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NEW CRITERIONS ON NONEXISTENCE OF PERIODIC ORBITS OF

PLANAR DYNAMICAL SYSTEMS AND THEIR APPLICATIONS

HEBAI CHEN1, HAO YANG1, RUI ZHANG1, XIANG ZHANG2

Abstract. Characterizing existence or not of periodic orbit is a classical problem and it has
both theoretical importance and many real applications. Here, several new criterions on nonex-
istence of periodic orbits of the planar dynamical system ẋ = y, ẏ = −g(x) − f(x, y)y are
obtained in this paper, and by examples showing that these criterions are applicable, but the
known ones are invalid to them. Based on these criterions, we further characterize the local
topological structures of its equilibrium, which also show that one of the classical results by
A.F. Andreev [Amer. Math. Soc. Transl. 8 (1958), 183–207] on local topological classification
of the degenerate equilibrium is incomplete. Finally, as another application of these results, we
classify the global phase portraits of a planar differential system, which comes from the third
question in the list of the 33 questions posed by A. Gasull and also from a mechanical oscillator
under suitable restriction to its parameters.

1. Introduction

As we all know, Hilbert’s 23 problems were posed by the famous mathematian D. Hilbert
at the International Congress of Mathematicians in 1900, see [13], where the second half of
Hilbert’s 16th problem is to study the maximum number and their relative position of limit
cycles of planar polynomial differential systems. Up to now, Hilbert’s 16th problem is still
unsolved. On the other hand, to study dynamics of a planar dynamical system, it is usually
very important to characterize existence of its limit cycles.

For the aforementioned reasons, the study of limit cycles of planar dynamical systems has
been attracting many famous mathematicians working on it, see for instance Dulac [10], Itenberg
and Shustin [15], Lins et al [17], Roussaries [21], Smale [23], Ye [26]and Zhang et al [29], and
the references therein. Notice that most of the known results on nonlocal limit cycles are for
existence and uniqueness. In order to prove existence of limit cycles, one of the essential tools
is the Poincaré-Bendixson annulus theorem. On uniqueness of the limit cycle, most of the
results were limited to Liénard systems and generalized Liénard systems, such as Levinson et
al [16], Liou and Cheng [18], Wang and Kooij [24], Xiao and Zhang [25], Zeng [27], Zeng et
al [28] and Zhang et al [29], and so on. However, for nonexistence of the limit cycle of planar
differential equations, the theoretical results are far less than those for existence of limit cycles.
At present, Poincaré’s method of tangential curves [29, Theorem 1.6 of Chapter 4] and the Dulac
criterion [29, Theorem 1.7 of Chapter 4] are common tools to study nonexistence of limit cycles,
but it is not an easy task to find the Poincaré function F (x, y) or Dulac function B(x, y) in
applications. Besides, most of the results on nonexistence of limit cycles are focused on Liénard
and generalized Liénard systems, which can be found in [4, 5, 9, 22] and their references. See
Appendix, where we list some known results for comparing with ours and their applications.
Besides, there are also a few theoretical results on nonexistence of limit cycles for general planar
differential systems.

2010 Mathematics Subject Classification. 34C07, 34A05, 34A34, 34C14.
Key words and phrases. Limit cycle, non–existence, nilpotent equilibrium, Andreev topological classification,

global phase portrait.

1

http://arxiv.org/abs/2203.00921v1


2 H. CHEN ET AL.

The goal of this paper is to provide certain new criterions on nonexistence of limit cycles of
the planar differential system

(1)

®
ẋ = y,

ẏ = −g(x)− f(x, y)y,

where x ∈ (α, β), y ∈ R, α < 0, β > 0. Notice that system (1) has been widely adopted to
model real world problems in applied science and engineering, see [1, 3, 20] and the references
therein.

The organization of this paper is as follows. In section 2, we state our main results, which
are new criterions on nonexistence of periodic orbits of system (1), and characterization on
local topological structures of the related system at its equilibrium. Here we complete the
local classification of a degenerate equilibrium (nilpotent one), which is a classical result but
incomplete as will be shown. It was initially proved by Andreev [2] in 1958, and then stated
and proved in [29] and so on. As we have seen, Andreev’s result was also repeatedly stated in
many monographs and papers for classifying topological structures of planar differential systems.
Section 3 is the proofs of our main results. Section 4 is partly an application of our theoretical
results, where we characterize all global topological phase portraits (Theorems 10 and 11) of
a system under certain restriction of parameters, which comes from the first half of the third
question in the list of the 33 questions posed by Gasull [12] and also from a mechanical oscillator.

2. Main results

In this section, we state our main results of this paper. The first one provides a criterion on
nonexistence of periodic orbits.

Theorem 1. Assume that g(x) = −g(−x) for all 0 6 x < min{−α, β}, and that the following

conditions hold:

(i) xg(x) > 0 for all (α, 0) ∪ (0, β);
(ii) g(x) is Lipschitzian continuous for x ∈ (α, 0) ∪ (0, β), and f(x, y) is Lipschitzian con-

tinuous for (x, y) ∈ (α, β) × R;

(iii) either f(x, y) > −f(−x, y) or f(x, y) 6 −f(−x, y) for all 0 6 x < min{−α, β} and

y ∈ R;

(iv) f(x, y) 6≡ −f(−x, y) for x ∈ (0, ζ) and y ∈ R, where 0 < ζ ≪ 1.

Then, system (1) has no closed orbits in the strip α < x < β.

The second one is another criterion on nonexistence of periodic orbits.

Theorem 2. Assume that the conditions (i), (ii), (iv) and the following one hold:

(iii′) either f(x, y) > −f(x,−y) or f(x, y) 6 −f(x,−y) for all (x, y) ∈ (α, β) × R.

Then, system (1) has no closed orbits in the strip α < x < β.

Remark 1. When g(x) = x and f(x, y) = f̂(y), after the change of variables (x, y, t) →
(y, x,−t), system (1) is transformed to®

ẋ = y + f̂(x)x,

ẏ = −x,
which is in the Liénard form. By Theorem 2 one can directly obtain the results in [17, Proposition
1] (see Theorem 14 in Appendix A). In this sense, Theorem 2 is an extended version of [17,
Proposition 1].

The next is the third criterion on nonexistence of periodic orbits.
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Theorem 3. Assume that g(−x) 6≡ −g(x) for 0 6 x < min{−α, β},

g(x) = xmh(x), if x ∈ (−ǫ, ǫ),

where h(0) > 0, m = p/q > 1, p, q are odd and ǫ > 0 is small. In addition to the conditions (i)
and (ii) of Theorem 1, suppose that for all x̂ < 0 < x satisfying

(2)

∫ x

0

g(s)ds =

∫ x̂

0

g(s)ds,

the following hold

(v) either f(x, y)/g(x) > f(x̂, y)/g(x̂) or f(x, y)/g(x) 6 f(x̂, y)/g(x̂) for 0 6 x < min{−α, β}
and y ∈ R;

(vi) f(x, y)/g(x) 6≡ f(x̂, y)/g(x̂) for x ∈ (0, ζ) and y ∈ R, where 0 < ζ ≪ 1.

Then, system (1) has no closed orbits in the strip α < x < β.

Remark 2. In Theorem 3, if g(x) ≡ −g(−x) then
∫ x
0
g(s)ds =

∫ x̂
0
g(s)ds holds with x̂ = −x.

Consequently, f(x, y)/g(x) > f(x̂, y)/g(x̂) in (v) implies f(x, y) > −f(−x, y), which is (iii). In
this sense, Theorem 1 is a special case of Theorem 3. Here, stating Theorem 1 separately has

two reasons: one is for its easy application, and second is for distributing the technical parts of

the proofs. As it is easy to see, system (1) is an extension of the Liénard system

ẋ = y, ẏ = −g(x)− f(x)y,

in which g(x) is usually an odd function, like g(x) = x, or g(x) = x+ x3, etc, and so Theorem
1 can be conveniently applied to it.

The fouth one is an extension of Theorem 1, which admits existence of other equilibria than
the origin.

Theorem 4. In case g(x) = −g(−x) for all 0 6 x < min{−α, β}, suppose the conditions (ii),
(iii), (iv) of Theorem 1 hold. Then, system (1) has no closed orbits surrounding the origin O
in the strip α < x < β.

In Theorems 1, 2 and 3, system (1) has a unique equilibrium O and has no closed orbits when
the corresponding conditions hold. Naturally, we want to further characterize the qualitative
properties of O and the phase portrait of system (1). To avoid much degeneracy, suppose that
both g(x) and f(x, y) are analytic functions in a small neighborhood Sδ(O) of the origin O,
except a few exception.

If the condition (i) of Theorem 1 holds, then g′(0) > 0. Otherwise, if g′(0) < 0, there
exists an x∗ > 0 such that g(x∗) < g(0) = 0, which contradicts xg(x) > 0 for x 6= 0. Set
a := g′(0), b := f(0, 0). It is easy to check b > 0 for f(x, y)/g(x) > f(x̂, y)/g(x̂), b 6 0 for

f(x, y)/g(x) 6 f(x̂, y)/g(x̂), and a > 0, where x̂ 6 0 6 x and
∫ x
0 g(s)ds =

∫ x̂
0 g(s)ds.

In our next result, we characterize local phase portraits of system (1) with f(x, y)/g(x) >

f(x̂, y)/g(x̂) and
∫ x
0 g(s)ds =

∫ x̂
0 g(s)ds for x̂ 6 0 6 x. The case f(x, y)/g(x) 6 f(x̂, y)/g(x̂)

and
∫ x
0 g(s)ds =

∫ x̂
0 g(s)ds for x̂ 6 0 6 x can be treated via the transformation (x, x̂, y, t) →

(x̂, x, y,−t). So without loss of generality, we consider only the case b > 0.

For our consideration, the region

G := {(a, b) ∈ R
2 : a > 0, b > 0}
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will be separated in the six subregions

G1 := {(a, b) ∈ G : a > 0, b > 0, b2 − 4a > 0},
G2 := {(a, b) ∈ G : a > 0, b > 0, b2 − 4a < 0},
G3 := {(a, b) ∈ G : a > 0, b > 0, b2 − 4a = 0},
G4 := {(a, b) ∈ G : a > 0, b = 0},
G5 := {(a, b) ∈ G : a = 0, b > 0},
G6 := {(a, b) ∈ G : a = b = 0}.

When a = b = 0, in Sδ(O), g(x) and f(x, y) can be written in the forms

(3) g(x) = akx
k +O(xk+1), f(x, y) = bnx

n +O(xn+1) + yp(x, y),

where ak 6= 0, k > 1, bn ∈ R, and p(x, y) is an analytic function in Sδ(O). By the condition (i)
of Theorem 1, we have

x(akx
k +O(xk+1)) > 0 i.e. akx

k+1 +O(xk+2) > 0, x ∈ Sδ(O),

which implies that

(4) ak > 0 and k is odd.

Without loss of generality, we only consider bn > 0. The case bn < 0 can be done via the trans-
formation (x, y, t, bn) → (x,−y,−t,−bn). Next we further divide G6 into the three subregions

G61 :={(a, b) ∈ G6 : bn = 0} ∪ {(a, b) ∈ G6 : bn > 0, n > (k − 1)/2}
∪ {(a, b) ∈ G6 : bn > 0, n = (k − 1)/2, b2n − 2(k + 1)ak < 0},

G62 :={(a, b) ∈ G6 : bn > 0, n < (k − 1)/2, n even}
∪ {(a, b) ∈ G6 : bn > 0, n = (k − 1)/2, b2n − 2(k + 1)ak > 0, n even},

G63 :={(a, b) ∈ G6 : bn > 0, n < (k − 1)/2, n odd}
∪ {(a, b) ∈ G6 : bn > 0, n = (k − 1)/2, b2n − 2(k + 1)ak > 0, n odd}.

Having the above preparation, we can state our next results on global structure of system (1).

Theorem 5. For system (1), suppose that

• α = −∞ and β = +∞, g(x) is analytic in |x| < ǫ (ǫ > 0 is small ) and f(x, y) is analytic
in Sδ(O),

• xg(x) > 0 for all x 6= 0, g(x) and f(x, y) are Lipschitzian continuous for (x, y) ∈ R
2,

• either f(x, y) ≡ −f(−x, y) for g(x) = −g(−x) in (x, y) ∈ (0,+∞)×R, or f(x, y)/g(x) ≡
f(x̂, y)/g(x̂) for g(x) 6≡ −g(−x) in (x, y) ∈ (0,+∞) × R, where x̂ < 0 < x satisfying

equation (2).

The following statements hold.

• The origin O of system (1) is a center, or Sδ(O) consists of one elliptic sector and one

hyperbolic sector, or Sδ(O) consists of one elliptic sector, one hyperbolic sector and two

parabolic sectors. Figure 1 illustrates these local structures at O.

• When the elliptic sector is bounded, there has no parabolic sectors at O. In other words,

two parabolic sectors appearing in a neighborhood of O happens only in the unbounded

case of the elliptic sector. These two situations can be realized by concrete examples.

Theorem 6. For system (1), suppose that

• α = −∞ and β = +∞, g(x) is analytic in |x| < ǫ (ǫ > 0 is small ), and f(x, y) is

analytic in Sδ(O),
• xg(x) > 0 for all x 6= 0, g(x) and f(x, y) are Lipschitzian continuous for (x, y) ∈ R

2,
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(a) (a, b) ∈ G63 (b) (a, b) ∈ G63

(c) (a, b) ∈ G63 (d) (a, b) ∈ G4 ∪ G61

Figure 1. Phase portraits of system (1) when f(x, y)/g(x) ≡ f(x̂, y)/g(x̂). (The
elliptic sector is bounded in (a), and unbounded in (b) and (c).)

• either f(x, y) > −f(−x, y) for g(x) = −g(−x) in (x, y) ∈ (0,+∞)×R, or f(x, y)/g(x) >
f(x̂, y)/g(x̂) for g(x) 6≡ −g(−x) in (x, y) ∈ (0,+∞) × R, where x̂ < 0 < x satisfying

equation (2),
• f(x, y) 6≡ −f(−x, y) as g(x) = −g(−x) for (x, y) ∈ (0, ζ) × R and f(x, y)/g(x) 6≡
f(x̂, y)/g(x̂) as g(x) 6≡ −g(−x) for (x, y) ∈ (0, ζ) × R, where 0 < ζ ≪ 1.

Then, the qualitative property of the unique equilibrium O is as that shown in Table 1 and system

(1) could have only possibly seven local phase portraits, as those shown in Figures 1(b) and (c)
and Figure 2.

Remark 3. For system (38) in Appendix B, Andreev [2] proved that when bn 6= 0 and n <
(k − 1)/2, or bn 6= 0, n = (k − 1)/2 and b2n − 2(k + 1)ak > 0 with n and k odd, any small

neighborhood Sδ(O) of system (38) at O consists of only one elliptic sector and one hyperbolic

sector. This result has also been collected in many Monographs and papers for their applications

on local classification of equilibria, see for instance [29, Theorem 7.2 of Chapter 2], [8, Theorem
3.5 of Chapter 3] and so on. However, as we show, this classification is incomplete. In fact,

beside the elliptic and hyperbolic sectors, there may include zero (see system (23) with Figure 7),
or one (see Example 2 with Figure 4), or two parabolic sectors (see Example 1 with Figure 3) in
Sδ(O). Andreev [2] proved the existence of the elliptic sector without discussing its boundedness.

In fact, our results indicate that even in the bounded case, the existence of a parabolic sector

strongly depends on symmetry of the vector field with respect to some line passing the equilibrium

(no parabolic sector in symmetric case, and a unique one in nonsymmetric case).

Remark 4. If the elliptic sector is bounded and the vector field is not symmetry, Sδ(O) includes
exactly one parabolic sector. However, when the elliptic sector is unbounded, we have only

proved that Sδ(O) contains at most two parabolic sectors, and provide examples which do have

two parabolic sectors. But we cannot find examples with zero or one parabolic sector in Sδ(O),
and also cannot prove that Sδ(O) must have exactly two parabolic sectors. This will remain for

further study.
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Table 1. The qualitative property of O of system (1).

(a, b) Type of O Geometric configurations

G1 ∪ G5 stable node

in Sδ(O) except one pair of orbits approaching

O in one of the directions θ2 and θ4,

all other orbits approaching O in one of

the directions θ1 and θ3, see Figure 2(a).

G2 ∪ G4 ∪ G61 stable focus in Sδ(O) all orbits rotate clockwise, see Figure 2(b).

G3 ∪ G62
stable

improper node

in Sδ(O) all orbits approaching O

along one of the directions θ5 and θ6, see Figure 2(c).

G63 a degenerate

one

elliptic sector

is bounded

Sδ(O) consist of one elliptic sector,

one hyperbolic sector and

one parabolic sector, see Figure 2(d).

elliptic sector

is unbounded

Sδ(O) consist of one elliptic sector,

one hyperbolic sector and

zero parabolic sector, see Figure 1(c).

Sδ(O) consist of one elliptic sector,

one hyperbolic sector and

one parabolic sector, see Figure 2(e).

Sδ(O) consist of one elliptic sector,

one hyperbolic sector and

two parabolic sectors, see Figure 1(b).

Remark : θ1 = π − arctan
Ä
b−

√
b2 − 4a)/2

ä
, θ2 = π − arctan

Ä
b+

√
b2 − 4a)/2

ä
, θ3 =

2π − arctan
Ä
b−

√
b2 − 4a)/2

ä
, θ4 = 2π − arctan

Ä
b+

√
b2 − 4a)/2

ä
, θ5 =

π − arctan (b/2) , θ6 = 2π − arctan (b/2).

When (a, b) ∈ G63, the next two examples illustrate existence of two parabolic sectors to-
gether with one unbounded elliptic and one hyperbolic sectors, and also of one parabolic sector
together with one bounded elliptic and one hyperbolic sectors in a neighborhood of a nilpotent
equilibrium.

Example 1. The planar differential system

(5) ẋ = y, ẏ = −2x3 − 4xy + εg̃(r)x2y,

with ε > 0 sufficiently small, r2 = x2 + y2, and

g̃(r) =

®
1, if 0 6 r 6 1,

0, if r > 2,

decreasing and smooth for r > 0, has the global phase portrait as that shown in Figure 3.
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(a) (a, b) ∈ G1 ∪ G5 (b) (a, b) ∈ G2 ∪ G4 ∪ G61

(c) (a, b) ∈ G3 ∪ G62 (d) (a, b) ∈ G63 (e) (a, b) ∈ G63

Figure 2. Phase portraits of system (1) when f(x, y)/g(x) > f(x̂, y)/g(x̂) in
x > 0 and y ∈ R. (The elliptic sector is bounded in (d), and unbounded in (e).)

Figure 3. The global phase portraits for system (5) with ε > 0.

Notice that system (5) satisfies all conditions of Theorem 6 and (a, b) ∈ G63. The proof of
the conclusion in this example will be included in the proof of Theorem 6.

Example 2. Beside the elliptic sector (bounded by assumption) and hyperbolic sector system

(1) has only one parabolic sector in Sδ(O). Figure 4 illustrates this asymmetric case with one
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parabolic sector for system ẋ = y, ẏ = −2x5+x6−xy in a neighborhood of the origin by Matlab

with the initial points (0, 0.31), (0, 0.11), (0,−0.3).

x ' = y                  

y ' = - 2 x 5 + x6 - x y
 
 

 
 

 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

Figure 4. Asymmetric case with only one elliptic, one hyperbolic sector and
one parabolic sectors near O.

As shown in Table 1 of Theorem 6, the qualitative property of O is related to the boundedness
of the elliptic sector when (a, b) ∈ G63. The following proposition provides a criterion on existence
of the bounded elliptic sector (if exists) for the Liénard differential system (1) with f(x, y) in x

only. Taking f(x, y) = f̃(x), with the transformation (x, y) → (x, y − F (x)), system (1) can be
written in the classical Liénard system

(6) ẋ = y − F (x), ẏ = −g(x),

where F ′(x) = f̃(x).

Proposition 7. For system (6), suppose that

• xg(x) > 0 for all x 6= 0, and
∫∞
0 g(x)dx = +∞,

• g(x) and F (x) are Lipschitzian continuous in R, and are analytic in |x| < ǫ for some

small ǫ > 0 is small,

• system (6) has an elliptic sector at O, i.e. (a, b) ∈ G63.

If there exists an x0 6= 0 such that F (x0) = 0, the elliptic sector is bounded.

Notice that Ding [7] proved the boundedness of the maximal elliptic sector of the following
Liénard system

ẋ = y +
1

2
x2 − 1

3
x3, ẏ = −kx3,(7)

for k ∈ (0, 1/8). Applying Proposition 7, one can conclude that the elliptic sector of system (7)
at the origin is bounded for all k > 0. This generalizes the result of Ding [7].

3. Proofs of main results

This section is the proofs of our main results.

3.1. Proof of Theorem 1. We consider only the case f(x, y) > −f(−x, y) for x > 0 of the
condition (iii), since the case f(x, y) 6 −f(−x, y) for x > 0 can be transformed to the former
by (x, y, t) → (−x, y,−t). With the transformation (x, y) → (−x, y), system (1) is changed into

(8)

®
ẋ = −y,
ẏ = g(x)− f(−x, y)y.
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It is clear that systems (1) and (8) can be rewritten as

(9)
dy

dx
= −g(x)

y
− f(x, y),

and

(10)
dy

dx
= −g(x)

y
+ f(−x, y),

respectively.

Assume by contrary that system (1) has a closed orbit Γ in the strip α < x < β. It is obvious
that Γ must intersect the negative and positive y–axes, saying at A and B, respectively, and

the positive x–axis, saying at C. Observe that the orbit arc, denoted by ÂB, of Γ in x > 0

satisfies equation (9). Because of ẋ = y there, the orbit arc ÂC can be represented as y = y1(x).

Consider the orbit arc ÂD of equation (10) starting from A and ending at D a point on the
positive x–axis, and represent it by y = y2(x). See Figure 5.

Figure 5. Location of the orbit arcs for showing nonexistence of a closed orbit.

Let ϕ(x) = y2(x)− y1(x). Direct calculations show that

(11)

ϕ(x) = y2(x)− y1(x)

= (y2(s)− y1(s))|x0

=

∫ x

0

Å
− g(s)

y2(s)
+ f(−s, y2(s))

ã
ds −

∫ x

0

Å
− g(s)

y1(s)
− f(s, y1(s))

ã
ds

=

∫ x

0

Å
g(s)

y2(s)− y1(s)

y2(s)y1(s)

ã
ds+

∫ x

0
(f(s, y1(s)) + f(−s, y2(s))) ds

=

∫ x

0

Å
g(s)

y2(s)− y1(s)

y2(s)y1(s)
+ f(s, y1(s))− f(s, y2(s))

ã
ds

+

∫ x

0
(f(s, y2(s)) + f(−s, y2(s))) ds

=

∫ x

0
M(s) (y2(s)− y1(s)) ds+N(x),

where

M(x) =





g(x)

y2(x)y1(x)
− f(x, y2(x))− f(x, y1(x))

y2(x)− y1(x)
, if y1(x) 6= y2(x),

g(x)

y2(x)y1(x)
, if y1(x) = y2(x),

and

N(x) =

∫ x

0
f(s, y2(s)) + f(−s, y2(s))ds.
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By (11), it follows that

(12) ϕ(x) =

∫ x

0
M(s)ϕ(s)ds +N(x).

Letting H(x) =
∫ x
0 M(s)ϕ(s)ds, we obtain

(13)
dH(x)

dx
=M(x)ϕ(x) =M(x)H(x) +M(x)N(x).

Using variation of constants formula to solve (13) yields

(14)

H(x) = exp

Å∫ x

0
M(s)ds

ã
·
∫ x

0

ï
M(s)N(s) exp

Å
−
∫ s

0
M(ξ)dξ

ãò
ds

=

∫ x

0
M(s)N(s) exp

Å∫ x

s
M(ξ)dξ

ã
ds.

Combining the formulas (12) through (14), one has

ϕ(x) = H(x) +N(x)

=

∫ x

0
M(s)N(s) exp

Å∫ x

s
M(ξ)dξ

ã
ds+N(x)

= N(0) exp

Å∫ x

0
M(s)ds

ã
+

∫ x

0
N ′(s) exp

Å∫ x

s
M(ξ)dξ

ã
ds

=

∫ x

0
N ′(s) exp

Å∫ x

s
M(ξ)dξ

ã
ds

=

∫ x

0
(f(s, y2(s)) + f(−s, y2(s))) exp

Å∫ x

s
M(ξ)dξ

ã
ds.

By the conditions f(x, y) > −f(−x, y) for 0 < x < min{−α, β}, y ∈ R, and f(x, y) 6≡ −f(−x, y)
for x ∈ (−ζ, ζ), y ∈ R, ∀ ζ > 0, it follows that

ϕ(x) =

∫ x

0
(f(s, y2(s)) + f(−s, y2(s))) exp

Å∫ x

s
M(ξ)dξ

ã
ds > 0.

Consequently, y2(x) > y1(x). That is, the point D must be located on the left hand–side of the

point C. Similar arguments verify that the orbit arc B̂E of equation (10) starting from B and
ending at E on the positive x–axis will have E being on the right hand-side of C. This implies
that system (10) does not have an orbit arc linking the points A and B, and so has no a closed
orbit in the strip α < x < β.

It completes the proof of Theorem 1. �

Remark 5. In the proof of Theorem 1, we cannot apply directly the comparison theorem (see
[14, Theorem 6.1 of Chapter 1]) to obtain ϕ(x) > 0, since we only obtain ϕ(x) > 0 by that

theorem. That is the reason why we need a more accurate estimate.

Figure 6. Location of the orbit arcs for showing nonexistence of a closed orbit.
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3.2. Proof of Theorem 2. We consider only the case f(x, y) > −f(x,−y) for y > 0 of the
condition (iii′), since the case f(x, y) 6 −f(x,−y) for x > 0 can be transformed to the former
by (x, y, t) → (x,−y,−t). With the transformation (x, y) → (x,−y), system (1) is changed into

(15)

®
ẋ = −y,
ẏ = g(x)− f(x,−y)y.

It is clear that systems (1) and (15) can be rewritten as (9) and

(16)
dy

dx
= −g(x)

y
+ f(x,−y),

respectively.

Assume by contrary that system (1) has a closed orbit Γ in the strip α < x < β. It is obvious
that Γ must intersect the negative and positive x–axes, saying at A and B, respectively, and

the positive y–axis, saying at C. Observe that the orbit arc, denoted by ÂB, of Γ in y > 0

satisfies equation (9). Because of ẋ = y there, the orbit arc ÂC can be represented as y = y1(x).

Consider the orbit arc ÂE of equation (16) starting from A and ending at E a point on the
positive y–axis, and represent it by y = y2(x). See Figure 6.

Let ϕ(x) = y2(x) − y1(x). Then, we can show ϕ(0) > 0. The remainder of the proof of this
result is quiet similar to that given earlier for Theorem 1 and so is omitted.

3.3. Proof of Theorem 3. With the transformation

(17) u = ((m+ 1)G(x))
1

m+1 sgn(x), dτ =
g(x)

um
dt,

system (1) is changed to

(18)





du

dτ
= y,

dy

dτ
= −um − f(x(u), y)

g(x(u))
umy =: −um − F (u, y)y,

where G(x) =
∫ x
0 g(s)ds. By (17) and xg(x) > 0 for x ∈ (α, 0) ∪ (0, β), it follows that

u = ((m+ 1)G(x))1/(m+1) sgn(x) has the inverse function x = x(u) and x(0) = 0. Moreover,
x = x(u) is increasing.

It is easy to obtain that

lim
u→0

um

g(x(u))
=

1
m+1
√
h(0)

.

One can check that F (u, y) is Lipschitzian continuous for u ∈ (u(α), u(β)) and y ∈ R, i.e., the
condition (ii) of Theorem 1 holds. Furthermore,

f(x, y)

g(x)
> (resp. 6)

f(x̂, y)

g(x̂)

implies

F (u, y) > (resp. 6)− F (−u, y),

where x̂ 6 0 6 x satisfies
∫ x
0 g(s)ds =

∫ x̂
0 g(s)ds. That is, the condition (iii) of Theorem 1

holds. Moreover, it is easy to check that the conditions (i) and (iv) of Theorem 1 hold, too.
By Theorem 1, system (18) has no a closed orbit surrounding the origin. �
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3.4. Proof of Theorem 4. As proved in Theorem 1, by contrary assume that system (1) has
a closed orbit Γ′ surrounding the origin in the strip α < x < β. Let A′ be the intersection point

of Γ′ with the negative y–axis, and let ‘A′C ′ and’A′D′, represented by y = y3(x) and y = y4(x),
be the orbit arcs of systems (9) and (10) starting from A′ and ending at respectively C ′ and D′,
which are points on the x–axis. Set ϕ1(x) = y4(x) − y3(x). By a similar calculation as that in
the proof of Theorem 1, we can obtain that

(19) ϕ1(x) =

∫ x

0
(f(s, y4(s)) + f(−s, y4(s))) exp

Å∫ x

s
M1(ξ)dξ

ã
ds,

where

M1(x) =





g(x)

y3(x)y4(x)
− f(x, y4(x))− f(x, y3(x))

y4(x)− y3(x)
, if y3(x) 6= y4(x),

g(x)

y3(x)y4(x)
, if y3(x) = y4(x).

Our main goal is to obtain the sign of ϕ1(x). Since exp
(∫ x

s M1(ξ)dξ
)
> 0, the sign of

ϕ1(x) in (19) is only associated with f(x, y) + f(−x, y). Thus, ϕ1(x) > (resp. <) 0 when
f(x, y) > (resp. 6)− f(−x, y) with the equality not identically satisfied. Hence, system (1) has
no a closed orbit surrounding the origin O. �

We remark that Theorem 4 ensures that system (1) has no a closed orbit surrounding the origin
O, but does not provide any information on existence of closed orbits around other equilibria in
the strip α < x < β. The next example is an illustration on nonexistence of closed orbit around
the origin and existence of closed orbit around other equilibrium.

Example 3. Consider the system

(20)





dx

dt
= y,

dy

dt
= −g(x) + µ1y + µ2xy + x2y,

where

g(x) =





x− 1, if x >
1

2
,

− 3x+ 1, if
1

4
< x <

1

2
,

x, if − 1

4
6 x 6

1

4
,

− 3x− 1, if − 1

2
< x < −1

4
,

x+ 1, if x 6 −1

2
,

with x, y ∈ R, µ1, µ2 being parameters such that −µ1 −µ2 − 1 > 0 sufficiently small and µ1 > 0.

We claim that system (20) has no a closed orbit around O, but has one surrounding (1, 0) for
−µ1 −µ2 − 1 > 0 sufficiently small and µ1 > 0. Indeed, one can check that system (20) satisfies
(ii)–(iv) of Theorem 1. The first argument of the claim follows from Theorem 4.

To prove the second argument of the claim, we restrict to a small neighborhood of the equi-
librium (x, y) = (1, 0), then system (20) is of form

(21)





dx

dt
= y,

dy

dt
= 1− x+ µ1y + µ2xy + x2y.
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After the transformation (x, y) → (x+ 1, y), system (21) is changed to

(22)





dx

dt
= y,

dy

dt
= −x+ (µ1 + µ2 + 1)y + (µ2 + 2)xy + x2y.

When µ1 + µ2 + 1 = 0, it is easy to check that (0, 0) of (22) is an unstable weak focus of order
one, see [6, p.203 ]. Thus, by Hopf bifurcation an unstable limit cycle births from the origin of
system (22) when −µ1 − µ2 − 1 > 0 is sufficiently small. The proof is done.

3.5. Proof of Theorem 5. We only consider the case g(x) = −g(−x) for x > 0 since the other
case g(x) 6≡ −g(−x) for x > 0 can be studied in the same way. In fact, the transformation
(17) can sends system (1) in an equivalent way to system (18), which has the new g(u) an odd
function.

The condition f(x, y) ≡ −f(−x, y) implies b = 0. Furthermore, the assumptions g(x) =
−g(−x) and f(x, y) ≡ −f(−x, y) in (x, y) ∈ (0,+∞) × R mean that the vector field associated
to system (1) is symmetric with respect to the y–axis.

If a = g′(0) > 0, i.e., (a, b) ∈ G4, by Lemma 8, O is a center or focus of system (1). The
symmetry of the vector field forces that O must be a center, see Figure 1(c).

If a = 0, i.e., (a, b) ∈ G6, Lemma 8 and its proof verify that O is a nilpotent equilibrium.
Again the condition f(x, y) ≡ −f(−x, y) can be written as

−bnxn −O(xn+1)− yp(x, y)− bn(−x)n −O((−x)n+1)− yp(−x, y) ≡ 0,

which means that n is odd. Consequently, G6 = G61 ∪ G63.

When (a, b) ∈ G61, by Theorem 20 of Appendix B and symmetry of the vector field it follows
that O is a nilpotent center, see Figure 1(c).

When (a, b) ∈ G63, it follows from Lemmas 7.3 and 7.4 of [29, Chapter 2] that system (1) has
infinitely many orbits approaching O along the negative x–axis as t → −∞, and also infinitely
many orbits approaching O along the positive x–axis as t→ +∞ but has no orbits approaching
O along other directions. Next we prove the existence of one elliptic and one hyperbolic sectors
under the assumptions of the theorem. As a first step, we consider g(x) and f(x, y) having only
the leading terms.

Taking g(x) = akx
k and f(x, y) = bnx

n, with k and n odd, such that the assumptions of the
theorem hold. Let

H(x, y) :=
ak
k + 1

xk+1 +
y2

2
,

implying that
dH(x, y)

dt

∣∣∣∣
(1)

= −bnxny2 < 0

in the first and fourth quadrants of the (x, y)–plane. Therefore, by symmetry of the vector
field with respect to the y–axis one can conclude that the positive semi–orbit with an initial
point (0, y0) lies in the interior enclosed by the closed curve H(x, y) = y0

2/2 except the initial
point, where y0 > 0 is small. Let (0, y1) be the first intersection point of the semi–orbit with
the y–axis. Then, −y0 < y1 6 0. Again by the symmetry of the vector field, the orbit passing
(0, y0) is a closed one if y1 < 0, and is a homoclinic one if y1 = 0. In conclusion, Sδ(O) includes
at least one elliptic sector and one hyperbolic sector.

Next we turn to the general g(x) = akx
k +O(xk+1) and f(x, y) = bnx

n +O(xn+1) + yp(x, y),
which satisfy the assumptions of the theorem. By symmetry of the vector field and the continuous
dependence of solutions with respect to initial values and parameters, it follows that Sδ(O) still
includes at least one elliptic sector and one hyperbolic sector, see Figures 1(a)–(c).
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Finally we study the number of parabolic sectors at O. By symmetry of the vector field with
respect to the y–axis, it follows clearly that the number of parabolic sectors at O is even. If
all orbits with their α–limit set at O have also their ω–limit sets O, then Sδ(O) consists of
exactly one elliptic and one hyperbolic sectors, see Figure 1(a). If some orbits with their α
(resp. ω)–limit set at O have their ω (resp. α)–limit sets not at O, then Sδ(O) includes at
least two parabolic sectors. The previous proofs have shown that θ = 0 and θ = π are the only
two exceptional directions, and that the orbits approaching O along θ = 0 are in positive sense
and along θ = π are in negative sense. These imply that there do not have other hyperbolic
sections in Sδ(O). Consequently, there are exactly two parabolic sectors in Sδ(O), one repelling
and the other attracting. We claim that if the elliptic sector is bounded, then system (1) cannot
have parabolic sectors in a neighborhood of O. Indeed, by contrary we assume that system
(1) has two parabolic sectors at O. Let γ∗ be the maximal homoclinic orbit to O inside the
elliptic sector. By existence of the two parabolic sectors and continuity of solutions with respect
to initial values, it follows that there exist orbits inside each of the parabolic sectors which
intersect the positive y–axis and are outside γ. By symmetry of the vector fields associated to
system (1), such kinds of orbits inside the parabolic sectors must be homoclinic to O, and so
belong to the elliptic sector. This is in contradiction with the assumption that γ∗ is the maximal
homoclinic orbit. The claim follows.

In summary, the above arguments verify the next facts for system (1) at O. If the elliptic
sector is bounded, Sδ(O) is composed of exactly one elliptic and one hyperbolic sectors provided
that the elliptic sector is bounded. Figure 7 illustrates this case for system

(23) ẋ = y, ẏ = −2x5 − xy,

by Matlab with the initial points (0,−0.3), (0,−0.2), (0,−0.1), (0, 0.1), (0, 0.21), (0, 0.41).

x ' = y            

y ' = - 2 x 5 - x y  
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Figure 7. Symmetric case with only one elliptic and one hyperbolic sectors near O.

If the elliptic sector is unbounded, Sδ(O) consists of either exactly one elliptic and one hy-
perbolic sectors (see Figure 1(c)), or one elliptic, one hyperbolic and two parabolic sectors (see
Figure 1(b)). Example 1 with ε = 0 is in this symmetric case and it has two parabolic sectors
in a neighborhood of O, and an unbounded elliptic and a hyperbolic sectors. At the moment
we do not have an example without parabolic sectors, and also cannot prove its nonexistence.

3.6. Proof of Theorem 6. To prove this theorem, we first analyse the equilibrium at the origin
of system (1).

Lemma 8. Suppose that all conditions of Theorem 6 hold. The unique equilibrium O = (0, 0)
has the following qualitative properties.

(F1) O is a stable node for (a, b) ∈ G1 ∪ G3, and is a stable focus for (a, b) ∈ G2;

(F2) O is a center or focus for (a, b) ∈ G4;

(F3) O is a stable node for (a, b) ∈ G5;
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(F4) O is a degenerate equilibrium for (a, b) ∈ G6.

Proof. It is easy to check that system (1) has the unique equilibrium O = (0, 0), at which the
Jacobian matrix of system (1) is

J :=

Å
0 1

−g′(0)− fx(x, y)y −fy(x, y)y − f(x, y)

ã∣∣∣∣
(0,0)

=

Å
0 1
−a −b

ã
.

The eigenvalues of J are

λ1,2 =
−b±

√
b2 − 4a

2
.

Obviously, the equilibrium O is a stable node when (a, b) ∈ G1 ∪ G3, and is a stable focus when
(a, b) ∈ G2. For (a, b) ∈ G4, λ1,2 is a pair of pure imaginary numbers, and so O is a center or
focus. For (a, b) ∈ G5, one of λ1,2 is zero, and the other is nonzero. In Sδ(O), g(x) and f(x, y)
can be rewritten as

g(x) = akx
k +O(xk+1), f(x, y) = b+ f̂(x, y),

where ak > 0, k is odd, b > 0 and f̂(0, 0) = 0. With the transformation (x, y) → ((x− y)/b, y),
system (1) is changed into

(24) ẋ = by − g
(x− y

b

)
− f

(x− y

b
, y
)
y, ẏ = −g

(x− y

b

)
− f

(x− y

b
, y
)
y.

By the implicit function theorem,

−g
(x− y

b

)
− f

(x− y

b
, y
)
y = 0

has a unique root y = φ(x) = −ak/bk+1xk + o(xk) for small |x| > 0. Thus, in system (24)

ẋ|y=φ(x) = bφ(x) = −ak
bk
xk + o(xk).

By Theorem 19 of Appendix B, the equilibrium O is a stable node. Moreover, by calculation,
the origin of system (1) has four exceptional directions

θ1 := π − arctan

Ç
b−

√
b2 − 4a

2

å
, θ2 := π − arctan

Ç
b+

√
b2 − 4a

2

å
,

θ3 := 2π − arctan

Ç
b−

√
b2 − 4a

2

å
, θ4 := 2π − arctan

Ç
b+

√
b2 − 4a

2

å

when (a, b) ∈ G1 ∪ G5, or has two exceptional directions θ5 := π − arctan (b/2), θ6 := 2π −
arctan (b/2) when (a, b) ∈ G3. In the former the origin is a normal node, and in the latter the
origin is an improper node.

When (a, b) ∈ G6, λ1 = λ2 = 0, and the linearization of system (1) at O has its coefficient
matrix being nilpotent. This means that O is a nilpotent equilibrium. The proof is finished. �

Now we are back to the proof of Theorem 6 and focus on the case g(x) = −g(−x) for x > 0.
The case g(x) 6≡ −g(−x) for x > 0 can be handled by applying transformation (17), and so is
omitted. Since all conditions of Theorem 1 hold, system (1) has no a closed orbit around the
origin.

If b > 0 (i.e. (a, b) ∈ G1∪G2∪G3∪G5) , by Lemma 8, it is easy to get the local phase portraits
of system (1) at O, as those in Figures 2(a)–(c).

For b = 0, to classify the local phase portraits of system (1) at O we distinguish two cases:
a > 0 and a = 0.

Case 1. a > 0 (i.e. (a, b) ∈ G4). Since O is a center or a weak focus by (F2) of Lemma 8, and
there is no a closed orbit around it, the equilibrium O must be a weak focus of system (1).
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To characterize the stability of O, letM be a point on the positive y–axis in Sδ(O), see Figure
8(a), and let ϕ(M, I+) be the positive orbit of system (1) having the initial point M . Obviously
ϕ(M, I+) has to intersect the negative y–axis at a first time at a point P , and then return to
the positive y–axis again at a first time at a point N . Comparing both the positive orbit arc
and the negative one starting from N of system (1) in the x > 0 half plane, one gets from

(a) The orbit arc starting from M
for system (1)

(b) The orbit arc starting from P
for equations (9) and (10)

Figure 8. The orbit arcs for showing the stability of O.

f(x, y) > −f(−x, y) that
dy

dx

∣∣∣∣
(9)

6
dy

dx

∣∣∣∣
(10)

.

This implies that ϕ(N, I)|(9) must be strictly located on the right hand–side of ϕ(N, I)|(10)
except at N , and so yN < yM , see Figure 8(b), where I is a suitable time interval corresponding
to the orbit arc. Thus, the origin O is a stable focus. As a result, we have the local phase
portrait of system (1), as shown in Figure 2(b).

Case 2. a = 0 (i.e. (a, b) ∈ G6). By (F4) of Lemma 8 the equilibrium O is a nilpotent one.
Recall that system (1) has no a closed orbit around O, and that G6 = G61∪G62∪G63. According
to this decomposition on G6, the next proof is divided in three subcases.

Subcase 2.1. (a, b) ∈ G61. The arguments adopted in the proof of Case 1 work here and show
that O is a weak focus. Hence, the local phase portrait of system (1) at O is also that as shown
in Figure 2(b).

Subcase 2.2. (a, b) ∈ G62. In this case, n is even and bn 6= 0. With the polar transformation
(x, y) = (r cos θ, r sin θ), system (1) is changed to

1

r

dr

dθ
=
H(θ) + ‹H(θ, r)

G(θ) + ‹G(θ, r)
,

where G(θ) = − sin2 θ, ‹H(θ, r), ‹G(θ, r) → 0 as r → 0. Clearly, G(θ) = 0 has the two roots
θ = 0, π. Therefore, if an orbit approaches O in the positive or negative limit, it must be along

the x–axis. We now prove that O is stable. Indeed, set △’OAB = {(x, y) : 0 < x ≪ δ,−xp+1 <
y < xp+1} with δ > 0 sufficiently small. Let

E(x, y) =
y2

2
+

∫ x

0
g(s)ds.

Then along system (1)

dE

dt

∣∣∣∣
(x,y)∈△’OAB

= −f(x, y)y2 = −
(
bnx

n +O(xn+1) + yp(x, y)
)
y2 < 0.
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This shows that when an orbit approaches O, it must be in the positive sense. Consequently, O
is a stable node and its local phase portrait is that as shown in Figure 2(c).

Subcase 2.3. (a, b) ∈ G63. From the assumption of the theorem, the expressions (3) and (4) hold.
Then we are in the conditions in the last row of Table 3. By Theorem 20 (i.e. [29, Theorem
7.2 of Chapter 2]) system (1) has a neighborhood of O which contains an elliptic sector and one
hyperbolic sector. Moreover, from the proofs of Andreev [2] or of Zhang et al [29], system (1)
has no other elliptic sectors and hyperbolic sectors.

By the facts ẋ = y > 0 for y > 0 and ẋ = y < 0 for y < 0, it follows that any homoclinic orbit
inside the elliptic sector of system (1) at O must intersect both the negative and positive x–axes.
Then, the natural question is that Sδ(O) includes any parabolic sectors or not. It is clear that
Sδ(O) has at most two parabolic sectors, since system (1) has exactly two exceptional directions
θ = 0, π, along each of which there are infinitely many orbits approaching the origin, and all
orbits approaching O are only along θ = 0 as t→ +∞, and only along θ = π as t → −∞.

In what follows, we distinguish boundedness or not of the elliptic sector in Sδ(O) to answer
the above question.

The elliptic sector is bounded. The similar arguments as those in the proof of Theorem 5
verify that Sδ(O) cannot include two parabolic sectors. We next prove that in this asymmetric
case, Sδ(O) consists of one parabolic sector locally in the fourth quadrant, together with the
bounded elliptic sector and the hyperbolic sector. Recall that we have taken bn ≥ 0 in (3). If
bn < 0 the location of the parabolic sector may vary locally from the fourth quadrant to some
other one.

To prove our results, we construct a new vector field

(25)

®
ẋ = y,

ẏ = B(x, y),

where

B(x, y) =

®− g(x)− f(x, y)y, if x < 0,

− g(x) + f(−x, y)y, if x > 0.

Since systems (1) and (25) are the same in the x < 0 half plane, in which if two orbits of the
two systems intersect, they must coincide there. Of course, they could be different in the x > 0
half plane.

Figure 9. Relative positions of the maximal homoclinic orbits.

Let the maximal homoclinic orbit for system (1) intersect the positive x–axis at K, the
negative x–axis at S and the positive y–axis at N (the green one for x < 0 and the blue for
x > 0 in Figure 9). By contrary, we assume that Sδ(O) has no parabolic sectors. Then the

orbit arc ’OSN is the outermost orbit connecting O in x < 0. Note that the vector fields of
system (25) are symmetric with respect to the y–axis. Since the vector fields of system (1) and
(25) are same in the region x < 0 and the elliptic sector of system (1) is bounded, it follows
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that the elliptic sector of system (25) is also bounded, and its maximal homoclinic orbit has the
same intersection point N with the y–axis as that of the elliptic sector for system (1). Let the
maximal homoclinic orbit for system (25) intersect the positive x–axis at Q (the green one for
x < 0 and the red for x > 0 in Figure 9).

We claim that K lies on the left hand side of Q := (xQ, 0), and that ϕ(Q, I+) for system (1)

connects O as t → +∞. For proving the first part, let the orbit arcs ‘NK for system (1) and
‘NQ for system (25) have respectively the expressions y = y5(x) and y = y6(x). As shown in the
proof of Theorem 1, we can obtain that

y6(x)− y5(x) =

∫ x

0
M2(s)(y6(s)− y5(s))ds +N2(x),

where

M2(x) =





g(x)

y5(x)y6(x)
− f(x, y6(x))− f(x, y5(x))

y6(x)− y5(x)
, if y5(x) 6= y6(x),

g(x)

y5(x)y6(x)
, if y5(x) = y6(x)

and

N2(x) =

∫ x

0
f(s, y6(s)) + f(−s, y6(s))ds.

With a similar calculation as in the proof of Theorem 1, it follows that the expression of
y6(x)− y5(x) has the following form

y6(x)− y5(x) =

∫ x

0
(f(s, y6(s)) + f(−s, y6(s))) exp

Å∫ x

s
M2(ξ)dξ

ã
ds.

Since f(x, y) > −f(−x, y) for x > 0 and f(x, y) 6≡ −f(−x, y) for x ∈ (0, ζ), ∀ ζ > 0, y6(x) >

y5(x) for x ∈ (0, xK), where xK is the abscissa of K. Thus, ‘NK lies on the left hand side of
‘NQ. The first part of the claim follows. To prove the second part, let the orbit arcs ϕ(Q, I+) for

system (1) and Q̂O for system (25) have the expressions y = y7(x) and y = y8(x), respectively.
We can similarly obtain that

y8(x)− y7(x) =

∫ x

xQ

(f(s, y8(s)) + f(−s, y8(s))) exp
Å∫ x

s
M3(ξ)dξ

ã
ds < 0

for x ∈ (0, xQ), where

M3(x) =





g(x)

y7(x)y8(x)
− f(x, y7(x))− f(x, y8(x))

y7(x)− y8(x)
, if y7(x) 6= y8(x),

g(x)

y7(x)y8(x)
, if y7(x) = y8(x).

Thus, the orbit arc ϕ(Q, I+) for system (1) lies above the orbit arc Q̂O for system (25). Con-
sequently, the orbit arc ϕ(Q, I+) for system (1) cannot intersect the negative y–axis and must
approach the origin as t→ +∞. This proves the second part and so the claim.

Since Ÿ�OSNKO is the maximal homoclinic orbit inside the elliptic sector of system (1) at O,
by this last claim all orbits of system (1) with the initial points located in between K and Q
on the positive x–axis will positively approach the origin, and they form a part of a parabolic
sector at O locally in the fourth quadrant. This proves that system (1) has a parabolic sector
at O locally in the fourth quadrant. This is in contradiction with the contrary assumption.
Consequently, system (1) must have at least one parabolic sector in Sδ(O).

Because of the existence of the parabolic sector for system (1) at O locally in the fourth
quadrant, it forces that under the assumption of the theorem, system (1) in this asymmetric
case cannot have a parabolic sector at O locally in the third quadrant. Otherwise we will be
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in contradiction with the fact that Ÿ�OSNKO is the maximal homoclinic orbit inside the elliptic
sector of system (1) at O.

In summary, we have proved that Sδ(O) of system (1) contains one and only one parabolic
sector, which are locally in the fourth quadrant. Example 2 provides a concrete verification on
this case via Figure 4.

The elliptic sector is unbounded. Beside the elliptic sector (unbounded by the assumption)
and the hyperbolic sector, Sδ(O) for system (1) possibly contains also either zero, one, or two
parabolic sectors.

Example 1 when ε > 0 is in the asymmetric case, and its origin has a neighborhood consisting
of one elliptic, one hyperbolic and two parabolic sectors, where the elliptic sector is unbounded.
When an elliptic sector is unbounded, we cannot numerically simulate its existence. For com-
pleting the proof of the theorem, we now theoretically prove the conclusion in Example 1, and
so by a concrete example shows existence of a nilpotent equilibrium whose neighborhood can
contain two parabolic sectors besides one elliptic and one hyperbolic sectors.

System (5) when ε = 0 can be reduced to

(26) ẋ = y − x2, ẏ = −2xy,

by the transformation (x, y) → (x, y − x2). It is easy to check that system (26) is symmetry on
the y–axis, and has a unique equilibrium and two invariant orbits along the x–axis. Since system
(26) can be written in a Bernoulli equation of x with respect to y, or in a linear homogeneous
equation via z = x2, by their solutions one can get the global phase portrait in the Poincaré
disc of system (26), as shown in Figure 10(a) 1. Therefore, it follows from the transformation
that system (5) when ε = 0 has the global phase portrait as shown in Figure 3. We remark that
system (26) has two pairs of equilibria at the infinity, whereas system (5) (when ε = 0 or not)
has a unique pair of equilibria, and that the two invariant lines on the x–axis of system (26)
have been deformed to two orbits connecting the origin and the equilibrium at infinity in the
negative y–axis of system (5) when ε = 0, see the red orbits in Figures 3 and 10(a).

(a) for system (26) (b) for system (5) with ε > 0

Figure 10. The global phase portraits and variations of orbits with ε.

We next show that system (5) when ε > 0 sufficiently small has the same topological phase
portrait as that shown in Figure 3. Indeed, on the one hand, we can check that the vector
fields of system (5) in the region r > 2 are independent of ε > 0 or not, as shown in Figure
10(b), and that when ε > 0 is sufficiently small, the origin of system (5) still has only two

1System (26) and its global phase portrait in the Poincaré disc were originally obtained by professor Feng Li.
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exceptional directions θ = 0 and θ = π, infinitely many orbits connect the origin along θ = 0 as
t → +∞ and infinitely many orbits connect the origin along θ = π as t → −∞. On the other
hand, the vector field associated to system (5) rotates counterclockwise in the disc r < 2 for
ε > increasing, Figure 10(b) illustrates this variation by the representative orbits γ1, . . . , γ7 and
their positive and negative limits. This fact together with dependence of solutions with respect
to parameters shows that the elliptic and hyperbolic sectors of system (5) at O will both persist
for ε > 0 sufficiently small. In addition, parabolic sectors are structurally stable. These verify
that system (5) when ε > 0 sufficiently small has still the global phase portrait in the Poincaré
disc as that shown in Figure 3.

Since system (1) cannot have more than two parabolic sectors, we can finish the proof of the
theorem. �

As commented in Remark 4, at the moment we could not find examples in this asymmetric
case with an unbounded elliptic sector and either zero or one parabolic sector, and also cannot
prove nonexistence of systems of form (1) which are in asymmetric case and have an unbounded
elliptic sector and zero or one parabolic sector.

3.7. Proof of Proposition 7. It suffices to consider the case x0 > 0. The case x0 < 0 can be
handled in a similar way via the transformation (x, t) → (−x,−t). Without loss of generality,
we consider x0 > 0 to be the minimal one satisfying F (x0) = 0.

Set A := (x0, 0), and let ϕ(A, I+) and ϕ(A, I−) be respectively the positive and negative
semi–orbits with their initial points at A. We claim that ϕ(A, I−) and ϕ(A, I+) must intersect
the positive and negative y–axes respectively, see Figure 11. Indeed, since dx/dt = 0 on y =
F (x) and dy/dt = −g(x) < 0 for x > 0, it follows that when the orbit arc of ϕ(A, I−) is
in the first quadrant, it must be located above the curve y = F (x), and that ϕ(A, I−) either
intersects the positive y–axis, or always keep in the first quadrant and its α–limit set is the
equilibrium at infinity in the positive y-axis. We now prove that the latter cannot happen. Set
E(x, y) := y2/2 +

∫ x
0 g(s)ds, then

dE

dt

∣∣∣∣
(6)

= −g(x)F (x).

Let y = y(x) be the expression of ϕ(A, I−), and x = x̂(y) be its inverse. One can check that

(27) E(x0, 0) − E(0,+∞) =

∫ x1

0

−g(x)F (x)
y(x)− F (x)

dx+

∫ y(x1)

0
F (x̂(y))dy

for any fixed x1 ∈ (0, x0). Note that the left hand of (27) is equal to −∞, whereas the right
hand of (27) is finite, a contradiction. Hence ϕ(A, I−) must intersect the positive y–axis, denote
by B := (0, y1) this intersection point. The same arguments verify also that ϕ(A, I+) must
intersect the negative y–axis, saying at C := (0, y2). This proves the claim.

We claim that any homoclinic orbit inside the elliptic sector at the origin must positively
approach the origin from the first quadrant and negatively approach the origin from the second
quadrant. Since the condition (a, b) ∈ G63 implies that bn > 0, n is odd, F (x) > 0 in
(−ǫ, 0)∪ (0, ǫ) for some small ǫ > 0 and F (x) = bnx

n+1/(n+1)+O(xn+2) for small |x|, dy/dx =
g(x)/(F (x)−y) > 0 near the origin and in the fourth quadrant, and dy/dx = g(x)/(F (x)−y) < 0
near the origin and in the third quadrant. Indeed, by contrary, assume that there is an orbit
connecting the origin in the third quadrant. Let (−ǫ, y(−ǫ)) be a point on the orbit and be
closed to the origin. It implies dy/dx > 0 at this point, a contradiction. The claim hold. Hence,
all orbits connecting O in a small neighborhood of the origin lie in either the first or the second
quadrants and are tangent to the x–axis at the origin.

We claim that ϕ(A, I) cannot form a homoclinic orbit to the origin O. Otherwise, ϕ(A, I+)
must positively pass the segment of y = F (x) in between x = 0 and x = x0, and approach the
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(a) (b)

Figure 11. Location of the orbit arcs for showing boundedness of elliptic sector.

origin in between the positive x–axis and y = F (x). Then ϕ(A, I−) will cannot connect O, a
contradiction. The claim follows.

Finally we prove that the elliptic sector (if exists) at O must be bounded. By contrary, we
assume that the elliptic sector is unbounded. Notice that x = 0 is the horizontal isoclinic and
y = F (x) is the vertical isoclinic, and that dy/dt < 0 for x > 0 and dy/dt > 0 for x < 0. These
facts imply that any homoclinic orbit inside the elliptic sector at O has its highest point located
on the positive y–axis, and its leftmost point and rightmost point on y = F (x). By the existence
of ϕ(A, I) and its properties, it is clear that the highest point and the rightmost point of the
elliptic sector are bounded. By the contrary assumption, it is only possible that the leftmost
point of the elliptic sector is unbounded. We claim that if it is the case, then F (x) > 0 for
x < 0. Otherwise, there is a largest negative value x2 satisfying F (x2) = 0. Then, ϕ((x2, 0), I

−)
and ϕ((x2, 0), I

+) must intersect the positive and the negative y–axes respectively, denote these
intersection points by C ′ and B′. Thus, the elliptic sector lies inside of the region limited by

ĈB∪BB′∪‘B′C ′∪C ′C, implying that the elliptic sector is bounded, a contradiction. The claim
is proved.

Let P := (0, y0) be a point on the positive y–axis for which ϕ(P, I) is a homoclinic orbit inside
the elliptic sector, and let Q := (xQ, yQ) be the leftmost point of ϕ(P, I−), see Figure 11(b).

Since the leftmost point of the elliptic sector is unbounded, when the homoclinic orbit ap-
proaches the outer boundary of the elliptic sector, one has xQ → −∞. On the one hand,

E(Q) =

∫ xQ

0
g(x)dx +

y2Q
2

→ +∞, as xQ → −∞

and E(P ) = y20/2 is a finite value. On the other hand,

E(P )− E(Q) =

∫

Q̂P
dE =

∫

Q̂P
−g(x)F (x)dt > 0,

where we have used the fact that dE/dt|(6) = −g(x)F (x) > 0 in the second quadrant. Again a
contradiction happens. Hence, the elliptic sector must be bounded.

It completes the proof of the proposition.

4. Applications

This section provides an application of our aforementioned theoretic results to a concrete
planar differential system for obtaining its global phase portraits.
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For the cubic family

(28)

®
ẋ = ax+ by,

ẏ = cx3 + dx2y + exy2 + fy3,

where a, . . . , f are real parameters, Gasull [12] posed an open question: Is 2 its maximum number

of limit cycles of system (28)? This is the first half of the third problem of his list of 33 open
problems in [12]. Here we characterize its global phase portraits under the conditions such that
system (28) has no a limit cycle.

If b = 0, system (28) has an invariant line x = 0, and its dynamics is simple. The details are
omitted. For b 6= 0, the linear change of variables

(x, y) →
(
x,
y − ax

b

)

sends system (28) to

(29)





ẋ = y,

ẏ = ay + νx3 +

Å
d− 2ae

b
+

3a2f

b2

ã
x2y +

Å
e

b
− 3af

b2

ã
xy2 +

f

b2
y3,

where ν = bc− ad+ a2e/b− a3f/b2. When ν > 0, system (29) has a unique equilibrium, which
is a saddle. When ν = 0, system (29) has an invariant line y = 0 and its dynamics is simple.
The next focuses on ν < 0.

Related to system (29) is the next system

(30)





ẋ = y,

ẏ = −ω2
0x+ 2µω0y

Å
1− βx2 − γ

ω0
xy − δ

ω2
0

y2
ã
,

which is obtained from the equation

üy(t)− 2µω0u̇y(t)

Å
1− βu2y(t)−

γ

ω0
u̇y(t)uy(t)−

δ

ω2
0

u̇2y(t)

ã
+ ω2

0uy(t) = 0,

by Erlicher et al. [11] for modelling a hybrid Van der Pol-Rayleigh oscillator with an additional
γ-term (see [11, Section 4.2]).

Notice that both system (29) with ν 6 0 and system (30) are a sub-family of the system

(31)





dx

dt
= y,

dy

dt
= −λx− µy − κx3 − ax2y − bxy2 − cy3.

We now apply our main results to system (31) for obtaining its global phase portraits in the
Poincaré disc when the parameters λ, µ, κ, a, c are non–negative. Note that when b = 0, the
divergence of the system is non–positive, and so the Dulac criterion can be applied directly. For
b 6= 0, when λ = κ = 0, system (31) has the invariant line y = 0, and its dynamics is simple. In
what follows, our study is under the conditions: b 6= 0, and λ+ κ 6= 0.

When κ > 0, the scaling (x, y, t) → (x/
√
κ, y/

√
κ, t) sends system (31) to

(32)





dx

dt
= y,

dy

dt
= −λx− µy − x3 − ax2y − bxy2 − cy3,

with the parameters belonging to the region

R1 := {(λ, µ, a, b, c) ∈ R
5 : λ > 0, µ > 0, a > 0, c > 0, b 6= 0}.
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The global topological phase portraits of system (32) will be summarized in Theorem 10 via
Figure 12.

When κ = 0 and λ > 0, the rescaling (x, y, t) → (x,
√
λy, t/

√
λ) sends system (31) to

(33)





dx

dt
= y,

dy

dt
= −x− µy − ax2y − bxy2 − cy3,

with the parameters belonging to the region

R2 := {(µ, a, b, c) ∈ R
4 : µ > 0, a > 0, c > 0, b 6= 0}.

The global topological phase portraits of system (33) will be summarized in Theorem 11 via
Figure 14.

4.1. Global dynamics of system (32).

4.1.1. Nonexistence of closed orbits of system (32). In this subsection, we study the nonexistence
of closed orbits of system (32).

Lemma 9. When µ, a, c are non-negative and µ2 + a2 + c2 6= 0, system (32) has no closed

orbit.

Proof. Set g(x) = λx+x3 and f(x, y) = µ+ax2+ bxy+ cy2. Obviously g(x) is an odd function.
One can check that the conditions (i) and (ii) of Theorem 1 hold for (x, y) ∈ R

2 and λ > 0.
Besides, f(x, y) + f(−x, y) = 2µ + 2ax2 + 2cy2 > 0 when µ, a, c are non-negative. Then the
condition (iii) of Theorem 1 holds, and so does the condition (iv), because µ2 + a2 + c2 6= 0.
By Theorem 1 system (32) has no a closed orbit around the origin. �

Remark 6. Lemma 9 indicates that our criterion in Theorem 1 is more applicable than the

classical Dulac one for system (32). The divergence of system (32) is

div(X,Y ) = −µ− ax2 − 2bxy − 3cy2.

If µ, a and c are of the same sign and b2 − 3ac 6 0, the Dulac criterion shows that system (31)
has no a closed orbit around O. However, the Dulac criterion is invalid for b2−3ac > 0. While,

the application of the criterion in Theorem 1 is independent on b.

4.1.2. Equilibria of system (32). Applying Lemma 8 and Theorem 5 to system (32) directly
provides the qualitative properties of the unique equilibrium O, which are shown in Table 2.

Table 2. The qualitative property of O of system (31).

Cases of parameters Type of O

µ = 0
a = c = 0 center

a2 + c2 6= 0 stable focus

µ > 0

λ = 0 stable improper node

λ > 0

µ2 − 4λ > 0 stable node

µ2 − 4λ = 0 stable improper node

µ2 − 4λ < 0 stable focus

On the qualitative properties of the equilibria at infinity, the proof is not difficult but is too
long to give here, see Appendix C.
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4.1.3. Global phase portraits in the Poincaré disc of system (32). By the nonexistence of closed
orbits, qualitative properties of equilibria (including at infinity) of system (32), we can obtain
all global phase portraits in the Poincaré disc in the following theorem.

Theorem 10. All global phase portraits in the Poincaré disc are shown in Figure 12 for system

(32), where

S1 = {(λ, µ, a, b, c) ∈ R1 : a = µ = c = 0, b < 0},
S2 = {(λ, µ, a, b, c) ∈ R1 : a = µ = c = 0, b > 0},
S3 = {(λ, µ, a, b, c) ∈ R1 : c = 0, a2 + µ2 6= 0, b > a2/4},
S4 = {(λ, µ, a, b, c) ∈ R1 : c = 0, 0 < b < a2/4},
S5 = {(λ, µ, a, b, c) ∈ R1 : c = 0, a2 + µ2 6= 0, b < 0},
S6 = {(λ, µ, a, b, c) ∈ R1 : c = 0, b = a2/4, u20 + µu0 + λ < 0},
S7 = {(λ, µ, a, b, c) ∈ R1 : c = 0, b = a2/4, u20 + µu0 + λ = 0},
S8 = {(λ, µ, a, b, c) ∈ R1 : c = 0, b = a2/4, u20 + µu0 + λ > 0},
S9 = {(λ, µ, a, b, c) ∈ R1 : c > 0,−

√
3ac 6 b 6

√
3ac}

∪ {(λ, µ, a, b, c) ∈ R1 : c > 0, b < −
√
3ac,Φ(̺2) > 0}

∪ {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) < 0}

∪ {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) > 0,Φ(̺2) > 0},

S10 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) = 0, ̺21 + µ̺1 + λ < 0},

S11 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) = 0, ̺21 + µ̺1 + λ = 0},

S12 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) = 0, ̺21 + µ̺1 + λ > 0},

S13 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b < −
√
3ac,Φ(̺2) = 0},

S14 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) > 0,Φ(̺2) = 0, ̺22 + µ̺2 + λ < 0},

S15 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) > 0,Φ(̺2) = 0, ̺22 + µ̺2 + λ = 0},

S16 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) > 0,Φ(̺2) = 0, ̺22 + µ̺2 + λ > 0},

S17 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b >
√
3ac,Φ(̺1) > 0,Φ(̺2) < 0},

S18 = {(λ, µ, a, b, c) ∈ R1 : c > 0, b < −
√
3ac,Φ(̺2) < 0},

Φ(u) := cu3+bu2+au+1, u0 = −a/2b, and ̺1 = (−b−
√
b2 − 3ac)/3c, ̺2 = (−b+

√
b2 − 3ac)/3c

for c > 0.

Proof. When µ = a = c = 0, the unique equilibrium O is a center for system (32) by Table 2.
When µ, a, c are non-negative and µ2 + a2 + c2 6= 0, systems (32) has no closed orbits and O is
a sink by Lemma 9 and Table 2.

Combining Lemmas 21–27 of Appendix C, we can obtain all global phase portraits of systems
(32). It is worth to notice that the aquirment of Figure 12(e, l, r) need more derivation. In fact,
consider the region S5. Incorporated with Figure 17(b) and Figure 23(b) of Appendix C, it is
easy to obtain that the ω–limit sets of θ is probably O, ID+, IA+ , which can be seen in Figure
13, where θ stands for the orbit leaving IB− .

We claim that the ω–limit sets of θ is O. In fact, if the ω–limit sets of θ is ID+. Because of

the stability of O and a orbit approaching IA+, ¤�IB−ID−ID+ and O can be used as the inner and
outer boundaries. Thus, there is a limit cycle surrounding O which contradicts the nonexistence
of closed orbits. If the ω–limit sets of θ is IA+ . The fixed b and a (resp. µ) make it easy to
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(a) S1 (b) S2 (c) S3 (d) S4

(e) S5 (f) S6 (g) S7 (h) S8

(i) S9 (j) S10 (k) S11 (l) S12

(m) S13 (n) S14 (o) S15 (p) S16

(q) S17 (r) S18

Figure 12. Global phase portraits of system (32).

check that system (32) is a generalized rotated vector field on µ (resp. a). When µ (resp. a)
decreases, in Figure 13(b) will happen which is a conflict. Thus, the global portrait of system
(32) for c = 0, b < 0 and a2 + µ2 6= 0 is shown in Figure 12(e).

Next, we can give similarly the rest of global phase portraits in the Poincaré disc of system
(32) . �
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(a) Ωθ = O (b) Ωθ = ID+ (c) Ωθ = IA+

Figure 13. The possibilities of the ω–limit sets of θ.

4.2. Global dynamics of system (33). As proven in subsections 4.1.1 and 4.1.2, we can obtain
similarly that system (33) has no closed orbits when µ, a, c are non-negative and µ2+a2+c2 6= 0,
and the qualitative properties of the unique equilibrium O is also as shown in Table 2. Similarly,
on the qualitative properties of the equilibria at infinity of system (33), the proof is also not
difficult but is too long to give here, see Appendix D. Then, we obtain all global phase portraits
in the Poincaré disc in the following theorem.

Theorem 11. All global phase portraits in the Poincaré disc are shown in Figure 14 for system

(33), where

G1 = {(µ, a, b, c) ∈ R2 : µ = a = c = 0, b > 0},
G2 = {(µ, a, b, c) ∈ R2 : µ = a = c = 0, b < 0},
G3 = {(µ, a, b, c) ∈ R2 : µ > 0, a = c = 0, b < 0},
G4 = {(µ, a, b, c) ∈ R2 : µ > 0, a = c = 0, b > 0},
G5 = {(µ, a, b, c) ∈ R2 : a > 0, b > 0, c = 0},
G6 = {(µ, a, b, c) ∈ R2 : a > 0, b < 0, c = 0},
G7 = {(µ, a, b, c) ∈ R2 : a = 0, b > 0, c > 0},
G8 = {(µ, a, b, c) ∈ R2 : a = 0, b < 0, c > 0},
G9 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0,−2

√
ac < b < 2

√
ac},

G10 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0, b > 2
√
ac},

G11 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0, b < −2
√
ac},

G12 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0, b = 2
√
ac, a− µ

√
ac+ c < 0},

G13 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0, b = −2
√
ac},

G14 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0, b = 2
√
ac, a− µ

√
ac+ c = 0},

G15 = {(µ, a, b, c) ∈ R2 : a > 0, c > 0, b = 2
√
ac, a− µ

√
ac+ c > 0},

Appendix A

We will recall here the classical results on nonexistence of closed orbits of planar dynamical
systems, which are used for comparing with our criterions.
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(a) G1 (b) G2 (c) G3 (d) G4

(e) G5 (f) G6 (g) G7 (h) G8

(i) G9 (j) G10 (k) G11 (l) G12

(m) G13 (n) G14 (o) G15

Figure 14. Global phase portraits of system (33).

Consider the following planar dynamical system

(34)
dx

dt
= X(x, y),

dy

dt
= Y (x, y),

where X(x, y), Y (x, y) are defined on R
2. We first state the Poincaré’s method of tangential

curves.

Theorem 12. [29, Theorem 1.6 of Chapter 4] Let F (x, y) = C be a family of curves, where

F (x, y) ∈ C1(G). Suppose that
dF

dt
= X

∂F

∂x
+ Y

∂F

∂y

has a fixed sign on G (i.e., > 0 or 6 0), and the equality

X
∂F

∂x
+ Y

∂F

∂y
= 0

cannot be satisfied on an entire orbit of (34). Then system (34) has no closed orbits in G.
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Secondly, we recall the Bendixson-Dulac criterion.

Theorem 13. [29, Theorem 1.7 of Chapter 4] Suppose that in the simply connected region G,
the vector field (X(x, y), Y (x, y)) associated to system (34) is C1(G). Further, there is a function

B(x, y) ∈ C1(G) such that
∂(BX)

∂x
+
∂(BY )

∂y
is of the fixed sign, and is never identically zero in any subregion. Then system (34) has no a

closed orbit in G.

Thirdly, we recall the result by Lins et al [17] on nonexistence of closed orbits of the classical
Liénard system.

Theorem 14. [17, Proposition 1] Consider the Liénard differential system

(35)
dx

dt
= y − F (x),

dy

dt
= −x,

where F (x) = adx
d + · · ·+ a1x. Set F (x) = c(x) + e(x), with c(x) even and e(x) odd functions.

If 0 is the unique zero of e(x), then system (35) has no closed orbits around the origin.

Fourthly, we recall the result by Dumortier and Rousseau [9] on nonexistence of closed orbits
of the generalized Liénard system.

Theorem 15. [9, Proposition 2.3] Consider the generalized Liénard differential system

(36)
dx

dt
= y − F (x),

dy

dt
= −g(x),

with F of class C2 and g of class C1 on (α, β) (α, β can be ±∞), and satisfying

(i) f(x) = F ′(x) has a unique zero x0 < 0; f(x) < 0 (resp. > 0) as α < x < x0 (resp. x0 <
x < β);

(ii) F (0) = 0, F (ξ0) = 0 for α < ξ0 < x0;
(iii) xg(x) > 0 for x ∈ (α, β) and x 6= 0.

Then system (36) has no a limit cycle in the strip ξ0 < x < β.

Fifthly, we recall the result by Sugie [22] on nonexistence of closed orbits of the generalized
Liénard system.

Theorem 16. [22, Theorems 3.1 and 3.2] Consider system (36), with F (x) and g(x) being

continuous functions in R and satisfying F (0) = 0 and xg(x) > 0 for x 6= 0. Assume that the

initial value problem for system (36) has always a unique solution. Let M+ =
∫ +∞
0 g(x)dx,

M− =
∫ −∞
0 g(x)dx and M = min{M+,M−}. Define

w = G(x) :=

∫ x

0
|g(s)| ds.

(a) If

F
(
G−1(−w)

)
6= F

(
G−1(w)

)
, 0 < w < M,

then system (36) has no periodic solutions except for the origin.

(b) Define

H(w) = F
(
G−1(−w)

)
− F

(
G−1(w)

)
for 0 6 w < M.

Suppose that

H(w) > 0 or H(w) 6 0 for 0 6 w < M,

and that there exists a sequence {wn} such that

wn → 0+ as n→ +∞ and H(wn) 6= 0.
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Then system (36) has no periodic solutions except for the origin.

Sixthly, we recall the result from [4] on nonexistence of closed orbits of the Liénard system
(36).

Theorem 17. [4, Proposition 2.1] Consider system (36) with g continuous and F smooth on

(a1, b1) for some given a1 < 0 < b1, and F (0) = 0. Assume that

• g(x) has n +1 zeros 0, x1, · · · , xn in (a1, b1) such that xg(x) > 0 for all x ∈ (a1, b1) \
{0, x1, · · · , xn}.

Set z(x) :=
∫ x
0 g(s)ds, z1 := z(b1) > 0 and z2 := z(a1) > 0 and x1(z), and let x2(z) be the

branches of the inverse of z(x) for x > 0 and x 6 0, respectively. Set

F1(z) := F (x1(z)), F2(z) := F (x2(z)).

If

(i) F1(z) 6≡ F2(z) for all 0 < z ≪ 1, and
(ii) either F1(z) > F2(z) or F1(z) 6 F2(z) for all z ∈ (0,min{z1, z2}),

then system (36) has no closed orbits in the strip a1 < x < b1.

Seventhly, we recall the result by Chen and Tang [5] on nonexistence of closed orbits of the
generalized Liénard system (36).

Theorem 18. [5, Theorem 2.1] Consider system (36) with F and g of class C1 in (β1, β2), where
β1 < 0 and β2 > 0 (β1, β2 could be ±∞). Assume that F (x) and g(x) satisfy the conditions:

(i) xg(x) > 0 for x ∈ (β1, 0) ∪ (0, β2);
(ii) F (x) has at most three zeros x1, x2, 0 ∈ (β1, β2) with x1 < x2 6 0, and F (x) >

0 (resp. < 0) for x ∈ (x1, x2) ∪ (0,+∞) (resp. x ∈ (β1, x1) ∪ (x2, 0));
(iii) f(x) = F ′(x) has a unique zero ξ0 in (x1, x2), and f(x) < 0 (resp. > 0) for x ∈

(ξ0, x2) (resp. x ∈ (x1, ξ0) ∪ (0, β2));
(iv) the simultaneous equations

F (z1) = F (z2) and
g(z1)

f(z1)
=
g(z2)

f(z2)

have no common solutions in (β1, β2) satisfying x1 < z1 < x2 < 0 < z2.

Then system (36) has no closed orbits in the strip β1 < x < β2.

Appendix B

In this part we recall Theorems 7.1 and 7.2 of [29, Chapter 2] for reader’s convenience, which
are frequently used to characterize local topological structure of the equilibrium having at least
one eigenvalue vanishing and its linearization nonvanishing.

Consider the planar differential system

(37)
dx

dt
= P2(x, y),

dy

dt
= y +Q2(x, y).

Theorem 19. [29, Theorem 7.1 of Chapter 2] Suppose that O = (0, 0) is an isolated equilibrium

of system (37) and that P2 and Q2 are analytic functions in a small neighborhood Sδ(O) of O
without constant and linear terms. Let y = φ(x), |x| < δ, be the unique analytic solution of the

equation

y +Q2(x, y) ≡ 0, in Sδ(O),



30 H. CHEN ET AL.

Table 3.

Relations between a2m+1, bn, λ,m, n Type of equilibrium O

a2m+1 > 0 saddle

a2m+1 < 0

bn = 0 center or focus

bn 6= 0

n > m; or m = n and λ < 0 center or focus

n is even

ß
n < m, or

n = m and λ > 0
node

n is odd

ß
n < m, or

n = m and λ > 0

Sδ(O) consists of one hyperbolic

sector and one elliptic sector

and set

ψ(x) = P2(x, φ(x)) = amx
m + o(xm), |x| < δ,

with am 6= 0,m > 2. Then the following properties are satisfied.

(i) If m is odd and am > 0, then O is an unstable node.

(ii) If m is odd and am < 0, then O is a saddle with its four separatrices tending to O(0, 0)
along the directions θ = 0, π/2, π and 3π/2, respectively.

(iii) If m is even, then O is a saddle–node, and Sδ(O) is divided by two separatrices, tangent

to respectively the positive and negative y–axes at O, into two parts: one is a parabolic

sector, and the other consists of two hyperbolic sectors.

A system with the nilpotent equilibrium at the origin can be transformed to

(38)
dx

dt
= y,

dy

dt
= akx

k (1 + h(x)) + bnx
ny (1 + g(x)) + y2p(x, y),

where h(x), g(x), p(x, y) are analytic functions in Sδ(O). Moreover, h(O) = g(O) = 0, ak 6=
0, k > 2; bn can be zero, and when bn 6= 0, n > 1.

Theorem 20. [29, Theorem 7.2 of Chapter 2] For system (38) with k = 2m + 1,m > 1, the
equilibrium O has the local property as that in Table 3, where λ = b2n + 4(m+ 1)a2m+1.

Notice that the results of Theorem 19 were initially obtained by Lyapunov in [19, p. 301] and
the results of Theorem 20 were initially obtained by Andreev in [2].

Appendix C

By a Poincaré transformation

x =
1

z
, y =

u

z
,

system (32) is changed to

(39)





du

dτ
= −z2(u2 + µu+ λ)− (cu3 + bu2 + au+ 1),

dz

dτ
= −z3u,

where dτ = dt/z2. Notice that the abscissaes of the equilibria of system (39) on z = 0 are the
zeros of the polynomial Φ(u) := cu3 + bu2 + au+ 1.

Lemma 21. If c = 0, system (39) has two equilibria A =
Ä
(−a−

√
a2 − 4b)/2b, 0

ä
and B =Ä

(−a+
√
a2 − 4b)/2b, 0

ä
for a2 − 4b > 0, only one equilibrium C = (−a/2b, 0) for a2 − 4b = 0,
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and no an equilibrium for a2 − 4b < 0. Moreover, A is an unstable node for b > 0, a saddle for

b < 0; B is a saddle and C is a degenerate equilibrium.

Proof. The number of equilibria follows directly from the roots of Φ(u) = 0. On the properties
of these equilibria, computing the Jacobian matrices of the system at A, B and C gives

JA :=

Å√
a2 − 4b 0
0 0

ã
, JB :=

Å
−
√
a2 − 4b 0
0 0

ã
, JC :=

Å
0 0
0 0

ã
,

respectively. Thus, A and B are semi-hyperbolic equilibria and C is a degenerate equilibrium.

Set u1 = −a−
√
a2 − 4b)/2b and u2 = (−a +

√
a2 − 4b)/2b. By the transformation (u, z) →

(u+ u1, z) system (39) is changed to




du

dτ
= −z2

(
u2 + (µ+ 2u1)u+ u21 + µu1 + λ

)
− bu2 − (2bu1 + a)u =: P1(u, z),

dz

dτ
= −z3u− u1z

3 =: Q1(u, z).

The implicit function theorem shows that P1(u, z) = 0 has a unique root u = φ1(z) for small
|z|. Thus,

Q1(φ1(z), z) = −u1z3 + o(z3).

Notice that u1 < u2 < 0 for b > 0 and u2 < 0 < u1 for b < 0. By Theorem 19 in Appendix B, it
follows that A is an unstable node for b > 0, and is a saddle for b < 0. Similarly, B is a saddle
of system (39). The proof is finished. �

Next we give the qualitative property of C.

Lemma 22. The qualitative property of C is shown in Tables 4–6.

Table 4. Numbers of orbits connecting C for γ > 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = π one (−)

(−)(resp.(+)) means that the orbits approaching C as τ → −∞(resp. τ → +∞).

Table 5. Numbers of orbits connecting C for γ = 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = π
2 ∞ (−)

θ = π one (−)

θ = 3π
2 ∞ (−)
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Table 6. Numbers of orbits connecting C for γ < 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = arctan
»

−b
γ one (−)

θ = π − arctan
»

−b
γ ∞ (−)

θ = π one (−)

θ = π + arctan
»

−b
γ ∞ (−)

θ = 2π − arctan
»

−b
γ one (−)

Proof. In this case, one has b = a2/4 > 0 and u0 := −a/2b < 0. With the transformation
(u, z) → (u+ u0, z), system (39) becomes

(40)





du

dτ
= −z2

(
u2 + (µ+ 2u0)u+ u20 + µu0 + λ

)
− bu2,

dz

dτ
= −z3u− u0z

3.

With a polar transformation (u, z) = (r cos θ, r sin θ), system (40) can be written as

1

r

dr

dθ
=
H1(θ) +›H1(θ, r)

G1(θ) + G̃1(θ, r)
,

whereG1(θ) = sin θ((u20+µu0+λ) sin
2 θ+b cos2 θ), H1(θ) = − cos θ((u20+µu0+λ) sin

2 θ+b cos2 θ),

and›H1(θ, r), G̃1(θ, r) → 0 as r → 0. A necessary condition on existence of exceptional directions
is G1(θ) = 0 by [29, Chapter 2]. Whereas, the zeros of G1(θ) is strongly related to the sign of
γ := u20 + µu0 + λ.

For γ > 0, it is easy to check that G1(θ) = 0 has exactly two roots 0, π in θ ∈ [0, 2π).
Moreover, easy calculation gives G′

1(0)H1(0) = G′
1(π)H1(π) = −b2 < 0. By H1(0) < 0,

H1(π) > 0 and [29, Theorem 3.7 of Chapter 2], system (40) has a unique orbit approaching
(0, 0) in the direction θ = π as τ → −∞, and a unique orbit approaching (0, 0) in the direction
θ = 0 as τ → +∞. So is C.

For γ < 0, it is easy to check that G1(θ) has six zeros θ = 0, arctan
Ä√

−b/γ
ä
, π −

arctan
Ä√

−b/γ
ä
, π, π+arctan

Ä√
−b/γ

ä
, 2π−arctan

Ä√
−b/γ

ä
in θ ∈ [0, 2π). SinceG′

1(0)H1(0) =

G′
1(π)H1(π) = −b2 < 0, it follows from H1(0) < 0, H1(π) > 0 and [29, Theorem 3.7 of Chapter

2] that system (40) has a unique orbit approaching (0, 0) in the direction θ = π as τ → −∞, and
a unique orbit approaching (0, 0) in the direction θ = 0 as τ → +∞. So is C. Since the other
four zeros of G1(θ) are also those of H1(θ), one cannot apply the normal sector method (see [29,

Chapter 2]) to analyze the four exceptional directions θ = arctan
Ä√

−b/γ
ä
, π−arctan

Ä√
−b/γ

ä
,

π + arctan
Ä√

−b/γ
ä
, 2π − arctan

Ä√
−b/γ

ä
of the origin for system (40). Instead, we adopt

Briot–Bouquet transformations to blow up the four directions.
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With the Briot–Bouquet transformation z = z̃u, system (40) is changed to

(41)





du

dδ
= −z̃2u

(
u2 + (µ+ 2u0)u+ γ

)
− bu,

dz̃

dδ
= (µ + u0)z̃

3u+ γz̃3 + bz̃,

where dδ = udτ . System (41) has three equilibria (0, 0),
Ä
0,
√

−b/γ
ä
and
Ä
0,−

√
−b/γ

ä
. The

equilibrium (0, 0) is a saddle. For the other two equilibria, taking transformation (u, z̃) →
(u, z̃ + z1) with z1 =

√
−b/γ, system (41) becomes

(42)





du

dδ
=− (z̃2 + 2z1z̃)

(
u3 + (µ+ 2u0)u

2 + γu
)
− z21

(
u3 + (µ+ 2u0)u

2
)
,

dz̃

dδ
=(µ+ u0)z

3
1u+ 2γz21 z̃ + (µ+ u0)(uz̃

3 + 3z1uz̃
2 + 3z21uz̃)

+ γz̃3 + 3γz1z̃
2.

A further transformation (u, z̃) →
(
u,

(
z̃ − (µ + u0)z

3
1u

)
/2γz21

)
sends system (42) to

(43)





du

dδ
= −u0u2 −

1

z1
uz̃ + h.o.t. =: P2(u, z̃),

dz̃

dδ
= 2γz21 z̃ + h.o.t. =: Q2(u, z̃).

By the implicit function theorem, Q2(u, z̃) = 0 has a unique root z̃ = φ2(u) for small |u|. Thus,

P2(u, φ2(u) = −u0u2 + o(u2).

Theorem 19 in Appendix B together with γ < 0 and u0 < 0 verifies that the origin of system (43)

is a saddle–node, so is
Ä
0,
√

−b/γ
ä
of system (41). Similarly,

Ä
0,−

√
−b/γ

ä
is also a saddle–

node. Figure 15(a) illustrates the qualitative properties of the equilibria (0, 0),
Ä
0,
√

−b/γ
ä

and
Ä
0,−

√
−b/γ

ä
of system (41) in the (u, z̃) plane. In fact, when u 6= 0, the Briot–Bouquet

transformation z = z̃u is a topological transformation from (u, z) plane to (u, z̃) plane, mapping
the first, second, third and fourth quadrants respectively into the first, third, second and fourth
quadrants. Moreover, when u = 0, the transformation makes the whole z̃–axis shrinking to the
origin in the (u, z) plane. In other words, all orbit segments in first, second, third and fourth
quadrants in the (u, z) plane correspond first, third, second and fourth quadrants in the (u, z̃)
plane, respectively. Further, an orbit with the initial point (0, z̃0) in the (u, z̃) plane becomes

an orbit connecting O along θ = θ̃0 in the (u, z) plane.

Therefore, blowing down these equilibria to C yields that system (39) has infinitely many or-

bits approaching C in respectively the directions θ = π−arctan
Ä√

−b/γ
ä
and π+arctan

Ä√
−b/γ

ä

as τ → −∞, a unique orbit approaching C in respectively the directions θ = arctan
Ä√

−b/γ
ä

and 2π − arctan
Ä√

−b/γ
ä
as τ → −∞. Figure 15(b) exhibits the local structure of C in the

(u, z) plane.

For γ = 0, the equation G1(θ) = 0 has four roots θ = 0, π/2, π, 3π/2 in θ ∈ [0, 2π). Moreover,
G′

1(0)H1(0) = G′
1(π)H1(π) = −b2 < 0. By H1(0) < 0, H1(π) > 0 and [29, Theorem 3.7 of

Chapter 2], system (40) has a unique orbit approaching (0, 0) in the direction θ = π as τ → −∞,
and a unique orbit approaching (0, 0) in the direction θ = 0 as τ → +∞. So is C. However,
H1(π/2) = H1(3π/2) = 0. We need Briot–Bouquet transformations to blow up the directions
θ = π/2 and θ = 3π/2.
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(a) (u, z̃) plane for system (41) (b) (u, z) plane for system (40)

Figure 15. Orbits changing under the Briot–Bouquet transformation for γ < 0.

With the Briot–Bouquet transformation u = ũz, system (40) becomes

(44)





dũ

ds
= (−u0 − µ)ũz − bũ2,

dz

ds
= −ũz3 − u0z

2,

where ds = zdτ . The polar change of variables (ũ, z) = (r cos θ, r sin θ) sends system (44) to

1

r

dr

dθ
=
H2(θ) +›H2(θ, r)

G2(θ) + G̃2(θ, r)
,

where

G2(θ) = sin θ cos θ(b cos θ + µ sin θ)

and

H2(θ) = −u0 sin3 θ + (−u0 − µ) sin θ cos2 θ − b cos3 θ.

The condition γ = 0 implies µ > 0, and so G2(θ) has six zeros θ = 0, π/2, π − arctan(b/µ),
π, 3π/2, 2π − arctan(b/µ) in [0, 2π). Moreover, G′

2(0)H2(0) = G′
2(π)H2(π) = −b2 < 0,

G′
2(π/2)H2(π/2) = G′

2(3π/2)H2(3π/2) = u0µ < 0, G′
2(θ0)H2(θ0) = G′

2(π + θ0)H2(π + θ0) =
−µu0 sin2 θ0 > 0, where θ0 = π − arctan(b/µ). By [29, Theorems 3.7 and 3.8 of Chapter 2],
system (44) has a unique orbit approaching (0, 0) in respectively the directions θ = 0 and 3π/2
as s → +∞, a unique orbit approaching (0, 0) in respectively the directions θ = π and π/2 as
s→ −∞, infinitely many orbits approaching (0, 0) in the direction 2π−arctan(b/µ) as s→ +∞,
and infinitely many orbits approaching (0, 0) in the direction θ = π − arctan(b/µ) as s → −∞.
Figure 16(a) illustrates the local structure of (0, 0) for system (44) in the (ũ, z) plane. It follows
that system (39) has infinitely many orbits approaching C in respectively the directions π/2 and
3π/2 as τ → −∞. Figure 16(b) exhibits the local qualitative structure of system (39) at C in
the (u, z) plane. �

By Lemmas 21 and 22, we obtain the local phase portraits of system (32) at infinity of the
Poincaré disc, as those shown Figure 17, where IA± , IB± and IC± correspond respectively to
equilibria A, B and C of system (39).

Lemma 23. When c > 0, the equilibria of system (39) is shown in the following Table 7.

Proof. When b ∈
î
−
√
3ac, 0

ä
∪
Ä
0,
√
3ac
ó
, Φ′(u) = 3cu2 + 2bu + a > 0 holds identically. Thus,

Φ(u) is increasing and has a unique zero. When b ∈
Ä
−∞,−

√
3ac
ä
∪
Ä√

3ac,+∞
ä
, Φ′(u) =
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(a) (ũ, z) plane for system (44) (b) (u, z) plane for system (39)

Figure 16. Orbits changing under the Briot–Bouquet transformation for γ = 0.

(a) b < 0 (b) 0 < b < a2/4

(c) b = a2/4, γ > 0 (d) b = a2/4, γ < 0 (e) b = a2/4, γ = 0

Figure 17. Locally qualitative property of equilibria at infinity IA± , IB± and
IC± in the Poincaré disc for c = 0.

3cu2 + 2bu+ a = 0 has two roots

̺1 =
−b−

√
b2 − 3ac

3c
, ̺2 =

−b+
√
b2 − 3ac

3c
.

Therefore, Φ(u) is increasing in (−∞, ̺1), (̺2,+∞) and decreasing in (̺1, ̺2). The zeros of
Φ(u) are determined by discussing the signs of Φ(̺1) and Φ(̺2). The proof is finished. �

We study further the qualitative properties of the equilibria in Lemma 23.
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Table 7. The equilibria of system (39) for c > 0.

Cases of parameters Equilibria

b ∈
î
−
√
3ac, 0

ä
∪
Ä
0,
√
3ac
ó

E : (u3, 0)

b ∈
Ä
−∞,−

√
3ac
ä Φ(̺2) < 0 F1 : (u4, 0), F2 : (u5, 0), F3 : (u6, 0)

Φ(̺2) = 0 F : (u7, 0), Q : (̺2, 0)

Φ(̺2) > 0 E : (u3, 0)

b ∈
Ä√

3ac,+∞
ä

Φ(̺1) < 0 E : (u3, 0)

Φ(̺1) = 0 K : (̺1, 0), F : (u7, 0)

Φ(̺1) > 0

Φ(̺2) > 0 E : (u3, 0)

Φ(̺2) = 0 F : (u7, 0), Q : (̺2, 0)

Φ(̺2) < 0 F1 : (u4, 0), F2 : (u5, 0), F3 : (u6, 0)

Remark : ̺1 := (−b−
√
b2 − 3ac)/3c, ̺2 := (−b+

√
b2 − 3ac)/3c, and u3, · · · , u7 are probable

zeros of Φ(u) = cu3 + bu2 + au+ 1.

Lemma 24. When b ∈ [−
√
3ac, 0) ∪ (0,

√
3ac], E is a saddle.

Proof. Clearly, the Jacobian matrix at E is

JE :=

Å−3cu23 − 2bu3 − a 0
0 0

ã
.

When 3cu23 +2bu3 + a > 0, E is a semi-hyperbolic equilibrium. With a transformation (u, z) →
(u+ u3, z), system (39) is changed into

(45)





du

dτ
=− z2

(
u2 + (µ+ 2u3)u+ u23 + µu3 + λ

)
− cu3 − (3cu3 + b)u2

− (3cu23 + 2bu3 + a)u =: P3(u, z),

dz

dτ
=− z3u− u3z

3 =: Q3(u, z).

By the implicit function theorem, P3(u, z) = 0 has a unique root u = φ3(z) = −(u23 + µu3 +
λ)/(3cu23 + 2bu3 + a)z2 + o(z2) for small |z|. Thus,

Q3(φ3(z), z) = −u3z3 + o(z3).

By Theorem 19 of Appendix B and u3 < 0, E is a saddle.

When 3cu23 + 2bu3 + a = 0, E is a degenerate equilibrium and system (45) can be simplified
as

(46)





du

dτ
= −z2(u2 + (µ + 2u3)u+ u23 + µu3 + λ)− cu3,

dz

dτ
= −z3u− u3z

3.

Firstly, consider u23 + µu3 + λ = 0. Then, system (46) is simplified as

(47)





du

dτ
= −z2(u2 + (µ + 2u3)u)− cu3,

dz

dτ
= −z3u− u3z

3.
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Using a polar coordinate (u, z) = (r cos θ, z = r sin θ), system (47) is transformed into the polar
form

1

r

dr

dθ
=
H3(θ) +›H3(θ, r)

G3(θ) + G̃3(θ, r)
,

where
G3(θ) = sin θ cos θ

(
(µ + u3) sin

2 θ + c cos2 θ
)

and
H3(θ) = −u3 sin4 θ − (µ + 2u3) cos

2 θ sin2 θ − c cos4 θ.

It follows from u23 + µu3 + λ = 0 that µ + u3 > 0 (resp. = 0) if λ > 0 (resp. = 0). Thus,
G3(θ) has four zeros θ = 0, π/2, π, 3π/2 in [0, 2π), where 0, π are simple zeros, π/2, 3π/2 are
simple zeros (resp. zeros of three-multiple) for µ + u3 > 0 (resp. = 0). We can check that
G′

3(0)H3(0) = G′
3(π)H3(π) = −c2 < 0. Moreover, we can obtain

G′
3(π/2)H3(π/2) = G′

3(3π/2)H3(3π/2) = u3(µ + u3) < 0

for µ+ u3 > 0 and

G′′′
3 (π/2)H3(π/2) = G′′′

3 (3π/2)H3(3π/2) = 6cu3 < 0

for µ + u3 = 0. By [29, Theorem 3.7 of Chapter 2 ], there is a unique orbit approaching (0, 0)
in respectively the directions θ = π/2, 3π/2 as τ → −∞, and a unique orbit approaching (0, 0)
in respectively the directions θ = 0, π as τ → +∞ in system (46). In other words, E is a
degenerate saddle of system (39).

Secondly, consider u23 + µu3 + λ 6= 0. Then, applying the polar transformation (u, z) =
(r cos θ, r sin θ) to system (46), we still get

1

r

dr

dθ
=
H4(θ) +›H4(θ, r)

G4(θ) + G̃4(θ, r)
,

where G4(θ) = (u23 + µu3 + λ) sin3 θ and H4(θ) = −(u23 + µu3 + λ) cos θ sin2 θ. It is easy to
check that G4(θ) has two zeros θ = 0, π in [0, 2π) and H4(0) = H4(π) = 0. Therefore, we need
to desingularize further the degenerate equilibrium. With the Briot–Bouquet transformation
z = z̃u, system (46) becomes

(48)





du

dδ
= −z̃2u(u2 + (µ + 2u3)u+ u23 + µu3 + λ)− cu2,

dz̃

dδ
= (µ+ u3)z̃

3u+ (u23 + µu3 + λ)z̃3 + cz̃u,

where dδ = udτ . Since the origin of system (48) is still degenerate, we repeat the aforementioned
analysis steps. With a polar transformation (u, z̃) = (r cos θ, r sin θ), system (48) is written as

1

r

dr

dθ
=
H5(θ) +›H5(θ, r)

G5(θ) + G̃5(θ, r)
,

where G5(θ) = 2c sin θ cos2 θ and H5(θ) = c sin2 θ cos θ − c cos3 θ. It is easy to check that θ = 0,
π/2, π, 3π/2 are four roots of G5(θ) = 0 in [0, 2π). Moreover, G′

5(0)H5(0) = G′
5(π)H5(π) =

−2c2 < 0. Thus, there is a unique orbit approaching (0, 0) in respectively the direction θ = 0,
π as δ → +∞, and a unique orbit approaching (0, 0) in respectively the direction θ = π as
δ → −∞ in system (48) by applying [29, Theorem 3.7 of Chapter 2 ]. For θ = π/2, 3π/2, we
need to do more desingularisations because H5(π/2) = H5(3π/2) = 0.

With the second Briot–Bouquet transformation u = ũz̃ , system (48) is rewritten as

(49)





dũ

dσ
= −ũ3z̃3 − (2µ+ 3u3)ũ

2z̃2 − 2(u23 + µu3 + λ)ũz̃ − 2cũ2,

dz̃

dσ
= (µ+ u3)z̃

3ũ+ (u23 + µu3 + λ)z̃2 + cz̃ũ,
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where dσ = z̃dδ. Similarly, transforming system (49) into equation

1

r

dr

dθ
=
H6(θ) +›H6(θ, r)

G6(θ) + G̃6(θ, r)
,

by a polar transformation (ũ, z̃) = (r cos θ, r sin θ), we obtain that

G6(θ) = 3 sin θ cos θ
(
(u23 + µu3 + λ) sin θ + c cos θ

)

and

H6(θ) = (u23 + µu3 + λ) sin3 θ + c sin2 θ cos θ − 2(u23 + µu3 + λ) sin θ cos2 θ − 2c cos3 θ.

Thus, G6(θ) = 0 has six roots θ = 0, π/2, π, 3π/2, arctan(−c/(u23+µu3+λ)) , π+arctan(−c/(u23+
µu3 + λ)) for u23 + µu3 + λ < 0 and six roots θ = 0, π/2, π, 3π/2, π− arctan(c/(u23 + µu3 + λ)),
2π−arctan(c/(u23+µu3+λ)) for u

2
3+µu3+λ > 0 in [0, 2π). Then, we can check thatG′

6(0)H6(0) =
G′

6(π)H6(π) = −6c2 < 0, G′
6(π/2)H6(π/2) = G′

6(3π/2)H6(3π/2) = −3(u23 + µu3 + λ)2 < 0.
However,

H6

Å
arctan

Å
− c

u23 + µu3 + λ

ãã
= H6

Å
π + arctan

Å
− c

u23 + µu3 + λ

ãã
= 0

for u23 + µu3 + λ < 0 and

H6

Å
π − arctan

Å
c

u23 + µu3 + λ

ãã
= H6

Å
2π − arctan

Å
c

u23 + µu3 + λ

ãã
= 0

for u23 + µu3 + λ > 0. Therefore, we need to desingularize further the degenerate equilibrium.

Using the third transformation z̃ =
Ä˜̃z − z2

ä
ũ with z2 = c/(u23 + µu3 + λ), we change system

(49) into

(50)





dũ

dυ
= −2(u23 + µu3 + λ)ũ˜̃z − (˜̃z − z2)

3ũ5 − (2µ + 3u3)(˜̃z − z2)
2ũ3 =: P4(ũ, ˜̃z),

d˜̃z
dυ

= −3c˜̃z + 3(u23 + µu3 + λ)˜̃z2 + (3µ+ 4u3)(˜̃z − z2)
3ũ2 + (˜̃z − z2)

4ũ4 =: Q4(ũ, ˜̃z),

where dυ = ũdσ. On the one hand, By the implicit function theorem, Q4(ũ, ˜̃z) = 0 has a unique

root ˜̃z = φ4(ũ) = −(3µ+ 4u3)z
3
2/(3c)ũ

2 + o(ũ2) for small |ũ|. Thus,

P4(ũ, φ4(ũ)) = −u3
3
z22 ũ

3 + o(ũ3).

By Theorem 19 of Appendix B, the orgin of system (50) is a saddle. On the other hand, it is
easy to check (0, z2) of system (50) is a hyperbolic saddle. Thus, we can obtain the qualitative
properties of system (50), as shown in Figure 18 (a) (resp. Figure 19 (a)) when u23+µu3+λ > 0
(resp. u23 + µu3 + λ < 0). Further, we obtain the qualitative properties of (0, 0) in the (ũ, z̃)
plane for system (49) and in the (u, z̃) plane for system (48), respectively. See Figures 18 (b)
and (c) and Figures 19 (b) and (c). Finally, E of system (39) is a degenerate saddle, as shown
in Figures 18 (d) and 19 (d). �

By Lemma 24, when b ∈ [−
√
3ac, 0) ∪ (0,

√
3ac], the qualitative properties of equilibria IE±

at infinity in the Poincaré disc of system (32), which correspond the equilibrium E of system
(39), are as shown in Figure 20 (which illustrate only the local topological structure at IE+ and
IE− , there have other equilibria between them, without marked there).

Lemma 25. Consider b ∈
Ä
−∞,−

√
3ac
ä
. Then, F1 and F2 are saddles, and F3 is a stable node

for Φ(̺2) < 0; F is a saddle, and Q is a degenerate equilibrium for Φ(̺2) = 0; E is a saddle for

Φ(̺2) > 0. Moreover, there is a unique orbit approaching Q along θ = 0 as τ → +∞, a unique

orbit approaching Q along θ = π as τ → −∞, and no orbit connecting Q along other directions

when Φ(̺2) = 0.
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(a) (ũ, ˜̃z) plane for sys-
tem (50)

(b) (ũ, z̃) plane for sys-
tem (49)

(c) (u, z̃) plane for sys-
tem (48)

(d) (u, z) plane for sys-
tem (39)

Figure 18. Orbits changing under Briot–Bouquet transformations when u23 +
µu3 + λ > 0.

(a) (ũ, ˜̃z) plane for sys-
tem (50)

(b) (ũ, z̃) plane for sys-
tem (49)

(c) (u, z̃) plane for sys-
tem (48)

(d) (u, z) plane for sys-
tem (39)

Figure 19. Orbits changing under Briot–Bouquet transformations when u23 +
µu3 + λ < 0.

Figure 20. Locally qualitative property of equilibria at infinity IE± in the
Poincaré disc for b ∈ [−

√
3ac, 0) ∪ (0,

√
3ac] (other equilibria between them are

not marked here).

Proof. Firstly, consider Φ(̺2) < 0. With the transformation (u, z) → (u+ u4, z), system (39) is
changed into

(51)





du

dτ
=− z2

(
u2 + (µ+ 2u4)u+ u24 + µu4 + λ

)
− cu3 − (3cu4 + b)u2

− (3cu24 + 2bu4 + a)u =: P5(u, z),

dz

dτ
=− z3u− u4z

3 =: Q5(u, z).
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It is easy to obtain 3cu24+2bu4+c > 0 by u4 < ̺1. By the implicit function theorem, P5(u, z) = 0
has a unique root u = φ5(z) = −(u24 + µu4 + λ)/(3cu24 +2bu4 + a)z2 + o(z2) for small |z|. Thus,

Q5(φ5(z), z) = −u4z3 + o(z3).

By Theorem 19 of Appendix B and u4 < 0, F1 is a saddle. It is similar to prove that F2 is a
saddle and F3 is a stable node.

Secondly, consider Φ(̺2) > 0. It is easy to check u3 < 0 and 3cu23+2bu3+a > 0. Considering
system (45), by the implicit function theorem, P3(u, z) = 0 has a unique root u = φ3(z) for
small |z|. Thus,

Q3(φ3(z), z) = −u3z3 + o(z3).

By Theorem 19 of Appendix B, E is a saddle.

Finally, consider Φ(̺2) = 0. It is obvious that u7 < 0 < ̺1 < ̺2 and the Jacobian matrices
at F and Q are

JF :=

Å
−3cu27 − 2bu7 − a 0

0 0

ã
, JQ :=

Å
−3c̺22 − 2b̺2 − a 0

0 0

ã
,

respectively. Since 3cu27 + 2bu7 + a > 0 and 3c̺22 + 2b̺2 + a = 0 by Lemma 23, F is a semi-
hyperbolic equilibrium and Q is a degenerate equilibrium. For F , taking the transformation
(u, z) → (u+ u7, z), system (39) becomes

(52)





du

dτ
=− z2

(
u2 + (µ+ 2u7)u+ u24 + µu4 + λ

)
− cu3 − (3cu7 + b)u2

− (3cu27 + 2bu7 + a)u =: P6(u, z),

dz

dτ
=− z3u− u7z

3 =: Q6(u, z).

By the implicit function theorem, P6(u, z) = 0 has a unique root u = φ6(z) = −(u27 + µu7 +
λ)/(3cu27 + 2bu7 + a)z2 + o(z2) for small |z|. Thus,

Q6(φ6(z), z) = −u7z3 + o(z3).

By Theorem 19 of Appendix B and u7 < 0, we can check that F is a saddle.

Concerning the equilibrium Q, a transformation (u, z) → (u+ ̺2, z) sends system (39) to

(53)





du

dτ
= −z2(u2 + (µ + 2̺2)u+ ̺22 + µ̺2 + λ)− cu3 −

Ä√
b2 − 3ac

ä
u2,

dz

dτ
= −z3u− ̺2z

3.

With a polar transformation (u, z) = (r cos θ, r sin θ), system (53) is rewritten as

(54)
1

r

dr

dθ
=
H7(θ) +›H7(θ, r)

G7(θ) + G̃7(θ, r)
,

where

G7(θ) = sin θ
Ä
(̺22 + µ̺2 + λ) sin2 θ +

Ä√
b2 − 3ac

ä
cos2 θ

ä

and

H7(θ) = − cos θ
Ä
(̺22 + µ̺2 + λ) sin2 θ +

Ä√
b2 − 3ac

ä
cos2 θ

ä
.

It follows from ̺2 > 0 that ̺22 + µ̺2 + λ > 0. Then, we can check that G7(θ) has two zeros
θ = 0, π in [0, 2π) and

G′
7(0)H7(0) = G′

7(π)H7(π) = 3ac− b2 < 0.

Therefore, there is a unique orbit approaching Q in the direction θ = 0 as τ → +∞, and a
unique orbit approaching Q in the direction θ = π as τ → −∞ in system (39) by [29, Theorem
3.7 of Chapter 2 ], H7(0) < 0 and H7(π) > 0. �
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By Lemma 25, when b ∈ (−∞,−
√
3ac), the qualitative properties of equilibria at infinity IF±

1

,

IF±

2

and IF±

3

for Φ(̺2) < 0, IF± and IQ± for Φ(̺2) = 0, or IE± for Φ(̺2) > 0 in the Poincaré

disc of system (32), which correspond respectively the equilibria F1, F2, F3, F , Q, E of system
(39), are as shown in Figure 21 (there may probably other equilibria at the infinity, which are
not marked there).

(a) Φ(̺2) < 0 (b) Φ(̺2) = 0 (c) Φ(̺2) > 0

Figure 21. Locally qualitative property of equilibria at infinity IF±

1

, IF±

2

and

IF±

3

, or IF± and IQ± , or IE± in the Poincaré disc for b ∈
Ä
−∞,−

√
3ac
ä
(not

including all equilibria at infinity).

Lemma 26. Consider b ∈
Ä√

3ac,+∞
ä
. Then, E is a saddle for Φ(̺1) < 0; F is a saddle and

K is a degenerate equilibrium for Φ(̺1) = 0. When Φ(̺1) > 0, E is a saddle for Φ(̺2) > 0; F1

and F3 are saddles, F2 is an unstable node for Φ(̺2) < 0; F is a saddle and Q is a degenerate

equilibrium for Φ(̺2) = 0. Moreover, the qualitative properties of K or Q are shown in Tables
8–10 or 11–13.

Table 8. Numbers of orbits connecting K for ̺21 + µ̺1 + λ < 0.

Exceptional directions Numbers of orbits

θ = 0 one (−)

θ = π one (+)

Table 9. Numbers of orbits connecting K for ̺21 + µ̺1 + λ = 0.

Exceptional directions Numbers of orbits

θ = 0 one (−)

θ = π
2 ∞ (−)

θ = π one (+)

θ = 3π
2 ∞ (−)
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Table 10. Numbers of orbits connecting K for ̺21 + µ̺1 + λ > 0.

Exceptional directions Numbers of orbits

θ = 0 one (−)

θ = arctan
(√ √

b2−3ac
̺2
1
+µ̺1+λ

)
one (+)

θ = π − arctan
(√ √

b2−3ac
̺2
1
+µ̺1+λ

)
∞ (+)

θ = π one (+)

θ = π + arctan
(√ √

b2−3ac
̺2
1
+µ̺1+λ

)
∞ (+)

θ = 2π − arctan
(√ √

b2−3ac
̺2
1
+µ̺1+λ

)
one (+)

Table 11. Numbers of orbits connecting Q for ̺22 + µ̺2 + λ > 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = π one (−)

Table 12. Numbers of orbits connecting Q for ̺22 + µ̺2 + λ = 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = π
2 ∞ (−)

θ = π one (−)

θ = 3π
2 ∞ (−)

Proof. Firstly, consider Φ(̺1) < 0. It is easy to check ̺2 < u3 < 0 and 3cu23 +2bu3 + a > 0. For
E, considering system (45), by the implicit function theorem, P3(u, z) = 0 has a unique root
u = φ3(z) = −(u23 + µu3 + λ)/(3cu23 + 2bu3 + a)z2 + o(z2) for small |z|. Thus,

Q3(φ3(z), z) = −u3z3 + o(z3).

By Theorem 19 of Appendix B, E is a saddle.

Secondly, consider Φ(̺1) = 0. Notice that ̺2 < u7 < 0 and 3cu27 + 2bu7 + a > 0. Considering
system (52), by the implicit function theorem, P6(u, z) = 0 has a unique root u = φ6(z) =
−(u27 + µu7 + λ)/(3cu27 + 2bu7 + a)z2 + o(z2) for small |z|. Thus,

Q6(φ6(z), z) = −u7z3 + o(z3).

Thus, F is a saddle by Theorem 19 of Appendix B.
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Table 13. Numbers of orbits connecting Q for ̺22 + µ̺2 + λ < 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = arctan
(√

−
√
b2−3ac

̺2
2
+µ̺2+λ

)
one (−)

θ = π − arctan
(√

−
√
b2−3ac

̺2
2
+µ̺2+λ

)
∞ (−)

θ = π one (−)

θ = π + arctan
(√

−
√
b2−3ac

̺2
2
+µ̺2+λ

)
∞ (−)

θ = 2π − arctan
(√

−
√
b2−3ac

̺2
2
+µ̺2+λ

)
one (−)

Concerning the degenerate equilibrium K, we can rewrite system (55) by the transformation
(u, z) → (u+ ̺1, z) as

(55)





du

dτ
= −z2(u2 + (µ + 2̺1)u+ ̺21 + µ̺1 + λ)− cu3 +

Ä√
b2 − 3ac

ä
u2,

dz

dτ
= −z3u− ̺1z

3.

Considering a polar transformation (u, z) = (r cos θ, r sin θ), system (55) is changed into

1

r

dr

dθ
=
H8(θ) +›H8(θ, r)

G8(θ) + G̃8(θ, r)
,

where G8(θ) = sin θ[(̺21 + µ̺1 + λ) sin2 θ − (
√
b2 − 3ac) cos2 θ], H8(θ) = − cos θ[(̺21 + µ̺1 +

λ) sin2 θ − (
√
b2 − 3ac) cos2 θ]. As a similar progress by discussing the sign of ̺21 + µ̺1 + λ in

Lemma 22, we can obtain that there is a unique orbit approaching K in the direction θ = π as
τ → +∞, and a unique orbit approaching K in the direction θ = 0 as τ → −∞ for ̺21+µ̺1+λ <
0; there is a unique orbit approaching K in the direction θ = π as τ → +∞, a unique orbit
approaching K in the direction θ = 0 as τ → −∞, infinitely many orbits approaching K in
respectively the directions π/2 and 3π/2 as τ → −∞ for ̺21 + µ̺1 + λ = 0; there is a unique
orbit approaching K in respectively the directions

θ = π, arctan

Ñ√ √
b2 − 3ac

̺21 + µ̺1 + λ

é
, 2π − arctan

Ñ√ √
b2 − 3ac

̺21 + µ̺1 + λ

é

as τ → +∞, a unique orbit approaching K in the direction θ = 0 as τ → −∞, infinitely many
orbits approaching K in respectively the directions

θ = π − arctan

Ñ√ √
b2 − 3ac

̺21 + µ̺1 + λ

é
, π + arctan

Ñ√ √
b2 − 3ac

̺21 + µ̺1 + λ

é

as τ → +∞ for ̺21 + µ̺1 + λ > 0, see Tables 8–10.

Finally, consider Φ(̺1) > 0. Then, we need to discuss the sign of Φ(̺2), which makes our
study divided in three subcases. When Φ(̺2) > 0, considering system (45), E is a saddle by
Theorem 19 of Appendix B, u3 < 0 and 3cu23 + 2bu3 + a > 0. When Φ(̺2) < 0, considering
system (51), F1 is a saddle by Theorem 19 of Appendix B, u4 < 0 and 3cu24 + 2bu4 + a > 0.
Similarly, F2 is an unstable node and F3 is a saddle.
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When Φ(̺2) = 0, it is easy to check that u7 < ̺1 < ̺2 < 0 and 3cu27 + 2bu7 + a > 0.
Considering system (52), F is a saddle by Theorem 19 of Appendix B. Concerning the degenerate
equilibrium Q, we consider system (53) and equation (54). By the expression of G7(θ) =

sin θ[(̺22 + µ̺2 + λ) sin2 θ + (
√
b2 − 3ac) cos2 θ], the sign of ̺22 + µ̺2 + λ determines the zeros of

G7(θ). As a similar progress in Lemma 22, we can obtain that there is a unique orbit approaching
Q in the direction θ = π as τ → −∞, and a unique orbit approaching Q in the direction θ = 0
as τ → +∞ for ̺22+µ̺2+λ > 0; there is a unique orbit approaching Q in the direction θ = π as
τ → −∞, a unique orbit approaching Q in the direction θ = 0 as τ → +∞, infinitely many orbits
approaching Q in the respectively directions π/2 and 3π/2 as τ → −∞ for ̺22 + µ̺2 + λ = 0;
there is a unique orbit approaching Q in respectively the directions

θ = π, arctan

Ñ√
−
√
b2 − 3ac

̺22 + µ̺2 + λ

é
, 2π − arctan

Ñ√
−
√
b2 − 3ac

̺22 + µ̺2 + λ

é

as τ → −∞, a unique orbit approaching Q in the direction θ = 0 as τ → +∞, infinitely many
orbits approaching Q in the respectively directions

θ = π − arctan

Ñ√
−
√
b2 − 3ac

̺22 + µ̺2 + λ

é
, π + arctan

Ñ√
−
√
b2 − 3ac

̺22 + µ̺2 + λ

é

as τ → −∞ for ̺22 + µ̺2 + λ < 0, see Tables 11-13. �

By Lemma 26, when b ∈ (
√
3ac,+∞), the qualitative properties of equilibria at infinity IE±

for Φ(̺1) < 0, or Φ(̺1) > 0 and Φ(̺2) > 0, IK± and IF± for Φ(̺1) = 0, IQ± and IF± for
Φ(̺1) > 0 and Φ(̺2) = 0, IF±

1

, IF±

2

and IF±

3

for Φ(̺1) > 0 and Φ(̺2) < 0 in the Poincaré disc

of system (32), which correspond respectively the equilibria E, K, F , Q, F1, F2, F3 of system
(39), are as shown in Figure 22.

With the other Poincaré transformation

x =
v

z
, y =

1

z
,

system (32) is written as

(56)





dv

dτ
= z2(λv2 + µv + 1) + v(v3 + av2 + bv + c),

dz

dτ
= z3(λv + µ) + z(v3 + av2 + bv + c),

where dτ = dt/z2. By [29, Chapter 5], we only need to study the equilibrium D = (0, 0) of
system (56).

Lemma 27. D is an unstable star node for c > 0, and a degenerate equilibrium for c = 0.
Moreover, the qualitative properties of D is shown in Tables 14–15 for c = 0.

Table 14. Numbers of orbits connecting D for b > 0.

Exceptional directions Numbers of orbits

θ = 0 one (−)

θ = π one (+)
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(a) Φ(̺1) = 0, ̺21 + µ̺1 + λ < 0 (b) Φ(̺1) = 0, ̺21 + µ̺1 + λ = 0 (c) Φ(̺1) = 0, ̺21 + µ̺1 + λ > 0

(d) Φ(̺1) > 0, Φ(̺2) = 0, ̺22 +
µ̺2 + λ > 0

(e) Φ(̺1) > 0, Φ(̺2) = 0, ̺22 +
µ̺2 + λ = 0

(f) Φ(̺1) > 0, Φ(̺2) = 0, ̺22 +
µ̺2 + λ < 0

(g) Φ(̺1) < 0, or Φ(̺1) > 0 and
Φ(̺2) > 0

(h) Φ(̺1) > 0, Φ(̺2) < 0

Figure 22. Locally qualitative property of equilibria at infinity IE±, IK±

and IF±, or IQ± and IF±, or IF±

1

, IF±

2

and IF±

3

in the Poincaré disc for b ∈Ä√
3ac,+∞

ä
(some equilibria at infinity are not marked here).

Table 15. Numbers of orbits connecting D for b < 0.

Exceptional directions Numbers of orbits

θ = 0 ∞ (+)

θ = π ∞ (−)
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(a) c = 0, b > 0 (b) c = 0, b < 0 (c) c > 0

Figure 23. Locally qualitative property of equilibria at infinity ID± in the
Poincaré disc (some equilibria at infinity are not marked here).

Proof. It is easy to prove that D is an unstable star node for c > 0.

Consider c = 0. In the polar coordinate (v, z) = (r cos θ, r sin θ), system (56) is transformated
into

1

r

dr

dθ
=
H9(θ) +›H9(θ, r)

G9(θ) + G̃9(θ, r)
,

where G9(θ) = − sin3 θ, H9(θ) = (b + 1) sin2 θ cos θ + b cos3 θ. θ = 0, π are zeros of three-
multiple of G9(θ). It is easy to check G′′′

9 (0)H9(0) = G′′′
9 (π)H9(π) = −6b < 0 for b > 0, and

G′′′
9 (0)H9(0) = G′′′

9 (π)H9(π) = −6b > 0 for b < 0. By [29, Theorems 3.7 and 3.8 of Chapter
2], H9(0) = b and H9(π) = −b, system (56) has a unique orbit approaching D in the direction
θ = 0 as τ → −∞, and a unique orbit approaching D in the direction θ = π as τ → +∞ for
b > 0; infinitely many orbits approaching D in the direction θ = 0 as τ → +∞, and infinitely
many orbits approaching D in the direction θ = π as τ → −∞ for b < 0. �

By Lemma 27, the qualitative properties of equilibria ID± at infinity in the Poincaré disc of
system (32), which correspond the equilibrium D of system (56), are as shown in Figure 23.

Appendix D

By a Poincaré transformation

x =
1

z
, y =

u

z
,

system (33) is changed into

(57)





du

dτ
= −z2(u2 + µu+ 1)− u(cu2 + bu+ a) =: P7(u, z),

dz

dτ
= −z3u =: Q7(u, z),

where dτ = dt/z2. The equilibria of system (57) at z = 0 are shown in Table 16.

Lemma 28. Consider a = c = 0. G is a degenerate equilibrium. Moreover, the qualitative

properties of G is shown in Tables 17–18.

Proof. Considering a polar transformation (u, z) = (r cos θ, r sin θ), system (57) can be rewritten
as

(58)
1

r

dr

dθ
=
H10(θ) + H̃10(θ, r)

G10(θ) + G̃10(θ, r)
,
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Table 16. Equilibria of system (57) at z = 0

Relations between a and c Equilibria

c = 0
a = 0 G : (0, 0)

a > 0 G : (0, 0), R :
(
−a

b , 0
)

c > 0

a = 0 G : (0, 0), S :
(
− b

c , 0
)

a > 0

b2 − 4ac < 0 G : (0, 0)

b2 − 4ac = 0 G : (0, 0), T :
(
− b

2c , 0
)

b2 − 4ac > 0 G : (0, 0), P1 :
Ä
−b+

√
b2−4ac
2c , 0

ä
, P2 :

Ä
−b−

√
b2−4ac
2c , 0

ä

Table 17. Numbers of orbits connecting G for b > 0 when a = c = 0.

Exceptional directions Numbers of orbits

θ = 0 one (+)

θ = π one (−)

Table 18. Numbers of orbits connecting G for b < 0 when a = c = 0.

Exceptional directions Numbers of orbits

θ = 0 one (−)

θ = arctan
(√

−b
)

one (+)

θ = π − arctan
(√

−b
)

one (−)

θ = π one (+)

θ = π + arctan
(√

−b
)

one (−)

θ = 2π − arctan
(√

−b
)

one (+)

where G10(θ) = sin θ(b cos2 θ + sin2 θ) and H10(θ) = − cos θ(b cos2 θ + sin2 θ). Clearly, the zeros
of G10(θ) is related to the sign of b.

When b > 0, G10(θ) has two zeros θ = 0, π in [0, 2π). It is clear that G′
10(0)H10(0) =

G′
10(π)H10(π) = −b2 < 0. By [29, Theorem 3.7 of Chapter 2], H10(0) = −b < 0 and H10(π) =

b > 0, system (57) has a unique orbit approaching G in the direction θ = π as τ → −∞, and a
unique orbit approaching G in the direction θ = 0 as τ → +∞.
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(a) u-z̃ plane for system (59) (b) u-z plane for system (57)

Figure 24. Orbits changing under Briot–Bouquet transformations when a =
c = 0 and b < 0.

When b < 0, G10(θ) has six zeros θ = 0, arctan
(√

−b
)
, π−arctan

(√
−b

)
, π, π+arctan

(√
−b

)
,

2π − arctan
(√

−b
)
in [0, 2π). It is easy to get G′

10(0)H10(0) = G′
10(π)H10(π) = −b2 < 0. Sim-

ilarly by [29, Theorem 3.7 of Chapter 2], H10(0) > 0 and H10(π) < 0, system (57) has a
unique orbit approaching G in the direction θ = π as τ → +∞, and a unique orbit approach-
ing G in the direction θ = 0 as τ → −∞. However, we need to blow up the other four
directions because H10

(
arctan

(√
−b

))
= H10

(
π − arctan

(√
−b

))
= H10

(
π + arctan

(√
−b

))
=

H10

(
2π − arctan

(√
−b

))
= 0.

With the Briot–Bouquet transformation z = z̃u, system (57) is changed into

(59)





du

dδ
= −z̃2u(u2 + µu+ 1)− bu,

dz̃

dδ
= z̃3(µu+ 1) + bz̃,

where dδ = udτ . System (59) has three equilibria (0, 0),
(
0,
√
−b

)
and

(
0,−

√
−b

)
. It is sure that

(0, 0) is a saddle and the other two are semi–degenerate equilibria of system (59). Moreover, a
transformation (u, z̃) = (u, z̃ +

√
−b) yields that system (59) is changed into

(60)





du

dδ
= −z̃2u(u2 + µu+ 1)− 2

√
−bz̃u(u2 + µu+ 1) + b(u3 + µu2),

dz̃

dδ
= −µb

√
−bu− 2bz̃ − 3µbz̃u+ (z̃3 + 3

√
−bz̃2)(µu+ 1).

A further transformation (u, z̃) →
(
u,

(
z̃ + µb

√
−bu

)
/(−2b)

)
sends system (60) to

(61)





du

dδ
=

Å
−3µ2b

4
+ b

ã
u3 +

√
−b
b

z̃u+ h.o.t. =: P8(u, z̃),

dz̃

dδ
= −2bz̃ − 3µ2b2

√
−b

2
u2 + h.o.t. =: Q8(u, z̃).

By the implicit function theorem, Q8(u, z̃) = 0 has a unique root

z̃ = φ8(u) = −3µ2b
√
−b

4
u2 + o(u2)

for small |u|. Thus, P8(u, φ8(u)) = bu3 + o(u3). By Theorem 19 of Appendix B and b < 0, the
orgin of system (61) is a saddle. So is

(
0,
√
−b

)
for system (59). Similarly,

(
0,−

√
−b

)
is a saddle

of system (59), see Figure 24(a). Further, we obtain the qualitative properties of G in the (u, z)
plane for system (57), as shown in Figure 24(b). The proof is finished. �
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By Lemma 28, when a = c = 0, the qualitative properties of equilibria IG± at infinity in the
Poincaré disc of system (33), which correspond the equilibrium G of system (57), are as shown
in Figure 25.

(a) b > 0 (b) b < 0

Figure 25. Locally qualitative property of equilibria at infinity IG± in the
Poincaré disc when a = c = 0.

Lemma 29. Consider c = 0 and a > 0. G is a saddle. R is a saddle for b < 0, and an unstable

node for b > 0.

Proof. The Jacobian matrices at G, R are

JG :=

Å−a 0
0 0

ã
, JR :=

Å
a 0
0 0

ã

respectively. Considering system (57), by the implicit function theorem, P7(u, z) = 0 has a
unique root u = φ7(z) = −1/az2 + o(z2) for small |z|. Thus,

Q7(φ7(z), z) =
1

a
z5 + o(z5).

By Theorem 19 of Appendix B, G is a saddle. For R, with a transformation (u, z) → (u−a/b, z),
system (57) is changed into





du

dτ
= −z2

Å
u2 +

Å
µ− 2a

b

ã
u+

a2

b2
− aµ

b
+ 1

ã
− bu2 + au =: P9(u, z),

dz

dτ
=
a

b
z3 − z3u =: Q9(u, z).

By the implicit function theorem, P9(u, z) = 0 has a unique root u = φ9(z) = (a2 − µab +
b2)/(ab2)z2 + o(z2) for small |z|. Thus,

Q9(φ9(z), z) =
a

b
z3 + o(z3).

By Theorem 19 of Appendix B, R is a saddle for b < 0, and an unstable node for b > 0. �

By Lemma 29, when c = 0 and a > 0, the qualitative properties of equilibria IG± and IR±

at infinity in the Poincaré disc of system (33), which correspond the equilibria G, R of system
(57), are as shown in Figure 26.

Lemma 30. Consider c > 0 and a = 0. S is a saddle for b > 0, and a stable node for b < 0. G
is a degenerate equilibrium and its qualitative properties is also shown in Tables 17–18.
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(a) b > 0 (b) b < 0

Figure 26. Locally qualitative property of equilibria at infinity IG± and IR± in
the Poincaré disc when c = 0 and a > 0.

Proof. Applying a transformation (u, z) → (u− b/c, 0), system (57) is changed into

(62)





du

dτ
= −z2

Å
u2 +

Å
µ− 2b

c

ã
u+

b2

c2
− bµ

c
+ 1

ã
− cu3 + 2bu2 − b2

c
u =: P9(u, z),

dz

dτ
=
b

c
z3 − z3u =: Q9(u, z).

By the implicit function theorem, P10(u, z) = 0 has a unique root u = φ10(z) = (b2 − µbc +
c2)/(b2c)z2 + o(z2) for small |z|. Thus,

Q10(φ10(z), z) =
b

c
z3 + o(z3).

By Theorem 19 in Appendix B, the orgin of system (62) is a saddle for b > 0, and a stable node
for b < 0. So is S.

Concerning the equilibrium G, it is easy to check that G is a degenerate equilibrium. To
obtain the qualitative properties of G, we need to similarly consider a polar transformation
(u, z) = (r cos θ, r sin θ). Then, system (57) is changed into equation (58), where G10(θ) =
sin θ(b cos2 θ+ sin2 θ) and H10(θ) = − cos θ(b cos2 θ+ sin2 θ). Thus, as studied in Lemma 28, we
can get the results. The proof is finished. �

By Lemma 30, when a = 0 and c > 0, the qualitative properties of equilibria IG± and IS±

at infinity in the Poincaré disc of system (33), which correspond the equilibria G, S of system
(57), are as shown in Figure 27.

Lemma 31. Consider c > 0 and a > 0. G is a saddle. P1 is a saddle, and P2 is an (resp. a)
unstable (resp. stable) node for b < 0 (resp. b > 0) when b2 − 4ac > 0. When b2 − 4ac = 0, T is

a degenerate equilibrium. Moreover, the qualitative properties of T is as shown in Tables 19–21,
where ω :=

√
c
√
ac/(a− µ

√
ac+ c).

Table 19. Numbers of orbits connecting T for b = −2
√
ac (resp. b = 2

√
ac

and a− µ
√
ac+ c < 0) when a > 0 and c > 0.

Exceptional directions Numbers of orbits

θ = 0 one (+) (resp. (−))

θ = π one (−) (resp. (+))
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(a) b > 0 (b) b < 0

Figure 27. Locally qualitative property of equilibria at infinity IG± and IS±

in the Poincaré disc when a = 0 and c > 0 (some equilibria at infinity are not
marked here).

Table 20. Numbers of orbits connecting T for b = 2
√
ac and a−µ

√
ac+ c = 0

when a > 0 and c > 0.

Exceptional directions Numbers of orbits

θ = 0 one (+) (resp. (−))

θ = π
2 ∞ (−) (resp. (+))

θ = π one (−) (resp. (+))

θ = 3π
2 ∞ (−) (resp. (+))

Table 21. Numbers of orbits connecting T for b = 2
√
ac and a−µ

√
ac+ c > 0

when a > 0 and c > 0.

Exceptional directions Numbers of orbits

θ = 0 one (−)

θ = arctanω ∞ (−)

θ = π − arctanω one (−)

θ = π one (+)

θ = π + arctanω one (−)

θ = 2π − arctanω ∞ (−)

Proof. As proved in Lemma 29, G is a saddle of system (57).

Consider b2 − 4ac > 0 (i.e. b < −2
√
ac or b > 2

√
ac ). Let u8 :=

Ä
−b+

√
b2 − 4ac

ä
/2c and

u9 :=
Ä
−b−

√
b2 − 4ac

ä
/2c. Notice that u9 < u8 < 0 for b > 0 and 0 < u9 < u8 for b < 0. The
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(a) b = −2
√
ac (b) b = 2

√
ac, a− µ

√
ac+ c < 0

(c) b = 2
√
ac, a− µ

√
ac+ c = 0 (d) b = 2

√
ac, a− µ

√
ac+ c > 0

Figure 28. The qualitative properties of T of system (57) for a > 0, c > 0 and
b2 − 4ac = 0.

Jacobian matrices at P1, P2 are

JP1
:=

Ç√
b2−4ac(b−

√
b2−4ac)

2c 0
0 0

å
, JP2

:=

Ç√
b2−4ac(−b−

√
b2−4ac)

2c 0
0 0

å

respectively. With a transformation (u, z) → (u+ u8, z), system (57) is changed into

(63)





du

dτ
=− z2

(
u2 + (µ+ 2u8)u+ u28 + µu8 + 1

)
− cu3

− (3cu28 + b)u2 − (3cu28 + 2bu8 + a)u =: P11(u, z),

dz

dτ
=u8z

3 − z3u =: Q11(u, z),

where −(3cu28+2bu8+a) =
Ä√

b2 − 4ac
Ä
b−

√
b2 − 4ac

ää
/2c. By the implicit function theorem,

P11(u, z) = 0 has a unique root u = φ11(z) = −(u28 + µu8 + 1)/(3cu28 + 2bu8 + a)z2 + o(z2) for
small |z|. Thus,

Q11(φ11(z), z) = u8z
3 + o(z3).

By Theorem 19 in Appendix B, the origin of system (63) is a saddle. So is P1. Similarly, P2 is
a stable node for b > 0 and an unstable node for b < 0.
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Consider b2 − 4ac = 0 (i.e. b = −2
√
ac or b = 2

√
ac ). For T , considering a transformation

(u, z) → (u− b/(2c), z), system (57) can be rewritten as

(64)





du

dτ
= −z2

Å
u2 +

Å
µ− b

c

ã
u+

b2

4c2
− bµ

2c
+ 1

ã
− cu3 +

b

2
u2,

dz

dτ
=

b

2c
z3 − z3u.

In the polar coordinate (u, z) = (r cos θ, r sin θ), system (64) is transformated into

1

r

dr

dθ
=
H11(θ) + H̃11(θ, r)

G11(θ) + G̃11(θ, r)
,

where

G11(θ) = sin θ

Å
− b
2
cos2 θ +

b2 − 2bcµ+ 4c2

4c2
sin2 θ

ã

and

H11(θ) = − cos θ

Å
− b
2
cos2 θ +

b2 − 2bcµ + 4c2

4c2
sin2 θ

ã
.

Obviously, the zeros of G11(θ) is strongly related to the sign of b(b2 − 2bcµ+ 4c2).

Firstly, if b(b2−2bcµ+4c2) < 0 (i.e. b = −2
√
ac, or b = 2

√
ac and a−µ√ac+c < 0 ), G11(θ) = 0

has two roots θ = 0, π in θ ∈ [0, 2π). It is clear that G′
11(0)H11(0) = G′

11(π)H11(π) = −b2/4 < 0.
Thus, by [29, Theorem 3.7 of Chapter 2], H11(0) = b/2 and H11(0) = −b/2, there is a unique
orbit approaching the orgin in the direction θ = π as τ → −∞ (resp. τ → +∞), and a unique
orbit approaching the orgin in the direction θ = 0 as τ → +∞ (resp. τ → −∞) in system (64)
for b = −2

√
ac (resp. b = 2

√
ac). T of system (57) has the same qualitative properties as the

orgin of system (64), see Figures 28 (a) and (b).

Secondly, if b2−2bcµ+4c2 = 0 (i.e. b = 2
√
ac and a−µ√ac+c = 0), G11(θ) = 0 has four roots

θ = 0, π/2, π, 3π/2 in θ ∈ [0, 2π). Compute that G′
11(0)H(0) = G′

11(π)H11(π) = −b2/4 < 0 and
H11(π/2) = H11(3π/2) = 0. As studied the case γ = 0 of Lemma 22, we can obtain that there
are infinitely many orbits approaching T in respectively the directions π/2 and 3π/2 respectively
as τ → −∞, a unique orbit approaching T in the direction θ = π as τ → −∞, and a unique
orbit approaching T in the direction θ = 0 as τ → +∞ in system (57), see Figure 28(c).

Thirdly, if b(b2 − 2bcµ + 4c2) > 0 (i.e. b = 2
√
ac and a − µ

√
ac + c > 0), G11(θ) = 0 has

six roots θ = 0, arctanω, π − arctanω, π, π + arctanω, 2π − arctanω in θ ∈ [0, 2π), where

ω :=
√
c
√
ac/(a− µ

√
ac+ c). Compute that G′

11(0)H11(0) = G′
11(π)H11(π) = −b2/4 < 0 and

the other roots satisfy H11(θ) = 0. As studied the case γ < 0 of Lemma 22, we can obtain
that the qualitative properties of T of system (57), as shown in Figure 28(d). The proof is
finished. �

By Lemma 31, when a > 0 and c > 0, the qualitative properties of equilibria IG± for b2−4ac <
0, IG± and IT± for b2 − 4ac = 0, IG± , IP±

1

and IP±

2

for b2 − 4ac > 0 at infinity in the Poincaré

disc of system (33), which correspond the equilibria G, T , P1, P2 of system (57), are as shown
in Figure 29.

With the other Poincaré transformation

x =
v

z
, y =

1

z
,

system (33) is written as

(65)





dv

dτ
= z2(v2 + µv + 1) + v(av2 + bv + c),

dz

dτ
= z3(v + µ) + z(av2 + bv + c),
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(a) −2
√
ac < b < 2

√
ac (b) b > 2

√
ac (c) b < −2

√
ac

(d) b = −2
√
ac (e) b = 2

√
ac, a− µ

√
ac+ c < 0

(f) b = 2
√
ac, a− µ

√
ac+ c = 0 (g) b = 2

√
ac, a− µ

√
ac+ c > 0

Figure 29. Locally qualitative property of equilibria at infinity IG± , IT± , IP±

1

and IP±

2

in the Poincaré disc when a > 0 and c > 0 (some equilibria at infinity

are not marked here).

where dτ = dt/z2. We only need to study the equilibrium D = (0, 0) of system (65). Moreover,
the qualitative properties of D can be seen in Lemma 27.
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