four vertices. The next theorem proves Conjecture 1 for the family
of (K4 \ e, C4)-free graphs.

Theorem 2. Let G be a (K4 \ e, C4)-free b-monotone graph. Then

⌊Γ(G)/2⌋ ≤ b(G).

Proof. Let C be a Grundy coloring of G using k = Γ(G) colors and H be the
subgraph corresponding to C. Recall that H consists of the levels L1, . . . , Lt for
some t in which L1 = {vk} and L2 = {v1, . . . , vk−1}. The color of vi is i and vi is
adjacent to vk, for each i 6= k. Set p = ⌊k/2⌋. Suppose first that k is even. In the
following we recolor some vertices and at the same time remove some vertices in
order to obtain a subgraph of G with b-chromatic number at least p. In L1, recolor
vk by p. In L2, assign colors 1, . . . , p− 1 to vp+1, . . . , vk−1, respectively and remove
vertices v1, . . . , vp. Note that for any j with 1 ≤ j ≤ k − p − 1, vp+j receives new
color j. In other words, c′(vp+j) = j.

In general case, let y ∈ CH(vp+l), l ≤ p − 1, be a vertex of L3 with c(y) = n. If
l 6= n ≤ p − 1 and the vertex vp+l is not adjacent to vp+n then keep y. Otherwise,
remove y from L3. Note that vp+n has the new color n. Hence vp+l has all colors
1, . . . , p in its closed neighborhood. Do this operation for all vertices of CH(vp+l).
We continue this process until vk−1 and repeat the same technique for this vertex.
We obtain that all the vertices vp+1, . . . , vk−1, vk have colors 1, . . . , p in their closed
neighborhood. Denote by L′

1, L
′
2 and L′

3, the remaining vertices from the levels
L1, L2 and L3, respectively. Define G′ = G[L′

1 ∪ L′
2 ∪ L′

3].

We claim that the resulting coloring for G′ is proper. The color of all vertices in
L′
1 ∪ L′

2 is changed and no color is assigned to more than one vertex in L′
1 ∪ L′

2;
therefore properness is met in these levels. Assume on the contrary that there is a
vertex z ∈ L′

3, with c′(z) = i, which is adjacent to a vertex y with c′(y) = i. Since
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vk

vp+i w

z or

vk

vp+i w

z

Figure 4: A situation in the proof of Theorem 2

the color of vertices in L′
3 are not changed, then c′(z) = c(z) and y must be in L′

2. In
fact y = vp+i. According to the rules of the recoloring, there is a vertex w ∈ L′

2 which
is not adjacent to vp+i and also z ∈ CH(w). Here we obtain either an induced C4

or an induced K4 \ e on {vk, vp+i, z, w}, a contradiction. This situation is illustrated
in Figure 4. It follows that the recoloring is proper and G′ has a b-coloring with p
colors and {vk, vk−1, · · · , vp+1} as its color-dominating set. Since G is b-monotone,
we have p ≤ b(G′) ≤ b(G).

In the case that k is an odd number, remove the class of vertices of color k from C
and denote the resulting subgraph by G0. We have Γ(G0) = k−1 and G0 satisfies the
conditions of the previous case. We obtain ⌊Γ(G)/2⌋ = (k − 1)/2 ≤ b(G0) ≤ b(G).
�

In the following we show that there is a (K4 \ e, C4)-free graph G such that b(G) =
⌊Γ(G)/2⌋+ 1.

For any positive integer t we construct a graph Gt as following. Consider a complete
graph on t vertices v1, . . . , vt. Corresponding to each vi attach a complete graph
K(vi) on t vertices, by amalgamating vi with one vertex from K(vi). We have
V (K(vi)) ∩ V (K(vj)) = ∅, for every i, j with 1 ≤ i < j ≤ t. Denote the resulting
graph by Gt. The graph G4 is depicted in Figure 5. We show that Γ(Gt) = 2t− 1
and b(Gt) = t.

We know that for any graph G, Γ(G) ≤ ∆(G) + 1. ∆(Gt) = 2t− 2 hence Γ(Gt) ≤
2t− 1. Now we present a Grundy coloring for Gt with 2t− 1 colors. Assign colors
t, . . . , 2t−1 respectively to the vertices v1, . . . , vt. Then for every vertex in K(vi), i ∈
{1, . . . t}, except vi, assign a color c from the set {1, . . . , t− 1}, such that no pair of
vertices in K(vi) have the same color. This is a Grundy coloring of Gt with 2t− 1
colors.

Since m(Gt) = t and b(Gt) ≤ m(Gt), we have b(Gt) ≤ t. Now we present a b-
coloring for Gt with t colors. For each i ∈ {1, . . . , t}, assign color i to the vertex
vi. Then for every other vertex in K(vi), i ∈ {1, . . . t}, assign a color c from the set
{1, . . . , t}, such that c 6= i. Also, it is easily seen that Gt is (K4 \ e, C4)-free.

The following corollary is a direct consequence of Theorem 2 and the fact that any
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v2v1

v3 v4

Figure 5: An (almost) sharpness example for Theorem 2

graph of girth at least 5 is b-monotone.

Corollary 2. Let G be a graph with girth at least 5. Then ⌊Γ(G)/2⌋ ≤ b(G).

In the following theorem we obtain a result for graphs of girth at least 6.

Theorem 3. Let G be a graph of girth at least 6. Then ⌊2Γ(G)/3⌋ ≤ b(G).

Proof. Set Γ(G) = k. Since every graph of girth at least 5 is b-monotone then
it suffices to find a subgraph G′ of G with b(G′) ≥ ⌊2k/3⌋. Let C be a Grundy
coloring of G using k colors and H be the subgraph corresponding to C. Recall
that H is consisted of the levels L1, . . . , Lt for some t in which L1 = {vk} and
L2 = {v1, . . . , vk−1}. There are no edges between vertices of L2, because of the
girth. The color of vi is i and vi is adjacent to vk for each i 6= k. Set p = ⌊2k/3⌋.
Suppose first that k = 3t or k = 3t + 2, for some integer t.

Recolor vk by p and vp, . . . , vk−1 by ⌊k/3⌋, . . . , p − 1, respectively. The color of
other vertices in L2 remain unchanged. To obtain G′ we put some vertices in G′

and ignore the rest of vertices. Let wi,j be an arbitrary vertex of color j in L3 and
wi,j ∈ CH(vi). If i < p then ignore wi,j. Also for p ≤ i ≤ k−2 if p ≤ j or j = c′(vi),
then ignore wi,j. Otherwise, put wi,j in G′. In the case that i = k − 1, recolor all
vertices wk−1,⌈2k/3⌉, . . . , wk−1,k−2 by 1, . . . , ⌊k/3⌋ − 1, respectively and put them in
G′. We do not change the colors of wk−1,⌊k

3
⌋, . . . , wk−1,p−2 and put these vertices too

in G′. Then ignore all other vertices of L3. Note that at this step, the resulting
recoloring has the following property. For each i with p ≤ i ≤ k − 1, the vertex vi
has all colors 1, . . . , p in its closed neighborhood N [vi].
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In L4 for every i 6= k − 1 remove CH(wi,j). For i = k − 1, let x ∈ CH(wk−1,j).
For j ∈ {⌈2k/3⌉, . . . , k − 2} keep x unchanged when c(x) ∈ {1, . . . , p} and c(x) 6=
c′(wk−1,j). Otherwise, remove x. Notice that if k is a multiple of 3, we keep the
child of wk−1,⌈2k/3⌉ of color 1 and assign the new color p to it.

Because the recoloring is occurred only in the first three levels, and since the girth
is at least 6, the resulting coloring is proper. Define D = {vp, . . . , vk−1, vk} ∪
{wk−1,⌈ 2k

3
⌉, . . . , wk−1,k−2}. Note that the vertices of D in subgraph G′ have all colors

{1, 2, . . . , p} on their closed neighborhood. It follows that D is a color-dominating
set for G′. Hence G′ is an induced subgraph in G with b-chromatic number at least
p.

In the case that k = 3t+1, for some integer t, remove the class of vertices of color k
in C and denote by G0 the resulting subgraph. We have Γ(G0) = k−1 = 3t and G0

satisfies the conditions of the previous case. We obtain ⌊2(3t)/3⌋ ≤ b(G0) ≤ b(G).
Then ⌊2k/3⌋ = 2t ≤ b(G). �

The result of Theorem 3 can be generalized for higher girths. It can be proved using
the same recoloring process that if G has girth at least 8 then ⌊3Γ(G)/4⌋ ≤ b(G).
We omit the details of the proof.

5 Concluding Remarks

One of the reviewers has mentioned that the inequality Γ(G) ≤ 2m(G) holds for
all graphs G. Hence for any family of graphs in which m(G) ≤ b(G) + 1, for any
G from the family, we immediately obtain Γ(G) ≤ 2b(G) + 2. As confirmed by
the reviewer, few families of graphs are known satisfying this property. Trees, cacti
with m ≥ 7 and graphs with girth at least 7, are some of such families, but we have
very better comparative inequalities concerning the Grundy and the b-chromatic
number of graphs in these families. We present a proof of Γ(G) ≤ 2m(G) for any G.
Let C be a Grundy coloring of G having k = Γ(G) colors. Then there are vertices
say v1, v2, . . . , vk such that d(v1) ≥ k − 1, d(v2) ≥ k − 2, . . . , d(vk/2) ≥ k/2. Let
d1 ≥ d2 ≥ . . . ≥ dn be a vertex degree of G in non-increasing form. It follows that
dk/2 ≥ (k/2) − 1 and hence m(G) ≥ k/2. Let F be any family such that for some
function f(.) and for any G from the family, one has b(G) ≥ f(m(G)). It implies
that Conjecture 1 is valid for F .
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