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Abstract
A research project on chemical AI, called the Molecular Cybernetics Project, was
launched in Japan in 2021 with the goal of creating a molecular machine that can
learn a type of conditioned reflex through the process of classical conditioning. In
this project, we have developed a learning method for the network of such learning
molecular machines, which is reported in this paper. First, as a model of a learning
molecular machine, we formulate a logic gate that can learn conditioned reflex and
introduce the network of the logic gates. Then we derive a key principle for learning,
called the flipping principle, by which we present a learning algorithm for the network
to realize a desired function.
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1 Introduction

The development of DNA nanotechnology has raised expectations for chemical AI.
Chemical AI is chemically synthesized artificial intelligence that has the ability of
learning in addition to information processing. A research project on chemical AI,
called theMolecular Cybernetics Project, was launched in Japan in 2021 [1], with the
goal of establishing an academic field called molecular cybernetics.

One of the milestones of the project is to create a molecular machine that can
learn a type of conditioned reflex through the process called classical conditioning
[2]. Classical conditioning is the process of acquiring a conditioned reflex by giving
an conditioned stimulus with an unconditioned stimulus. It was discovered by the
well-known psychological experiment of “Pavlov’s dog”:

• if one feeds a dog repeatedly while ringing of a bell, then the dog will eventually
begin to salivate at the sound of the bell, and

• if one just rings a bell repeatedly without doing anything else for the dog that
salivates at the sound of the bell, the dog will stop salivating at the sound of the
bell,

which are, respectively, called the acquisition and extinction. This project attempts to
create liposomes with different functions and combine them to artificially achieve a
function similar to classical conditioning.

If the milestone is achieved, the next step would be to configure a network of such
machines to realize more complex functions. Therefore, it is expected to establish a
learningmethod for such a network. However, there exists no learningmethod because
the learning has to be performed by the interaction of classical conditioning on the
network, which is completely different from what is being considered these days. In
fact, neural networks are well known as a learning model, where learning is performed
by adjustingweights between nodes [3], not by providing external inputs as in classical
conditioning. On the other hand, Boolean networks [4] are known as a model of the
network of logic gates and their learning has been studied, e.g., in [5], but it also differs
from learning by providing external inputs. Moreover, there are a number of results on
molecular computing, e.g., on molecular logic gates [7–10] and molecular computer
[11], whereas they are not for classical conditioning.

In this paper, we develop a method for learning a desired function in a network of
nodes, each of which can implement classical conditioning. First, classical condition-
ing is modeled as a time-varying logic gate with two inputs and single output. The two
inputs correspond to the feeding and bell ringing in Pavlov’s dog experiment, and the
gate operates as either a projection gate or a logical OR gate at each time. The gate
state, which is either projection or OR, is determined by how the inputs are given, in
a similar manner to classical conditioning. The model is called here a classical condi-
tioning gate. Based on this model, the network of classical conditioning gates and its
learning problem are formulated. The “learning” considered here refers to obtaining
a desired input–output relation of the network by steering the state of the network by
applying an appropriate input sequence and thus what “learning” means is somewhat
different from that used in the context of machine learning. For the learning, we use a
key principle to solving the problem, called the flipping principle: that the gate state
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Table 1 Truth tables of a
projection function with respect
to the first input and a logical OR

Input 1 Input 2 Output (projection) Output (OR)

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 1

of any node in the network can be flipped while preserving the state of some other
nodes. By the flipping principle, we present a learning algorithm to obtain a desired
function on the network. It should be noted that the above project assumes that classi-
cal conditioning is implemented in liposomes, whereas the proposed learning method
is applicable regardless of how classical conditioning is implemented.

Finally, we summarize the terminology and notation used in this paper. We consider
two types of logical gates, a projection function with respect to the first input [6] and a
logical OR. Table 1 shows the truth tables. We use x1 ∨ x2 to represent the logical OR
operation of the binary variables x1 and x2. Moreover, let

∨
i∈I xi denote the logical

OR operation of xi with respect to all the indeces in a finite set I. The composite
function of two Boolean functions h1 : {0, 1}m → {0, 1}n and h2 : {0, 1}n → {0, 1}p
is denoted by h2 ◦ h1. Finally, we introduce the equivalence relation between two
systems. Consider the systems S1 and S2, each of which is given by

Si :
{
xi (t + 1) = fi (xi (t), ui (t)),
yi (t) = gi (xi (t), ui (t)),

where i ∈ {1, 2}. Here, xi (t) ∈ {0, 1}n is the state, ui (t) ∈ {0, 1}m is the input, and
yi (t) ∈ {0, 1}p is the output of the system Si , and fi : {0, 1}n×{0, 1}m → {0, 1}n , and
gi : {0, 1}n × {0, 1}m → {0, 1}p are functions. The system S1 is said to be equivalent
to S2 or S2 is said to be equivalent to S1 if, for each z0 ∈ {0, 1}n and (w1, w2, . . .) ∈
�∞

j=0{0, 1}m , x1(t) = x2(t) and y1(t) = y2(t) hold for all t ∈ {0, 1, . . .} under
x1(0) = x2(0) = z0 and u1(t) = u2(t) = wt (t = 0, 1, . . .).

2 SystemModeling

As stated in Sect. 1, one of the milestones of the Chemical AI project is to create a
molecular machine that mimics classical conditioning. Although the word “classical
conditioning” has a broad notion in general, we focus here on one aspect of classical
conditioning, as follows.

• It is a learning process of a system with two inputs and one output. The physical
entity of the inputs and output are prespecified, and the inputs are classified as the
primary and secondary inputs.

• If the output is correlated onlywith the primary input, it will also become correlated
with the secondary input through learning process.
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• If the output is correlated with both inputs, the output will become uncorrelated
with the secondary input through learning process.

2.1 Classical Conditioning Gates

We model classical conditioning as shown in Fig. 1. It is a two-state machine that
switches between the states “PRJ” and “OR” based on the two input signals taking a
binary value. When the state is “PRJ”, the gate operates as a projection function with
respect to the first input, whose output is equal to the first input, as shown in Table 1.
On the other hand, when the state is “OR”, the gate operates as a logical OR gate,
whose output is equal to 1 if and only if at least one of the two inputs is equal to 1. The
state changes when two types of training inputs are applied. When the state is “PRJ”,
the state is changed to “OR” by entering the value (1, 1) several times in a row. On
the other hand, when the state is “OR”, the state is changed to “PRJ” by entering the
value (0, 1) several times in a row.

This model can be interpreted in terms of Pavlov’s dog experiment as follows. The
state “PRJ” corresponds to responding only when the dog is being fed, while the state
“OR” corresponds to responding when the dog is being fed or hears the bell. Then
the input value (1, 1) is interpreted as the stimulus for acquisition, i.e., feeding with
bell ringing, and (0, 1) is interpreted as the stimulus for extinction, i.e., bell ringing
without feeding.

The model of the above classical conditioning gate is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

OR if x(t − s + 1) = PRJ and
(v(τ ), w(τ)) = (1, 1) (τ = t, t − 1, . . . , t − s + 1),

PRJ if x(t − s + 1) = OR and
(v(τ ), w(τ)) = (0, 1) (τ = t, t − 1, . . . , t − s + 1),

x(t) otherwise,

y(t) =
{

v(t) if x(t) = PRJ,
v(t) ∨ w(t) if x(t) = OR,

(1)

where x(t) ∈ {PRJ,OR} is the state, v(t) ∈ {0, 1} and w(t) ∈ {0, 1} are the inputs,
y(t) ∈ {0, 1} is the output, and s ∈ {1, 2, . . .} is a period, called the unit training
time. The state equation represents classical conditioning, while the output equation
represents the resulting input–output relation at time t .

The following result presents a basic property of (1), which will be utilized for
training a network of classical conditioning gates.

Lemma 1 Consider the classical conditioning gate in (1) with x(t) = x̃ , where t ∈
{0, 1, . . .} and x̃ ∈ {PRJ,OR} are arbitrarily given. Then the following statements
hold.

(i) If (v(t), w(t)) = (0, 0), then y(t) = 0 and x(t + 1) = x(t).
(ii) If (v(t), w(t)) = (1, 0), then y(t) = 1 and x(t + 1) = x(t).

Proof Trivial from (1). ��
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Fig. 1 Classical conditioning
gate

This shows that there exists an input value that sets an arbitrary value at the output
while preserving the state value.

2.2 Network of Classical Conditioning Gates

Now, we introduce a network of classical conditioning gates, as shown in Fig. 2. The
network has a binary tree structure, where each gate, except for the leftmost gates, is
connected to two other gates on the input side. The network has m layers, indexed by
1, 2, . . . ,m from the input side. The i th layer has 2m−i gates, and thus the network
has

∑m
i=1 2

m−i gates. We use ni and n to denote these numbers, i.e., ni = 2m−i

(i = 1, 2, . . . ,m) and n = ∑m
i=1 2

m−i = ∑m
i=1 ni .

We introduce the following notation for the network. The network with m layers is
denoted by �(m). The j th gate from the top in the i-layer is called node (i, j), and let
xi j (t) ∈ {PRJ,OR}, vi j (t) ∈ {0, 1}, wi j (t) ∈ {0, 1}, and yi j (t) ∈ {0, 1} be the state,
first input, second input, and output of node (i, j), respectively. The pair of vi j (t) and
wi j (t) is denoted by ui j (t) ∈ {0, 1}2. We use x̄i j (t) to represent the flipped value of
xi j (t): x̄i j (t) = PRJ for xi j (t) = OR, while x̄i j (t) = OR for xi j (t) = PRJ.

Next, let us consider the collection of signals. We use N := {(1, 1), (1, 2), . . . ,
(m, 1)}, which has n elements, to represent the set of node indeces, and use Ni ⊂
N to represent the set of node indeces in the i th layer. Let Xi (t) ∈ {PRJ,OR}ni ,
Ui (t) ∈ ∏ni

j=1({0, 1} × {0, 1}), and Yi (t) ∈ {0, 1}ni be the collective state, input, and
output of the i th layer. Let also X(t) := (X1(t), X2(t), . . . , Xm(t)) ∈ {PRJ,OR}n1 ×
{PRJ,OR}n2 × · · · × {PRJ,OR}nm = {PRJ,OR}n , U (t) := U1(t), and Y (t) :=
Ym(t). According to this notation, the state, input, and output of the network�(m) are
expressed as X(t), U (t), and Y (t), respectively. Note that Y (t) = Ym(t) = ym1(t).

Figure 3 shows an example for m = 3. In this case, we have n1 = 4, n2 = 2,
n3 = 1, n = 7, N = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1)}, X1(t) =
(x11(t), x12(t), x13(t), x14(t)), X2(t) = (x21(t), x22(t)), X3(t) = x31(t), U1(t) =
(u11(t), u12(t), u13(t), u14(t)), U2(t) = (u21(t), u22(t)), U3(t) = u31(t), Y1(t) =
(y11(t), y12(t), y13(t), y14(t)), Y2(t) = (y21(t), y22(t)), Y3(t) = y31(t), X(t) =
(x11(t), x12(t), x13(t), x14(t), x21(t), x22(t), x31(t)), U (t) = (u11(t), u12(t), u13(t),
u14(t)), and Y (t) = y31(t).
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reyal2reyal1reyal layer 

Fig. 2 Network of classical conditioning gates

Fig. 3 Network �(3) with
X(0) =
(PRJ, PRJ,OR,PRJ,OR,OR, PRJ)

Since a classical conditioning gate operates as either a projection function or
a logical OR, the possible input–output relation of �(m) is limited to a logical
OR of some of the inputs of �(m). Moreover, the output Y (t) always depends
on the input v11(t), that is, there exists a function g : {0, 1}2n1−1 → {0, 1} such
that Y (t) = v11(t) ∨ g(w11(t), v12(t), w12(t), . . . , v1(2m−1)(t), w1(2m−1)(t)), because
v11(t) propagates through nodes (i, 1) (i = 1, 2, . . . ,m) operating as a projection
function or a logical OR. For example, y3(0) = v11(0) ∨ v12(0) for the network �(3)
in Fig. 3. This fact is formalized as follows.

Lemma 2 Consider the network �(m) with X(t) = X̃ , where t ∈ {0, 1, . . .} and
X̃ ∈ {PRJ,OR}n are arbitrarily given. The following statements hold.
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(i) The input–output relation at time t is given by

Y (t) =
⎛

⎝
∨

j∈J1
v1 j (t)

⎞

⎠ ∨
⎛

⎝
∨

j∈J2
w1 j (t)

⎞

⎠ (2)

for some J1 ⊆ {1, 2, . . . , n1} and J2 ⊆ {1, 2, . . . , n1}, i.e., there exists a pair
(J1, J2) such that (2).

(ii) Consider the sets J1 and J2 satisfying (2). Then 1 ∈ J1 holds. Moreover, if v11(t) =
1, then Y (t) = 1. �
The following result shows a structural property that indicates which inputs affect

node (i, j).

Lemma 3 Consider the network �(m) with X(t) = X̃ and any node (i, j) ∈
{2, 3, . . . ,m}×{1, 2, . . . , ni }, where t ∈ {0, 1, . . .} and X̃ ∈ {PRJ,OR}n are arbitrar-
ily given. Let the input U (t) be divided into 2ni blocks of equal size and let [U (t)]k ∈
{0, 1}2i−1

be the kth block. Then there exist functions h1 : {0, 1}2i−1 → {0, 1} and
h2 : {0, 1}2i−1 → {0, 1} such that

vi j (t) = h1([U (t)]2 j−1), wi j (t) = h2([U (t)]2 j ). (3)

Proof It is trivial from the definition of �(m). See Fig. 2. ��
Lemma 3 is illustrated as follows. Consider the network �(3) in Fig. 3 and

node (2, 1). Then U (t) is divided into 4 blocks (where 2n2 = 22): [U (t)]1 =
(v11(t), w11(t)), [U (t)]2 = (v12(t), w12(t)), [U (t)]3 = (v13(t), w13(t)), and
[U (t)]4 = (v14(t), w14(t)). From Lemma 3, we have v21(t) = h1([U (t)]1) and
w21(t) = h2([U (t)]2) for some h1 : {0, 1}2 → {0, 1} and h2 : {0, 1}2 → {0, 1}. This
is consistent with the interdependence between signals in Fig. 3.

3 Problem Formulation

In this paper, we aim at realizing a desired Boolean function on the network at a finite
time T .

Consider node (i, j) ∈ N at time T . Let fi j : {0, 1}2 → {0, 1} be the input–output
map of node (i, j) “at time T .” By definition, fi j is either a projection function with
respect to the first input or a logical OR in the moment. Then the input–output map of
layer i at time T , denoted by fi , is expressed as

fi ((vi1(T ), wi1(T )), (vi2(T ), wi2(T )), . . . , (vi(2m−i )(T ), wi(2m−i )(T )))

= [ fi1(vi1(T ), wi1(T )) fi2(vi2(t), wi2(T )) · · ·
fi(2m−i )(vi(2m−i )(T ), wi(2m−i )(T )))]�, (4)

which allows us to represent the output of the network �(m) at time T as

Y (T ) = fm ◦ fm−1 ◦ · · · ◦ f1
(
(v11(T ), w11(T )), (v12(T ), w12(T )), . . . ,
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(v1(2m−i )(T ), w1(2m−i )(T ))
)
. (5)

By noting (5), our problem is formulated as follows.

problem 1 Consider the network �(m) with X(0) = X̃ , where X̃ ∈ {PRJ,OR}n is
arbitrarily given. For each (i, j) ∈ N, suppose that fi j : {0, 1}2 → {0, 1} is given as
either a projection function with respect to the first input or a logical OR. Find a time
T ∈ {1, 2, . . .} and an input sequence (U (0),U (1), . . . ,U (T − 1)) ∈ ∏T−1

τ=0 {0, 1}2n1
such that (5). ��

The following point should be noted for the problem. By the definitions of classical
conditioning gates and networks, if the network is in the state X(T ) = X∗ for an
X∗ ∈ {PRJ,OR}n , (5) holds for some functions f11, f12, . . . , fm1 that are either a
projection function with respect to the first input or a logical OR gate. Conversely, if
f11, f12, . . . , fm1 are arbitrarily given, there exists a (not necessarily unique) vector
X∗ ∈ {PRJ,OR}n such that X(T ) = X∗ and (5) holds. For instance, such a vector is
given by X∗ := (x∗

11, x
∗
12, . . . , x

∗
m1) for

x∗
i j :=

{
PRJ if fi j is a projection function with respect to the first input,
OR if fi j is a logical OR.

(6)

Therefore, Problem 1 corresponds to finding an input sequence to steer the state from
X(0) to the terminal state X∗ achieving (5).

4 Learning

Now, we present a solution to Problem 1.

4.1 Flipping Principle

Let us provide a key principle, called the flipping principle, for solving Problem 1.
The following is a preliminary result to derive the flipping principle.

Lemma 4 Consider the network �(m) with X(t) = X̃ , where t ∈ {0, 1, . . .} and
X̃ ∈ {PRJ,OR}n are arbitrarily given. Then the following statements hold.

(i) If U (t) = (0, 0, . . . , 0) ∈ {0, 1}2n1 , then Y (t) = 0 and X(t + 1) = X(t). ss
(ii) If U (t) = (1, 0, . . . , 0) ∈ {0, 1}2n1 , then Y (t) = 1 and X(t + 1) = X(t).

Proof In (i) and (ii), the relation X(t + 1) = X(t) is proven by the network struc-
ture of �(m) and Lemma 1, which states that, in (1), x(t + 1) = x(t) holds under
(v(t), w(t)) = (0, 0) or (v(t), w(t)) = (1, 0). Next, Lemma 2 (i) (in particular, (2))
implies that Y (t) = 0 for U (t) = (0, 0, . . . , 0), which proves (i). On the other hand,
it follows from Lemma 2 (ii) that Y (t) = 1 for U (t) = (1, 0, . . . , 0). This proves (ii).

��
Lemma 4 implies that there exists an input value for �(m) that sets an arbitrary value
at the output of �(m) while preserving the state value. Note from this lemma that
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the state of �(m) does not change by an input sequence that takes (0, 0, . . . , 0) and
(1, 0, . . . , 0) at each time.

From Lemma 4, we obtain the flipping principle for learning of �(m).

Theorem 1 Consider the network�(m)with X(t) = X̃ and any node (p, q) in�(m),
where t ∈ {0, 1, . . .} and X̃ ∈ {PRJ,OR}n are arbitrarily given. Then the following
statements hold.

(i) There exists an input sequence (Ut ,Ut+1, . . . ,Ut+s−1) ∈ ∏s
τ=0{0, 1}2n1 such

that

xi j (t + s) =
{
x̄i j (t) if (i, j) = (p, q),

xi j (t) if (i, j) ∈ Np \ {(p, q)} (7)

under U (t) = Ut , U (t + 1) = Ut+1, . . ., U (t + s − 1) = Ut+s−1, where
s ∈ {0, 1, . . .} is the unit training time defined for (1).

(ii) An input sequence satisfying (7) is given by (Û(p,q), Û(p,q), . . . , Û(p,q)) of length
s (constant on the time interval {t, t +1, . . . , t + s−1}), where Û(p,q) ∈ {0, 1}2n1
is an input value which is divided into 2m+1−p blocks of equal size, i.e., of size
2p−1 and whose blocks are given as follows:

(2q − 1)th block :
{

(0, 0, 0, . . . , 0) if xpq(t) = OR,

(1, 0, 0, . . . , 0) if xpq(t) = PRJ,
2qth block : (1, 0, 0, . . . , 0),

Other blocks : (0, 0, 0, . . . , 0).

(8)

Proof Statements (i) and (ii) are provenby showing that (7) holds for the input sequence
(Û(p,q), Û(p,q), . . . , Û(p,q)) of length s specified in (ii). The proof is given by dividing
into two cases: p = 1 and p ≥ 2.

If p = 1, it is trivial from (1), i.e., the definition of classical conditioning gates,
that (7) holds for the input sequence specified in (ii).

Next, consider the case p ≥ 2.
By definition, the network �(m) can be represented as the cascade connection of

m layers as shown in Fig. 4. As we can see by comparing Figs. 2 and 4, if i ≥ 2,
the entire left side of the i th layer is the parallel system of 2ni subsystems, denoted
by S1, S2, . . . , S2ni , as shown in Fig. 5. Each subsystem is equivalent to the network
of i − 1 layers, i.e., �(i − 1), in the sense of the equivalence relation defined at the
end of Sect. 1. This allows us to apply Lemma 4 to each subsystem because Lemma 4
holds for any m ∈ {1, 2, . . .}.

Now, consider node (p, q). Suppose that �(m) is represented as Fig. 5 for i = p,
and let Zk(t) ∈ {PRJ,OR}νp be the state of the subsystem Sk , where νp := ∑p−1

i=1 2i−1

and νp ≥ 1because p ≥ 2. By the definition of the subsystems Sk (k = 1, 2, . . . , 2n p),
the tuple (Z1(t), Z2(t), . . . , Z2n p (t)) is the collective states of the nodes indexed in
the set Np−1, from which the following statements are equivalent:

• Zk(t + s) = Zk(t) for every k ∈ {1, 2, . . . , 2n p}.
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layer 1 layer 2 layer 

Fig. 4 Layer-based representation of network �(m)

• xi j (t + s) = xi j (t) for every (i, j) ∈ Np−1.

Now, the proof is done for each of two cases: xpq(t) = OR and xpq(t) = PRJ. First,
we consider the case xpq(t) = OR. If xpq(t) = OR andU (t) = Û(p,q), it follows from
Lemmas 3 and 4 (Lemma 4 is applied to �(p − 1)) that (vpq(t), wpq(t)) = (0, 1),
(vpj (t), wpj (t)) = (0, 0) for j ∈ {1, 2, . . . , n p} \ {q}, and Zk(t + 1) = Zk(t) for
k ∈ {1, 2, . . . , 2n p}. Thus if U (t) = Û(p,q), U (t + 1) = Û(p,q), . . ., U (t + s − 1) =
Û(p,q), then

• xpq(t + s) = PRJ = x̄ pq(t),
• xpj (t + s) = xpj (t) for j ∈ {1, 2, . . . , n p} \ {q},
• Zk(t + s) = Zk(t) for k ∈ {1, 2, . . . , 2n p}.

This implies (7). The other case xpq(t) = PRJ can be proven in the same manner.
The only difference is that (vpq(t), wpq(t)) = (1, 1) holds when xpq(t) = OR and
U (t) = Û(p,q). ��

Theorem 1 implies that we can flip the state of any node while preserving the state
of the other nodes in the layer to which the node to be flipped belongs and its upstream
layers.

Example 1 Consider the network �(3) in Fig. 3, where X(0) = (PRJ,PRJ,OR,

PRJ,OR,OR,PRJ). By the input sequence (Û(2,1), Û(2,1), . . . , Û(2,1)) of length s
for Û(2,1) = ((0, 0), (1, 0), (0, 0), (0, 0)), the state of node (2, 1) is flipped while
preserving the states of nodes (1, 1), (1, 2), (1, 3), (1, 4), and (2, 2). Figure 6 shows
�(3) with the resulting state X(s). �
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layer layer 

Fig. 5 Another layer-based representation of network �(m)

4.2 Learning Algorithm

Theorem 1 implies that we can steer the state of the network �(m) from any value
to any value by flipping the state of each node one by one from the upstream node.
Based on this idea, we obtain the following algorithm to solve Problem 1.

Algorithm 1

(Step 1) For each (i, j) ∈ N, let x∗
i j ∈ {PRJ,OR} be defined by (6). Let also k := 0

and N̂ := N.
(Step 2) Pick the minimum pair (i, j) from N̂ in lexicographical order.
(Step 3) If xi j (ks) �= x∗

i j , apply the input sequence (Û(i, j), Û(i, j), . . . , Û(i, j))

of length s to the network �(m), i.e., U (ks) = Û(i, j),U (ks + 1) =
Û(i, j), . . . ,U (ks + s − 1) = Û(i, j), and let k := k + 1.

(Step 4) Let N̂ := N̂ \ {(i, j)}. If N̂ �= ∅, goto Step 2; otherwise, halt.

In the algorithm, k is a variable to count the number of nodes whose state is flipped,
and N̂ is the list of the nodes for which the algorithm has never checked whether their
state needs to be flipped or not. In Step 1, x∗

i j is defined for each (i, j) ∈ N, where fi j

((i, j) ∈ N) are given functions in Problem 1. Moreover, k and N̂ are initialized. Step
2 picks a node (i, j) from the list N̂. Step 3 checks whether the state of node (i, j) has
to be flipped or not; if it has to be flipped, the state is flipped by applying the training
input sequence specified in Theorem 1. Note here that s steps of actual time elapsed
while applying the input sequence to �(m). In Step 4, node (i, j) is removed from
the list N̂. In addition, the terminate condition is checked; if N̂ is empty, the algorithm
terminates; otherwise, the above procedure is performed for a remaining node in the
list N̂.

For the algorithm, we obtain the following result.
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Fig. 6 Network �(3) at the state
X(3), resulted by the input
sequence U(0) = (Û(2,1),

Û(2,1), Û(2,1)) that flipsthe state
of node (2, 1)

Fig. 7 Network �(3) at the state
X(6), resulted by the input
sequence U(1) = (Û(3,1),

Û(3,1), Û(3,1)) that flips the state
of node (3, 1)

Theorem 2 Consider Problem 1. Let k∗ ∈ {0, 1, . . .} be the value of k when Algorithm
1 terminates and U(k) (k = 0, 1, . . . k∗ − 1) are the input sequence generated in
Step 3 of Algorithm 1. Then a solution to the problem is given by T = k∗s and
(U(0),U(1), . . . ,U(k∗ − 1)). �

The following example demonstrates Algorithm 1.

Example 2 Consider the network �(3) in Fig. 3, where X(0) = (PRJ,PRJ,OR,

PRJ,OR,OR, OR). Assume that s = 3. Let us show how Algorithm 1 solves Prob-
lem 1, where f11, f12, f14, and f21 are projection functions with respect to the first
input and f13, f22, and f31 are logical OR.

In Step 1, we have (x∗
11, x

∗
12, x

∗
13, x

∗
14, x

∗
21, x

∗
22, x

∗
31) = (PRJ,PRJ,OR,PRJ,PRJ,

OR,PRJ). Then the algorithm generates the input sequence U(0) = (Û(2,1), Û(2,1),

Û(2,1)) to flip the state of node (2, 1) in Step 3 at k = 0, where Û(2,1) =
((0, 0), (1, 0), (0, 0), (0, 0)) as shown in Example 1. The result is shown in Fig. 6.
At k = 1, we have the input sequence U(1) = (Û(3,1), Û(3,1), Û(3,1)) with Û(3,1) =
((1, 0, 0, 0), (1, 0, 0, 0)) in Step 3, which flips the state of node (3, 1). As a result, we
have the system inFig. 7with the outputY (6) = v11(6) ∨ v13(6) ∨ w13(6) ∨ v14(6).�

5 Conclusion

We have presented a learning method for a network of nodes each of which can
implement classical conditioning. Based on the principle that the state of any node
can be flipped while preserving the state of some other nodes, an algorithm has been
derived.

As long as we know, the learning problem addressed in this paper has never been
studied so far. This paper has presented the first solution to the problem, which proves
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the feasibility of learning. On the other hand, the proposed algorithm may not be
efficient in terms of required steps for learning. In fact, the proposed algorithm is
based on the strategy that one gate is updated at a time, which results in taking a long
time to achieve a desired state and might prevent us from applying it in an actual in
vitro situation. Therefore, it is expected to develop a parallel algorithm, which updates
multiple gates at the same time.

Moreover, the proposed algorithm is applicable to the case where the network is
a tree structure and the state of each gate is either projection function or logical OR.
It is also interesting to generalize our framework to handle a more general class of
networks.
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