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Abstract

DNA technologies have evolved significantly in the past years enabling the
sequencing of a large number of genomes in a short time. Nevertheless, the under-
lying computational problem is hard, and many technical factors and limitations
complicate obtaining the complete sequence of a genome. Many genomes are left
in a draft state, in which each chromosome is represented by a set of sequences
with partial information on their relative order. Recently, some approaches have
been proposed to compare draft genomes by comparing paths in de Bruijn graphs,
which are constructed by many practical genome assemblers. In this article we
introduce gcBB, a method for comparing genomes represented as succinct colored
de Bruijn graphs directly, without resorting to sequence alignments, by means of
the entropy and expectation measures based on the Burrows-Wheeler Similarity
Distribution. We also introduce an improved version of gcBB, called multi-gcBB,
that improves the time performance considerably through the selection of differ-
ent data structures. We have compared phylogenies of genomes obtained by other
methods to those obtained with gcBB, achieving promising results.

Keywords: Succinct de Bruijn graphs, BOSS, BWSD, Genomic comparison,
Phylogenetics

1 Introduction

Genome assembly is the task of reconstructing the sequence of nucleotides in molecules
of DNA that follows the DNA sequencing process, in which a large amount of short
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strings representing fragments of consecutive nucleotides in the target DNA molecule
(reads) is first obtained. The reads cover each DNA nucleotide many times, varying
across sequencing projects and may be as high as 200 times per nucleotide. The reads
must then be assembled based on the overlaps among them. This is a hard computa-
tional problem, further complicated by the huge number of reads that may be obtained
with the current DNA sequencing technologies, by the presence of repetitions in the
target DNA, by sequencing errors and by other sources of ambiguities and techni-
cal limitations. Completely assembling a genome also requires intensive wet-lab work,
then many genomes are left in a draft state after sequencing, that is, instead of a
single string for each chromosome there is a set of strings (contigs) that may include
information on their relative order (scaffolds) [31].

Several approaches have been proposed to assemble genomes. Some of the most
used are based on different assembly graphs, such as overlap graphs [32], de Bruijn
graphs [8], string graphs [38] and repeat graphs [13]. These assembly graphs can also
be useful in gene discovery, structural variation analysis, hybrid assembly and other
applications [36].

Comparative genomics aims at identifying similar and dissimilar regions among
genomes [21]. Through comparison it is possible, for instance, to identify con-
served regions across species that may be related to cellular processes, to identify
regions involved in mutational events, to build phylogenies based on similarity among
sequences, etc.

In Bioinformatics, the most widely employed means of calculating similarity
between biological sequences is through alignments [12]. When used with evolution
models for amino acids and nucleotides, alignments provide a similarity measure that
reflects the evolutionary distance between molecules and is supported by statistics
that are readily understood by practitioners [34]. Alignments also provide a natural
layout for visualizations and visual data exploration [41].

On the other hand, the quadratic computational cost of the algorithms to calculate
alignments between strings (O(nm) time for two strings of lengths n and m) coupled
with the huge amount of data currently available in public and private repositories
push the need for faster alternatives such as heuristics, parallel algorithms and alter-
native distance measures, including alignment-free strategies [21]. When it comes to
the comparison of multiple genomes, producing a multiple sequence alignment is even
harder computationally, and the use of heuristics is widespread.

Similarity measures for strings in general, not only DNA or protein, may be com-
puted in many ways, for example as distance among vector representation of strings,
as statistics calculated on groups of symbol co-occurrences, as edit distance, as align-
ment score, as substring tiling and others [1, 37]. Compression-based measures also
exist, such as the NCD [6], whose idea originates in the works on minimum algorithmic
descriptions of strings. Similarity measures based on the Burrows-Wheeler transform
(BWT) [4], as the eBWT-based distances [23, 24] and the Burrows-Wheeler Similar-
ity Distribution (BWSD) [40], are particularly attractive because the BWT provides
a self-index [26] that can be computed in linear time on the string length.

Many genome assemblers are based on the de Bruijn graph (e.g. [14, 16, 38]), that
may be stored succinctly using the BOSS representation [3]. The BOSS representation
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is based on the BWT and enables the assembly of larger sets of reads. Colors may
be added to the edges of a de Bruijn graph, allowing the representation of a set of
strings from distinct genomes on colored de Bruijn graphs. Recent approaches have
been proposed for the comparison of genomes by the extraction of paths from their
colored de Bruijn graphs [20, 28].

In this paper we introduce gcBB1, a space-efficient algorithm for comparing
genomes using succint de Bruijn graphs and BWSD. Given a set of genomes, each one
represented by a set of unmounted raw reads, a colored de Bruijn graph in the BOSS
representation is built for all the genomes and BWSD-based measures are evaluated
to assess the similarity between all genomes in the set. Our algorithm computes the
colored de Bruijn graph for all genomes only once, avoiding a pairwise construction,
and the BWSD-based measures are computed using compressed data structures as
proposed in [18]. Our method showed promising results in experiments that compared
the phylogenies for genomes of 12 Drosophila species built with gcBB and with the
methods by Lyman et al. [20] and by Polevikov and Kolmogorov [28].

2 Definitions and notation

A string is the juxtaposition of symbols from an ordered alphabet Σ of size σ. Let
S be a string of length n. We index its symbols from 1 to n. A substring of S is
S[i, j] = S[i] . . . S[j] with 1 ≤ i ≤ j ≤ n. Whenever i > j then S[i, j] denotes the empty
string. Any substring S[1, i] is referred to as a prefix of S and S[i, n] is referred to as a
suffix of S. The concatenation of string and symbols will be denoted by juxtaposition.

For clearer definitions we assume that the last symbol of a string S is the special
end-marker symbol $, that does not occur elsewhere in S and is the smallest symbol
in Σ. This way, all suffixes of S are distinct.

The suffix array [22] of a string S of length n is the array SAS containing the
permutation of {1, . . . , n} that gives the suffixes of S in lexicographic order, that is,
S[SAS [1], n] < S[SAS [2], n] < . . . < S[SAS [n], n].

By lcp(S1, S2) we denote the length of the longest common prefix of strings S1 and
S2. The LCP array for a string S of length n is the array of integers containing the lcp
of consecutive suffixes in SAS . Formally, LCPS [i] = lcp(S[SAS [i], n], S[SAS [i− 1], n])
for 1 < i ≤ n and LCPS [1] = 0. Figure 1 shows the suffix array and the LCP array
for the string S = abracadabra$.

Let S = {S1, S2, . . . , Sd} be a collection of d strings of lengths n1, n2, . . . , nd.
We define the concatenation of all strings in S as Scat = S1[1, n1 − 1]$1S2[1, n2 −
1]$2 · · ·Sd[1, nd − 1]$d, that is, the end-marker symbol $ of each string is replaced by
a separator symbol $i such that $i < $j if i < j and every $i < $. The length of the

concatenated string Scat is N =
∑d

i=1 ni. The suffix and LCP arrays for a collection
S correspond to the arrays SAS [1, N ] and LCPS [1, N ] computed for Scat.

We define the context of a suffix Scat[i,N ] as the substring Scat[i, j] such that
Scat[j] is the leftmost occurrence of some $k in Scat[i,N ]. The document array is an
array of integers DAS of length n that stores to which string each suffix in SAS belongs.
Formally, DAS [i] = j if the context of Scat[SAS [i], N ] ends with $j . The suffix, LCP

1A preliminary version of this work appeared in [30].
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i SAS LCPS BWTS S[SAS [i], n]

1 12 0 a $
2 11 0 r a$
3 8 1 d abra$
4 1 4 $ abracadabra$
5 4 1 r acadabra$
6 6 1 c adabra$
7 9 0 a bra$
8 2 3 a bracadabra$
9 5 0 a cadabra$
10 7 0 a dabra$
11 10 0 b ra$
12 3 2 b racadabra$

Fig. 1: Suffix array, LCP array and BWT for string S = abracadabra$. The last
column shows the suffixes of S in the order provided by the suffix array.

and document arrays for a collection S can be computed in linear time using constant
workspace [17].

When clear from the context, we drop the subscripts in SAS , LCPS , SAS and DAS .
Without loss of generality, we assume that the alphabet Σ of a string is {1, . . . , σ} or
has been implicitly mapped onto {1, . . . , σ}.

2.1 BWT and BWSD

The Burrows-Wheeler Transform (BWT) [4] of a string S is a reversible transformation
that permutes its symbols such that the resulting string, denoted by BWTS or simply
by BWT when the context is clear, often allows better compression because equal
symbols tend to be clustered. The BWT is the core of many indexing structures for
text [21, 26, 27].

For 0 ≤ i < n, the i-th circular rotation (or conjugate or simply rotation) of a
string S is the string S[i + 1, n]S[1, i]. As S[n] = $, its rotations are distinct. The
BWT is the last column of a matrix M having the sorted rotations of S as rows.
In M, the first column is called F and the last column is called L. Since S[n] = $,
sorting the rotations of S is equivalent to sorting the suffixes of S and then the BWT
may be defined in terms of the suffix array as BWT[i] = S[SA[i] − 1] if SA[i] ̸= 1 or
BWT[i] = $ otherwise. The BWT for S = abracadabra$ is shown in Figure 1. The
BWT for a collection of strings S may be obtained from the SA of Scat as well [5].

The BWT of strings S1 and S2 may be used to compute similarity measures
between them based on the observation that the amount of symbols of S1 intermixed
with symbols of S2 in the BWT of S1S2 is related to the amount of substrings shared
by S1 and S2 [23].

The Burrows-Wheeler similarity distribution (BWSD) [40] between S1 and S2,
denoted by BWSD(S1, S2), is a probability mass function defined as follows. Given
the BWT of S = {S1, S2}, we define a bitvector α of size n1 + n2 such that α[p] = 0
if BWT[p] = $2 or BWT[p] ∈ S1 and α[p] = 1 if BWT[p] = $1 or BWT[p] ∈ S2. The
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Fig. 2: De Bruijn graph for S = {$$$TACACT, $$$TACTCA, $$$GACTCG} and k = 3.

bitvector α can be represented as a sequence of runs

r = 0k11k20k31k4 . . . 0km1km+1

where ikj means that i repeats kj times and only k1 and km+1 may be zero. The
largest possible value for kj is max{n1, n2}. We denote max{kj |ikj ∈ r} by kmax.

Let tk be the number of occurrences of an exponent k in r. Let s = t1 + t2 + . . .+
tkj + . . .+ tkmax . The BWSD(S1, S2) is the probability mass function

P{kj = k} = tk/s for k = 1, 2, . . . , kmax

Two distance measures were defined on the BWSD of S1 and S2 [40].
Definition 1. The expectation distance is DM (S1, S2) = E(kj) − 1, where E(kj) is
the expectation of BWSD(S1, S2).
Definition 2. The entropy distance is DE(S1, S2) = H(BWSD(S1, S2)), where
H(BWSD(S1, S2)) = −∑

k≥1,tk ̸=0(tk/s) log2(tk/s) is the Shannon entropy of
BWSD(S1, S2).

Note that if S1 and S2 are equal then kmax = 1, P{kj = 1} = n1+n2

n1+n2
= 1,

DM (S1, S2) = 0 and DE(S1, S2) = 0. Also, if α for BWT(S1, S2) is equal to α for
BWT(S2, S1), then both have the same BWSD, and DE(S1, S2) = DE(S2, S1) and
DM (S1, S2) = DM (S2, S1).

2.2 Succinct de Bruijn graphs

Let S = {S1, S2, . . . , Sd} be a collection of strings (reads of a genome). Assume that
S is modified by concatenating k symbols $ at the beginning of each string in S. We
will refer to a string of length k as a k-mer.

A de Bruijn graph (of order k) for S has one vertex for each distinct k-
mer in a string of S. We say that the k-mer related to a vertex u is its vertex
label, denoted by −→u . There is an edge labeled v[k] from vertex u to vertex v if
the substring u[1]u[2]. . .u[k]v[k] occurs in a string of S. For example, given S =
{$$$TACACT, $$$TACTCA, $$$GACTCG} and k = 3, Figure 2 illustrates the de Bruijn
graph of order k for S.

Notice that an edge from u to v corresponds to the existence of an overlap of length
k − 1 between the suffix of −→u and the prefix of −→v and also that the concatenation of
edge labels along a path of length k that arrives at a vertex v whose label does not
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have a $ will be −→v . For example, in Figure 2, starting at node $$$ and traversing the
edges labelled T,A,C,A,C,T successively, we obtain the first string in the collection.

BOSS [3] is a succinct representation of the de Bruijn graph that enables efficient
navigation across vertices and edges. Let n and m be respectively the number of
vertices and edges of a de Bruijn graph G. Assume that the vertices v1, v2, . . . , vn in G
are sorted according to the co-lexicographic order of their labels, i.e., the lexicographic
order of the reverse of their labels, ←−vi = −→vi [k] . . .−→vi [1] for each vertex vi.

We define Node as a conceptual matrix containing the co-lexicographically sorted
set with the distinct k-mers in S and with, for each vertex that has t > 1 outgoing
edges with distinct labels, t− 1 additional copies of that label. Let m be the number
of rows in Node.

For each vertex vi, we define Wi as the sequence of symbols of the outgoing edges
of vi in lexicographic order. If vi has no outgoing edges then Wi = $.

The BOSS representation is composed by the following components:

1. The string W [1,m] = W1W2 . . .Wn. Observe that |W | = |Node| and Node[i]
denotes the vertex from which W [i] leaves.

2. The bitvector W−[1,m] such that W−[i] = 0 if there exists j < i such that W [j] =
W [i] and the suffixes of length k − 1 of Node[j] and of Node[i] are identical, or
W−[i] = 1 otherwise.

3. The bitvector last[1,m] such that last[i] = 1 if i = n or Node[i] is different from
Node[i+ 1], or last[i] = 0 otherwise.

4. The counter array C[1, σ] such that C[c] stores the number of symbols smaller than
c in the last column of the conceptual matrix Node.

For example, the succinct representation of the de Bruijn graph for S =
{$$$TACACT, $$$TACTCA, $$$GACTCG} is illustrated in Figure 3 augmented with the
Node matrix and with edges of the de Bruijn graph to ease the understanding.

For DNA sequences, the alphabet is Σ = {A, T, C, G, N, $} with size σ = 6. Storing
the string W requires m⌈log2 σ⌉ = 3m bits, the bitvectors W− and last require 2m
bits and the counter array C requires σ log2 m = 6 log2 m bits. Therefore, the overall
space to store the BOSS structure is 5m+ 6 log2 m bits.

Egidi et al. [9] proposed an algorithm called eGap for computing the multi-string
BWT and the LCP array in external memory. As an application the authors showed
how to compute the BOSS representation with a sequential scan over the BWT and
the LCP array built for collection S with all strings reversed in O(N) time.

The colored de Bruijn graph [11] generalizes the formulation of a de Bruijn graph
for a set S = {S1, . . . ,Sg} of g string collections. In the colored de Bruijn graph
the set of vertices includes all strings in S and there may be parallel edges with
the same label, but with distinct colors. Formally, the colored de Bruijn graph (of
order k) for S = {S1, . . . ,Sg} has one vertex for each distinct k-mer in a string of S.
There is an edge labeled v[k] and colored i from vertex u to vertex v if the substring
u[1]u[2]. . .u[k]v[k] occurs in a string of Si.

For example, for collections S1 = {$$$TACACT, $$$TACTCA} and S2 = {$$$GACTCG}
and k = 3, Figure 4 shows the de Bruijn graphs for S1 and for S, and the colored de
Bruijn graph for {S1,S2}.
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last Node W W−i
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Fig. 3: (a) BOSS representation for S = {$$$TACACT, $$$TACTCA, $$$GACTCG} aug-
mented with the Node matrix and with edges of the de Bruijn graph; edges with the
same color have the same symbol.
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Fig. 4: (a) De Bruijn graph for S1 = {$$$TACACT, $$$TACTCA}. (b) De Bruijn graph
for S2 = {$$$GACTCG}. (c) Colored de Bruijn graph for {S1,S2}, where red edges are
from S1 and blue edges are from S2. We remark that only the graph for {S1,S2} has
colored edges, S1 and S2 edges are colored for example purposes.
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When |S| = 2, a bitvector colors[1,m] is added to obtain the BOSS representation
of a colored de Bruijn graph, indicating from which genome each edge came from. We
deal with the case |S| > 2 in Section 3.1.

The number of reads that include a given nucleotide in the target DNA is refered
to as coverage, and may be as high as 200 with current sequencing technologies. The
coverage is used by genome assemblers to solve ambiguities during the reconstruction.
Coverage is also directly related to the existence of repeated regions in the genome
and to sequencing errors.

This information is handled using a coverage. The coverage[1,m] array stores
the number of times a (k + 1)-mer represented by an edge occurs in its genome and
can be computed from the LCP array during BOSS construction.

3 gcBB

The input for our algorithm, called gcBB (genome comparison using BOSS and
BWSD), is a set of genomes (each one as a FASTQ file of reads) and a value for k. For
each pair of genomes gcBB constructs the colored BOSS and computes the BWSD,
producing two distance matrices, DM and DE , with the expectation and entropy
distances among all pairs of genomes in the input set.

The intuition is that intermixed edges in the colored BOSS are related to shared
nodes in their graphs and to similarities in the genomes.

The pseudo-code for gcBB is shown in Algorithm 1. gcBB has three phases, indicated
in the pseudo-code and detailed below.

Phase 1:

First, gcBB constructs the BWT and the LCP array for each genome S1,S2, . . . ,Sg in
external memory using eGap [9]. It also computes an auxiliary array with the length
of each context, called CL. We remark that one could use any other tool to construct
these data structures, for example [2, 19, 29].

For each pair of genomes Si and Sj , the corresponding arrays are merged with
eGap while the document array DAi,j is computed. Note that DAi,j can be stored in
a bitvector, since we merge only pairs of genomes. The resulting arrays are written to
external memory.

For genomes S1 = {TACTCA, TACACT} and S2 = {GACTCG}, Figure 5 shows the
output of eGap for each genome and the resulting merge.

Phase 2:

For each pair of genomes Si and Sj , gcBB constructs the colored BOSS representation
for Si and Sj from the merged BWTi,j and LCPi,j array as described in [9]. The
bitvector colors[1,m] and the array coverage[1,m] are computed, where m is the
number of edges in the colored de Bruijn graph.

gcBB also computes two extra arrays, LCS[1,m] and KL[1,m]. The LCS array
contains the longest common suffix between consecutive k-mers in Node and the KL
array contains the length of each vertex label not including the $ symbols. These
arrays are easily obtained from LCPi,j and CLi,j arrays.
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Algorithm 1: gcBB

Input: Collection S = {S1, . . . ,Sg} and k-mer length
Output: Matrices DM and DE of double precision numbers
// Phase 1

1 for each genome Si in S do
2 eGap(Si); // compute LCPi, BWTi and CLi
3 end
4 for each pair of genomes {Si,Sj} in S do
5 eGap(Si,Sj); // merge LCP, BWT and CL and generate DA

6 end
7 double DM [1..g][1..g] = 0.0;
8 double DE [1..g][1..g] = 0.0;
9 for each pair of genomes {Si,Sj} in S do

// Phase 2

10 bitvector colors initialized with 0;
11 colors = colored BOSS construction(LCPi,j ,BWTi,j ,CLi,j ,DAi,j , k);

// Phase 3

12 double expectation = 0.0;
13 double entropy = 0.0;
14 {expectation, entropy} = BWSD computation(colors,LCPi,j ,CLi,j , k);
15 DM [i][j] = expectation;
16 DE [i][j] = entropy;

17 end
18 return DM , DE ;

Consider the merged arrays of genomes S1 and S2 obtained in Phase 1 and k = 3.
The resulting colored BOSS representation is shown in Figure 6.

Phase 3:

The distances between each pair of genomes Si and Sj are computed by evaluating the
BWSD on the colors bitvector, obtaining the corresponding entry in the expectation
and entropy distance matrices.

Note that the colored BOSS representation contains the edges of every k′-mer from
the merged genomes, for 1 ≤ k′ ≤ k. These edges are part of the BOSS representation
and are needed by the navigation operations (see [3]). Since we are interested only
in the k-mers for the comparisons, we filtered out all the edges of the colored BOSS
where KL[j] < k, for 1 ≤ j ≤ m, during the BWSD computation.

From the colored BOSS shown in Figure 6, filtering edges representing k′-mers of
size smaller than k and using the bitvector colors as the bitvector α of the BWSD, we
have α = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}, r = 031103120211, t1 = 2, t2 = 2, t3 = 2 and s =
6 Hence, the BWSD(S1,S2) is

P{kj = 1} = 2

6
, P{kj = 2} = 2

6
, P{kj = 3} = 2

6
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i BWT2 LCP1 CL1 context

1 T 0 1 $1
2 T 0 1 $2
3 C 0 5 ACAT$2
4 $2 2 7 ACTCAT$1
5 C 1 3 AT$1
6 C 2 3 AT$2
7 T 0 6 CACAT$2
8 A 2 4 CAT$2
9 T 3 4 CAT$1
10 A 1 6 CTCAT$1
11 A 0 2 T$1
12 A 1 2 T$2
13 $1 1 7 TCACAT$2
14 C 3 5 TCAT$1

(a)

i BWT2 LCP2 CL2 context

1 G 0 1 $1
2 C 0 3 AG$1
3 T 0 4 CAG$1
4 G 1 6 CTCAG$1
5 A 0 2 G$1
6 $1 1 7 GCTCAG$1
7 C 0 5 TCAG$1

(b)

i BWT1,2 LCP1,2 CL1,2 DA1,2 context

1 T 0 1 0 $1
2 T 0 1 0 $2
3 G 0 1 1 $3
4 C 0 5 0 ACAT$2
5 $3 2 7 0 ACTCAT$1
6 C 1 3 1 AG$3
7 C 1 3 0 AT$1
8 C 2 3 0 AT$2
9 T 0 6 0 CACAT$2
10 T 2 4 1 CAG$3
11 A 2 4 0 CAT$1
12 T 3 4 0 CAT$2
13 G 1 6 1 CTCAG$3
14 A 4 6 0 CTCAT$1
15 A 0 2 1 G$3
16 $2 1 7 1 GCTCAG$3
17 A 0 2 0 T$1
18 A 1 2 0 T$2
19 $1 1 7 0 TCACAT$2
20 C 3 5 1 TCAG$3
21 C 3 5 0 TCAT$1

(c)

Fig. 5: The BWT, LCP and CL arrays output by eGap for genomes (a) S1 and (b)
S2. (c) Merged BWT, LCP, CL arrays and DA for S1S2. The context column is not
produced by eGap.

Computing the distances we have DM (S1,S2) = 1 and DE(S1,S2) = 1.584.

Coverage.

We can use the coverage information in the BWSD to weight the edges of the graph,
aiming at improving the accuracy of the distance measures.

The same (k+1)-mer from distinct genomes can be detected in the colored BOSS
using the LCS array and the colors bitvector. These repeated (k+1)-mers will appear
in the α array with a 0 followed by a 1. Note that this happens only once independently
of the number of times these (k+1)-mers occurred in both genomes. Whenever these
repeated (k+1)-mers occurred many times in both genomes, their distance should be
decreased.

For example, we added the string ACTC in sets S1 and S2 from the previous example.
Let S1′ = {TACTCA, TACACT, ACTC, ACTC, ACTC} and S2′ = {GACTCG, ACTC, ACTC}. In
both genomes we have to increment the coverage information of the k-mers ACT with
the outgoing edge C. The updated lines of the BOSS representation are shown in
Figure 7.
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i last Node W W− colors coverage LCS KL

1 1 $1 T 1 0 2 0 0
2 1 $3 G 1 1 1 0 0
3 1 ACA C 1 0 1 0 3
4 1 TCA $3 1 0 1 2 3
5 1 $3GA C 1 1 1 1 2
6 1 $1TA C 1 0 2 1 2
8 1 CAC T 1 0 1 0 3
9 1 GAC T 0 1 1 2 3
10 0 TAC A 1 0 1 2 3
11 1 TAC T 0 0 1 3 3
12 0 CTC A 1 0 1 1 3
13 1 CTC G 1 1 1 4 3
14 1 $3G A 1 1 1 0 1
15 1 TCG $2 1 1 1 1 3
16 1 $1T A 1 0 1 0 1
17 0 ACT $1 1 0 1 1 3
18 0 ACT C 1 0 1 3 3
19 1 ACT C 0 1 1 3 3

Fig. 6: S1S2 merged colored BOSS representation with k = 3. Lines where KL values
are colored red represent edges that will be filtered out in the BWSD computation.

i last Node W W− color coverage LCS KL

...
...

...
...

...
...

...
...

...
18 0 ACT C 1 0 4 3 3
19 1 ACT C 0 1 3 3 3

Fig. 7: Lines with coverage incremented for the (k + 1)-mer ACTC in the colored
BOSS for {S1′,S2′}.

Let α′ = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1} be a bitvector equal to α from the pre-
vious example. The last 0 and 1 values from α′ represent the (k + 1)-mer ACTC

from both genomes. We apply the coverage value to the positions of r′ where
these values occurred. That is, r′ = 0311031201+311+2 = 031103120413. Finally, we
expand r′ in the positions of the equal (k + 1)-mers while merging them, that is
r′ = 03110312010111011101110110. Then, we have t1 = 8, t2 = 1, t3 = 2 and s = 11.
And the BWSD(S1′,S2′) is

P{kj = 1} = 9

12
, P{kj = 2} = 1

12
, P{kj = 3} = 2

12

Computing the distances we have DM (S1′S2′) = 0.41666 and DE(S1′S2′) = 1.04085.
The effect of coverage on the similarity is analysed in our experiments.
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Time and space analysis.

Let N1 and N2 be the sizes of two genomes. Phase 1 takes O((N1 +N2)maxlcp) time
to construct and merge the BWT, LCP and CL in external memory with eGap, where
maxlcp is the maximum in LCP.

Phase 2 takes O(N1 +N2) time to construct the BOSS representation.
Let m be the number of edges in the colored BOSS. The space required for the

BOSS representation is 5m+6 log2 m bits, as shown in Section 2.2. The colors bitvec-
tor and the coverage array require extra m bits and 4m bytes respectively. For reads
with less than 65K symbols both LCS and KL can be stored in arrays of short inte-
gers, that is, 2m bytes for each one. Therefore, the overall space required is 8m bytes
plus 6m+ 6 log2 m bits.

Phase 3 takes O(m) time to compute the BWSD from the colors bitvector, LCS
and KL arrays. The arrays r and t require O(m) bytes.

3.1 An improved algorithm: multi-gcBB

In this section, we describe an extension to gcBB, called multi-gcBB, that computes
the colored BOSS for all genomes S1,S2, . . . ,Sg only once, instead of constructing
pairwise as above, and computes the distance matrices DM and DE using compressed
data structures, as proposed in [18] for the BWSD. The pseudo-code for multi-gcBB
is shown in Algorithm 2.

In Phase 1, multi-gcBB constructs the BWT and the arrays LCP and CL for each
genome S1,S2, . . . ,Sg with eGap (as in the previous version). Then, all these arrays
are merged only once, computing the document array DA for all genomes as well.

In Phase 2, multi-gcBB computes the colored BOSS for all genomes, modifying
colors[1,m] to be an integer array and m the number of edges in the colored de
Bruijn graph for S1,S2, . . . ,Sg.

In Phase 3, multi-gcBB builds g bitvectors Bi, with |Bi| = m, where Bi[j] = 1
if colors[j] = i or Bi[j] = 0 otherwise. For each bitvector Bi, an O(1) rank/select
structure [25] is built. The algorithm then proceeds line by line on the matrix. To
evaluate the distances among Si and Sj>i, the algorithm selects the intervals over
colors that contain consecutive occurrences of i. For each interval the algorithm
counts the kj occurrences of j, which corresponds to the existence of the run 1kj in
the sequence of runs for Si and Sj . The runs 0ℓj+1 are computed when ℓj consecutive
intervals do not contain any occurrence of j.

Time and space analysis.

Let S be a collection of g genomes and N be the total length of all genomes. Phase
1 takes time O(Nmaxlcp) time to construct and merges all arrays with eGap. Phase
2 takes O(N) time to construct the BOSS representation. The colors array now
requires m log2 g bits.

Then, the overall space required for the BOSS representation with LCS and KL
arrays is 5m+ 6 log2 m+m log2 g bits plus 8m bytes.

Phase 3 takes O(dN) time to compute the BWSD from the colors array, LCS and
KL arrays. The bitvectors Bi with support to rank/select queries require dN + o(dN)
bits. The arrays r and t require O(N) bytes.

12



Algorithm 2: mgcBB

Input: Collection S and selected k
Output: Matrices DM and DE of double precision numbers
// Phase 1

1 for each genome Si in S do
2 eGap(Si); // compute LCP, BWT and CL

3 end
4 eGap merge(S); // merge LCP, BWT and CL and generate DA

5 double DM [1..d][1..d] = 0.0;
6 double DE [1..d][1..d] = 0.0;
// Phase 2

7 colored boss construction(LCP,BWT,CL,DA, k); // compute colors

// Phase 3

8 bwsd all(colors,LCP,CL, DM , DE);
9 return DM , DE ;

4 Experiments

We evaluated gcBB by reconstructing the phylogeny of the 12 Drosophila species in
Table 1, obtained from FlyBase [39]. The reads were obtained with a NextSeq 500
sequencer2 and have 302 bp on average, except that reads of D. grimshawi were
obtained with a MinION sequencer3 and have 6,520 bp on the average. The phylogenies
in the sequel were drawn using iTOL [15].

Table 1: Information on the genomes of Drosophilas, that can be accessed
through their Run (SRR) or BioSample (SAMN) accessions at https://www.
ncbi.nlm.nih.gov/genbank/. The Bases column has the number of sequenced
bases in Gbp. The Reference column has the size of the complete genome in
Mb.

Organism Run BioSample Bases (Gbp) Reference (Mb)
D. melanogaster SRR6702604 SAMN08511563 6.20 138.93
D. ananassae SRR6425991 SAMN08272423 7.13 215.47
D. simulans SRR6425999 SAMN08272428 9.22 131.66
D. virilis SRR6426000 SAMN08272429 11.16 189.44
D. willistoni SRR6426003 SAMN08272432 11.66 246.98
D. pseudoobscura SRR6426001 SAMN08272435 12.28 163.29
D. mojavensis SRR6425997 SAMN08272426 12.45 163.17
D. yakuba SRR6426004 SAMN08272438 12.78 147.90
D. persimilis SRR6425998 SAMN08272433 13.32 195.51
D. erecta SRR6425990 SAMN08272424 14.01 146.54
D. sechellia SRR6426002 SAMN08272427 14.44 154.19
D. grimshawi SRR13070661 SAMN16729613 14.50 191.38

2https://www.illumina.com/systems/sequencing-platforms/nextseq.html
3https://nanoporetech.com/products/minion
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Fig. 8: Drosophila phylogeny, after [7].

Table 2: Construction information on data structures for the Drosophilas
genomes.

Organism BWT LCP CL Running time LCP avg LCP max
D. melanogaster 5.9 GB 12 GB 12 GB 17.30h 61.54 302
D. ananassae 6.7 GB 14 GB 14 GB 18.37h 55.56 302
D. simulans 8.7 GB 18 GB 18 GB 24.18h 58.96 302
D. virilis 11 GB 21 GB 21 GB 28.45h 55.06 302
D. willistoni 11 GB 22 GB 22 GB 37.31h 57.79 302
D. pseudoobscura 12 GB 23 GB 23 GB 40.07h 58.72 302
D. mojavensis 12 GB 24 GB 24 GB 32.65h 58.09 302
D. yakuba 12 GB 24 GB 24 GB 42.42h 59.98 302
D. persimilis 13 GB 25 GB 25 GB 35.30h 58.76 302
D. erecta 14 GB 27 GB 27 GB 42.92h 60.47 302
D. sechellia 14 GB 27 GB 27 GB 37.88h 61.25 302
D. grimshawi 14 GB 27 GB 27 GB 57.40h 43.07 2648

Figure 8 shows a phylogeny for the 12 Drosophila genomes [7, 10] built using
Neighbor-Joining on distances inferred on alignments among families of genes. This
phylogeny was as reference, that is, we analysed if the distances computed by gcBB

lead to a phylogeny that agrees with this phylogeny.
Our algorithms were implemented in C and compiled with gcc version 4.9.2. Our

prototype implementation can be accessed at https://github.com/lucaspr98/gcBB. As
previously mentioned, we used eGap [9] to construct and merge the data structures
during Phase 1. The experiments were conducted on a system with Debian GNU/Linux
4.9.2 64 bits on Intel Xeon E5-2630 v3 20M Cache 2.40 GHz processors, 378 GB of
RAM and 13 TB SAS storage. Our experiments were limited to 48 GB of RAM.

4.1 Running time

The times to run eGap to compute the BWT and the LCP and CL arrays for each
genome Si ∈ S in Phase 1 are shown in Table 2. The longest running time was
approximately 57 hours, with the resulting arrays taking about 68 GB of space on
disk. The sizes of the BWT, the sizes of the LCP and CL arrays, and the average and
maximum LCP values are also shown in Table 2. Both LCP and CL arrays use 2 bytes
per entry.
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The overall time to run eGap to merge the computed data structures, for all pairs
of genomes {Si, Sj} ∈ S, with the pairwise approach (Algorithm 1) was approximately
154 days, whereas the overall time to run eGap to merge the data structures of all
genomes in S at once with the all-vs-all approach (Algorithm 2) was approximately
20 days. The size of the merged files was approximately the sum of the sizes of the
input files. The document array file has the same size of the merged BWT file, since
both store each value using one byte.

In Phase 2, the overall running time to build all pairs of colored BOSS data
structures with the pairwise approach was approximately 57 hours, while the average
time to build the colored BOSS for a pair {Si, Sj} was about 52 minutes. The time
to build the colored BOSS for all genomes at once with the all-vs-all approach was
approximately 5.5 hours.

In Phase 3, the overall running time to compute all pairs of BWSD distance matri-
ces entries with the pairwise approach was approximately 1.7 hours. The average time
was about 2 minutes for each pair. The time to compute the BWSD distance matrices
at once with the all-vs-all approach was approximately 10.8 hours.

Therefore, we spent approximately 156.4 days with gcBB against 20.6 days using
multi-gcBB. The running times for Phases 1 and 2 were obtained with coverage
information and k = 31.

4.2 Phylogenetic trees

We ran gcBB for k = 15, 31 and 63, producing entropy and expectation BWSD distance
matrices for the 12 Drosophilas, with and without coverage information.

We used the Neighbor-Joining [35] on the distance matrices to reconstruct the phy-
logenies. Following the construction for the reference phylogeny, we executed Neighbor-
Joining downto n = 2 to root the phylogeny. We used the Robinson-Foulds [33]
distance to compare our phylogenies with the reference phylogeny.

Let T be a phylogenetic tree with n vertices labeled by U = {1, 2, . . . , n}. If an
edge is removed from T then it induces a bipartition of U . If every edge in the set E of
edges of T is removed in turn, a set of induced bipartitions T (E) is defined. For a pair
of phylogenetic trees T1 and T2 with the same set of labelled leaves, the Robinson-
Foulds distance between T1 and T2 is the size of the symmetric difference of T1(E1)
and T2(E2); it is a metric whose values vary from 0 to 2n− 6.

Figures 9 and 10 show the phylogenies for k = 15 with and without coverage infor-
mation, respectively. The pair D. pseudoobscura and D. persimilis from the obscura

group agrees with the reference phylogeny. With coverage information there is a
clear separation between the melanogaster group and the outer groups. However, in
general, the placement of the other genomes disagree with the reference phylogeny.

Figures 11 and 12 show the phylogenies for k = 31 with and without coverage infor-
mation, respectively. There is one inconsistency involving D. grimshawi and D. virilis,
which were swapped in our phylogenies, but are in the same subtree. Nonetheless, the
high level groups division agrees with the reference phylogeny.

Figures 13 and 14 show the phylogenies for k = 63 with and without coverage
information, respectively. They are very similar to those resulting with k = 31.
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Fig. 9: gcBB phylogenies with k = 15, (a) using entropy, (b) using expectation.
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Fig. 10: gcBB phylogenies with k = 15 and coverage information, (a) using entropy,
(b) using expectation.

Table 3: Robinson-Foulds distances com-
puted between phylogenies by gcBB and the
reference phylogeny of Drosophila genomes
in Table 1. The symbol c indicates the phy-
logenies constructed by gcBB using coverage
information.

15 15c 31 31c 63 63c
Entropy 7 2 2 1 2 1
Expectation 6 5 2 3 2 2

Table 3 shows the Robinson-Foulds distance evaluated between the phylogenies by
gcBB and the reference phylogeny. The phylogenies by gcBB which are closer to the
reference were constructed using k = 31 and k = 63, with coverage information and
entropy distance.
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Fig. 11: gcBB phylogenies with k = 31, (a) using entropy, (b) using expectation.
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Fig. 12: gcBB phylogenies with k = 31 and coverage information, (a) using entropy,
(b) using expectation.

Effect of data size

In order to evaluate the effect of read sizes in the resulting phylogenies, we considered
sequencing data from an Illumina HiSeq 2000 for D. grimshawi. The information on
this genome, the running time taken by eGap to construct the data structures and
their sizes are shown in Table 4.

Table 4: Information on the genome of D. grimshawi, that can be accessed through
its Run (SRR) or BioSample (SAMN) accessions at https://www.ncbi.nlm.nih.gov/
genbank/. The Bases column has the number of sequenced bases in Gbp. The Refer-
ence column has the size of the complete genome in Mb. The sizes of data structures
in Gb are shown in columns BWT, LCP and CL, and the average LCP is shown in
column LCP avg.

Organism Run BioSample Bases Reference BWT LCP CL LCP avg
D. grimshawi 7642855 09764638 1.80 191.38 1.80 3.5 3.5 28.74
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Fig. 13: gcBB phylogenies with k = 63, (a) using entropy, (b) using expectation.
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Fig. 14: gcBB phylogenies with k = 63 and coverage information, (a) using entropy,
(b) using expectation.

Table 5: Robinson-Foulds distance com-
puted between phylogenies with D.
grimshawi from another experiment and
the reference phylogeny. The symbol c rep-
resents the phylogenies constructed using
coverage information.

15 15c 31 31c 63 63c
Entropy 7 5 5 5 5 5
Expectation 6 7 6 5 6 6

We executed gcBB using the same parameters and values of k. The best phylogeny
was obtained with k = 15 using coverage information. It is shown in Figure 15. By
computing the Robinson-Foulds distance between these phylogenies and the reference
phylogeny we obtained the values in Table 5.

We believe that significantly different amounts of sequenced bases impairs gcBB

in its current form. In this experiment D. grimshawi has 1.8 Gbp, while D. sechellia
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Fig. 15: gcBB phylogenies for Drosophilas with the alternative D. grimshawi with
k = 15 and coverage information, (a) using entropy, (b) using expectation.

and D. simulans have more than 14 Gbp. When constructing the colored de Bruijn
graph for D. grimshawi and D. sechellia there will be much more edges from D.
sechellia than from D. grimshawi, and the similarity between these genomes tends to
be smaller than it should be. Moreover, when constructing the colored de Bruijn graph
for D. grimshawi and D. melanogaster there will also be much more edges from D.
melanogaster. The difference between the amount of bases in D. melanogaster and D.
grimshawi is around 4 Gbp, while from D. sechellia to D. grimshawi is around 12 Gbp.

These results suggest that our algorithms produce reasonable phylogenies when k
is closer to the average LCP of the reads. Also, the coverage information reduced the
Robinson-Foulds distance to the reference in most cases. Finally, the fact that all reads
in the dataset were obtained using similar sequencing protocols and, on average, have
a similar number of sequenced bases may have helped obtaining favorable results.

5 Conclusions

In this work we introduced a new method to compare genomes prior to assembly using
space-efficient data structures implemented as gcBB and multi-gcBB, algorithms to
compare sets of reads of genomes using the BOSS representation and to compute the
similarity measures based on the BWSD.

We evaluated our algorithms reconstructing the phylogeny of 12 Drosophila
genomes. We used Neighbor-Joining over the distance matrices output by gcBB to
reconstruct phylogenetic trees. Then we computed the Robinson-Foulds distance
between the phylogenies by gcBB and a reference phylogeny. One issue when working
with the de Bruijn graph is setting the value of k. We observed that values over the
average LCP of the genomes lead to reasonable results. We observed better results
using the entropy measure and coverage information in the BWSD computation.

Future research may investigate different strategies for dealing with coverage infor-
mation, as the experiments indicate a positive contribution of coverage to the resulting
phylogenies. The quality of sequenced bases may also be investigated in future work
as a means to improve the method.
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