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Abstract
We give a randomized algorithm that finds a minimum cut in an undirected weighted
m-edge n-vertex graph G with high probability in O(m log2 n) time. This is the first
improvement to Karger’s celebrated O(m log3 n) time algorithm from 1996. Our main
technical contribution is a deterministic O(m log n) time algorithm that, given a span-
ning tree T of G, finds a minimum cut of G that 2-respects (cuts two edges of) T .

Keywords Minimum cut · Minimum 2-respecting cut · Karger’s algorithm

1 Introduction

The minimum cut problem is one of the most fundamental and well-studied optimiza-
tion problems in theoretical computer science. Given an undirected edge-weighted
graph G = (V , E), the problem asks to find a subset of vertices S such that the total
weight of all edges between S and V \ S is minimized. The vast literature on the
minimum cut problem can be classified into three main approaches:

The maximum-flow approach The minimum cut problem was originally solved by
computing the maximum st-flow [6] for all pairs of vertices s and t . In 1961, Gomory
and Hu [14] showed that only O(n) maximum st-flow computations are required,
and in 1994 Hao and Orlin [15] showed that in fact a single maximum st-flow

Shay Mozes and Oren Weimann supported in part by Israel Science Foundation grant 810/21.

B Oren Weimann
oren@cs.haifa.ac.il

Paweł Gawrychowski
gawry@cs.uni.wroc.pl

Shay Mozes
smozes@idc.ac.il

1 University of Wrocław, Wrocław, Poland

2 The Interdisciplinary Center Herzliya, Herzliya, Israel

3 University of Haifa, Haifa, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10179-7&domain=pdf
http://orcid.org/0000-0002-4510-7552


Theory of Computing Systems (2024) 68:814–834 815

computation suffices. A maximum st-flow can be found in O(mn log(n2/m)) time
using the Goldberg-Tarjan algorithm [13], and the fastest algorithm to date takes
O(mn) time [27, 37]. Faster maximum st-flow algorithms are known (see e.g [5, 12,
30, 31, 41] and referenceswithin) when the graph is unweighted orwhen themaximum
edge weight W is not extremely large. However, even with a linear O(m) time max-
imum st-flow algorithm, computing the maximum flow for all pairs of vertices takes
O(mn) time. Very recently [1], it was shown how to break this barrier and compute
the maximum flow for all pairs of vertices in Õ(n2) time.

The edge-contraction approach An alternative method is edge contraction. If we
can identify an edge that does not cross the minimum cut, then we can contract
this edge without affecting the minimum cut. Nagamochi and Ibaraki [34, 35]
showed how to deterministically find a contractible edge in O(m) time, leading to
an O(mn + n2 log n)-time minimum cut algorithm. Karger [19] showed that ran-
domly choosing the edge to contract works well with high probability. In particular,
Karger and Stein [25] showed that this leads to an improved O(n2 log3 n)Monte Carlo
algorithm.

The tree-packing approach In 1961, Nash-Williams [36] proved that, in unweighted
graphs, any graph with minimum cut c contains a set of c/2 edge-disjoint spanning
trees. Gabow’s algorithm [7] can be used to find such a tree-packing with c/2 trees in
O(mc log n) time. Karger [23] observed that the c edges of a minimum cut must be
partitioned among these c/2 spanning trees, hence the minimum cut 1- or 2-respects
some tree in the packing. That is, one of the trees is such that at most two of its edges
cross the minimum cut (these edges are said to determine the cut). We can therefore
find the minimum cut by examining each tree and finding the minimum cut that 1- or
2-respects it.

Several obstacles need to be overcome in order to translate this idea into an efficient
minimum cut algorithm for weighted graphs:

(1) we need a weighted version of tree-packing,
(2) finding the packing (even in unweighted graphs) takes time proportional to c (and

c may be large),
(3) checking all trees takes time proportional to c, and
(4) one needs an efficient algorithm that, given a spanning tree T of G, finds the

minimum cut in G that 2-respects T (finding a minimum cut that 1-respects T can
be easily done in O(m + n) time, see e.g [23, Lemma 5.1]).

In a seminal work, Karger [23] overcame all four obstacles: First, he converts G into
an unweighted graph by conceptually replacing an edge of weight w by w parallel
edges. Then, he uses his random sampling from [19, 21] combined with Gabow’s
algorithm [7] to reduce the packing time to O(m + n log3 n) and the number of
trees in the packing to O(log n). Finally, he designs a deterministic O(m log2 n) time
algorithm that given a spanning tree T ofG finds the minimum cut inG that 2-respects
T . Together, this gives an O(m log3 n) time randomized algorithm for minimum cut.
Karger also showed how to improve the running time by a log log n factor, at the cost
of an additive O(n log6 n) factor by observing that 1-respecting cuts can be found
faster than 2-respecting cuts, and tweaking the parameters of the tree packing.
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Karger’s O(m log2 n) algorithm for the 2-respecting problem finds, for each edge
e ∈ T , the edge e′ ∈ T that minimizes the cut determined by {e, e′}. He used link-cut
trees [39] to efficiently keep track of the sizes of cuts as the candidate edges e of T are
processed in a certain order (bough decomposition), consisting of O(log n) iterations,
and guarantees that the number of dynamic tree operations is O(m) per iteration. Since
each link-cut tree operation takes O(log n) time, the total running time for solving the
2-respecting problem is O(m log2 n).

In a very recent paper, Lovett and Sandlund [3] proposed a simplified version
of Karger’s algorithm. Their algorithm has the same O(m log3 n) running time as
Karger’s. To solve the 2-respecting problem they use top trees [2] rather than link-cut
trees, and use heavy path decomposition [16, 39] to guide the order in which edges
of T are processed. A property of heavy path decomposition is that, for every edge
(u, v) /∈ T , the u-to-v path in T intersects O(log n) paths of the decomposition.
This property implies that the contribution of each non-tree edge to the cut changes
O(log n) times along the entire process. See also [10] who use the fact that the bough
decomposition, implicitly used by Karger, also satisfies the above property. The idea
of traversing a tree according to a heavy path decomposition, i.e., by first processing a
smaller subtree and then processing the larger subtree has been used quite a few times
in similar problems on trees. See e.g., [4]. While the ideas of Lovett and Sandlund [3]
do not improve on Karger’s bound, their paper has drawn our attention to this problem.

1.1 Our Result and Techniques

In this paper, we present a deterministic O(m log n) time algorithm that, given a
spanning tree T of G, finds the minimum cut in G that 2-respects T . Using Karger’s
framework, this implies an O(m log2 n) time randomized algorithm for minimum cut
in weighted graphs. We also show (see Section 4) that Karger’s log log n speedup
approach can be used to obtain an O(m log2 n/ log log n + n log3+δ) time algorithm
for any δ > 0.

Like prior algorithms for this problem, our algorithm finds, for each edge e ∈ T
the edge e′ ∈ T that minimizes the cut determined by {e, e′}. The difficult case to
handle is when e and e′ are such that neither of them is an ancestor of the other.
In Karger’s solution, handling each edge e = (u, v) ∈ T was done using amortized
O(d log n) operations on Sleator and Tarjan’s link-cut trees [39] where d is the number
of non-tree edges incident to u. Since operations on link-cut trees require O(log n)

amortized time, the time to handle all edges is O(m log2 n) (implying an O(m log3 n)

time algorithm for the minimum cut problem). As an open problem, Karger [23] asked
(more than 20 years ago) whether the required link-cut tree operations can be done in
constant amortized time per operation (implying an O(m log2 n) time algorithm for
the minimum cut problem). Karger even pointed out why one could perhaps achieve
this: “We are not using the full power of dynamic trees (in particular, the tree we are
operating on is static, and the sequence of operations is known in advance).” In this
paper, we manage to achieve exactly that. We show how to order the link cut tree

123



Theory of Computing Systems (2024) 68:814–834 817

operations so that they can be handled efficiently in batches. We call such a batch a
bipartite problem (see Definition 4).

Perhaps a reason that the running time of Karger’s algorithm has not been improved
in more than two decades is that it is not at all apparent that these bipartite problems
can indeed be solved more efficiently. Coming up with an efficient solution to the
bipartite problem requires a combination of several additional ideas. Like [3], we use
heavy path decomposition, but in a different way. We develop a new decomposition of
a tree that combines heavy path decomposition with biased divide and conquer, and
use this decomposition in conjunction with a compact representation which we call
topologically induced subtrees (see Definition 3). This compact representation turns
out to be crucial not only for solving the bipartite problem, but also to the reduction
from the original problem to a collection of bipartite problems.

1.2 Application to Unweighted Graphs

Karger’smethod is inherently randomized and obtaining a deterministic (or at least Las
Vegas) near-linear time algorithm for the minimum cut in undirected weighted graphs
is an interesting problem that has been solved very recently [17] (the exact exponent
in the polylog is not stated in [17]). For simple unweighted undirected graphs, a deter-
ministic near-linear time algorithm was provided by Kawarabayashi and Thorup [26].
Later, Henzinger, Rao, and Wang [18] designed a faster O(m log2 n(log log n)2) time
algorithm. Ghaffari, Nowicki and Thorup [11] introduced a new technique of ran-
dom 2-out contractions and applied it to design an O(min{m + n log3 n,m log n})
time randomized algorithm that finds a minimum cut with high probability. We stress
that the faster algorithms of Henzinger et al. and Ghaffari et al. work only for simple
unweighted graphs, that is, for edge connectivity. Interestingly, the latter uses Karger’s
O(m log3 n) time algorithm as a black box, and by plugging in our faster method one
immediately obtains an improved running time of O(min{m + n log2 n,m log n}) for
simple unweighted graphs.

1.3 IndependentWork and Summary of State-of-the-art

Independently to our work,1 Mukhopadhyay and Nanongkai [33] came up with an
O(m log n + n log4 n) time algorithm for finding a minimum 2-respecting cut (see
also a simplified and faster O(m log n + n log2 n) implementation in [9]). While this
improves Karger’s bound for sufficiently dense graphs, it does not improve it for all
graphs, and is randomized. Our algorithm uses a different (deterministic and simple)
approach. There are however benefits to the approach of [33]; It can be improved [9] to
obtain an O(m log n+ n1+ε) time min-cut algorithm in weighted graphs for any fixed
ε > 0, which is the state of the art for dense graphs with m = �(n1+ε). Furthermore,
it can be used to obtain an algorithm that requires Õ(n) cut queries to compute the
min-cut, and a streaming algorithm that requires Õ(n) space and O(log n) passes to
compute the min-cut.

1 To be accurate, their work appeared on arXiv one day after ours.
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The following table summarizes the state-of-the-art for randomized algorithms for
minimum cut in undirected weighted graphs.

O(m log2 n) Here
O(m log2 n/ log log n + n log3+δ n) Here
O(m log n + n1+ε) [9]

2 Preliminaries

2.1 Karger’s Algorithm

At a high level, Karger’s algorithm [23] has two main steps. The input is a weighted
undirected graph G. The first step produces a set {T1, . . . , Ts} of s = O(log n) span-
ning trees such that, with high probability, the minimum cut of G 1- or 2-respects at
least one of them. The second step deterministically computes for each Ti the min-
imum cut in G that 1-respects Ti and the minimum cut in G that 2-respects Ti . The
minimum cut in G is the minimum among the cuts found in the second step.

Karger shows [23, Theorem 4.1] that producing the trees {T1, . . . , Ts} in the first
step can be done in O(m + n log3 n) time, and that finding the minimum 2-respecting
cut for all the Ti ’s in the second step can be done in O(m log3 n) time.Wewill show that
each of the steps can be implemented in O(m log2 n) time. Showing this for the second
step is the main result of the paper, and is presented in Section 3. For the first step, we
essentially use Karger’s proof. Since the first step was not the bottleneck in Karger’s
paper, proving a bound of O(m + n log3 n) was sufficient for his purposes. Karger’s
concluding remarks suggest that he knew that the first step could be implemented
in O(m log2 n) time. For completeness, we prove the O(m log2 n) bound by slightly
modifying Karger’s arguments and addressing a few issues that were not important in
his proof. Readers proficient with Karger’s algorithm can safely skip the proof.

Definition 1 (2-respecting and 2-constraining) Given a spanning tree T and a cut
(S, S̄), we say that the cut 2-respects T and that T 2-constrains the cut if at most 2
edges of T cross the cut.

Definition 2 (weighted tree packing) Let G be an unweighted undirected graph. Let
T be a set of spanning trees of G, where each tree T ∈ T is assigned a weight w(T ).
We say that the load of an edge e of G (w.r.t. T ) is �(e) = ∑

T∈T :e∈T w(T ). We say
that T is a weighted tree packing if no edge has load exceeding 1. The weight of the
packing T is τ = ∑

T∈T w(T ).

Theorem 1 Given a weighted undirected graph G, in O(m log2 n) time, we can con-
struct a set T of O(log n) spanning trees such that, with high probability, the minimum
cut 2-respects at least one of the trees in T .

Proof Let (S, S̄) be the partition of the vertices ofG that forms aminimumcut, and let c
be theweight of theminimumcut inG.Weprecompute a constant factor approximation
of c in O(m log2 n) time using Matula’s algorithm [32]. See Appendix A for details.
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We assume that all weights are integers, each fitting in a single memory word. Since
edges with weight greater than c never cross the minimum cut, we contract all edges
with weight greater than our estimate for c, so that now the total weight of edges
of G is O(mc). For the sake of presentation we think of an unweighted graph G̃,
obtained from G by replacing an edge of weight w by w parallel edges. We stress
that G̃ is never actually constructed by the algorithm. Let m̃ denote the number of
edges of G̃. By the argument above, m̃ = O(mc). Let p = �(log n/c). Let H be the
unweighted multigraph obtained by sampling �pm̃� edges of G̃ (H = G̃ if c < log n).
Clearly, the expected value of every cut in H is p times the value of the same cut in G.
By [21, Lemma 5.1], choosing the appropriate constants in the sampling probability
p guarantees that, with high probability, the value of every cut in H is at least 64/65
times its expected value, and no more than 66/65 times its expected value. It follows
that, with high probability, (i) the minimum cut in H has value c′ = �(log n), and
that (ii) the value of the cut in H defined by (S, S̄) is at most 33c′/32. The conceptual
process for constructing H can be carried out by randomly selecting �pm̃� edges of G
(with replacement) with probability proportional to their weights. Since the total edge
weight of G is O(mc), each selection can be easily performed in O(log(mc)) time,
assuming that our model allows generating a random word in constant time. Using a
standard technique, each selection can actually be done in O(logm) time, even under
a weaker assumption that we can only generate a random bit in constant time.

Lemma 1 Given n non-negative integers x1, x2, . . . , xn, we can build in O(n) time
a structure that supports the following operation in O(log n) time, assuming that we
can generate a random bit in constant time: choose i ∈ {1, 2, . . . , n} with probability
pi = xi/X, where X = ∑n

i=1 xi , and then with high probability return i or fail
otherwise.

Using the above lemma (see proof in Appendix B), the time to construct H is
O(pm̃ logm) = O(m log2 n). If any of the invocations fails, we simply termi-
nate the whole algorithm. We emphasize that H is an unweighted multigraph with
m′ = O(m log n) edges, and note that we can assume no edge of H has multiplicity
greater than c′ (we can just delete extra copies).

Next, we apply the following specialized instantiation [40, Theorem 2] of Young’s
variant [44] of the Lagrangian packing technique of Plotkin, Shmoys, and Tardos [38].
It is shown [40, 44] that for an unweighted graph H withm′ edges andminimum cut of
size c′, the following algorithmfinds aweighted tree packing ofweight 3c′/8 ≤ τ ≤ c′.

1: �(e) := 0 for all e ∈ E(H)

2: while there is no e with �(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. �(·)
4: w(T ) = w(T ) + 1/(96 lnm′)
5: �(e) = �(e) + 1/(96 lnm′) for all e ∈ T
6: end while

Karger [23, Lemma 2.3] proves that for a graph H with minimum cut c′, any tree
packing of weight at least 3c′/8, and any cut (S, S̄) of H of value at most 33c′/32,
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at least a 1/8 fraction of the trees (by weight) 2-constrain the cut (S, S̄). Thus, a
tree chosen at random from the packing according to the weights 2-constrains the cut
(S, S̄) with probability at least 1/8. Choosing θ(log n) trees guarantees that, with high
probability, one of them 2-constrains the cut (S, S̄), which is the minimum cut in G.

It remains to bound the running time of the packing algorithm. Observe that the
algorithm increases the weight of some tree by 1/(96 lnm′) at each iteration. Since
the weight τ of the resulting packing is bounded by c′, there are at most 96c′ lnm′ =
O(log2 n) iterations. The bottleneck in each iteration is the time to compute aminimum
spanning tree in H . We argue that this can be done in O(m) time even though m′ =
O(n log n). To see this, first note that since H is a subgraph of G, H has at most m
edges (ignoring multiplicities of parallel edges). Next note that it suffices to invoke
the MST algorithm on a subgraph of H that includes just the edge with minimum
load among any set of parallel edges. Since the algorithm always increases the load of
edges by a fixed amount, the edge with minimum load in each set of parallel edges can
be easily maintained in O(1) time per load increase by maintaining a cyclic ordered
list of each set of parallel edges and moving to choose the next element in this cyclic
list whenever the load of the current element is incremented. Hence, we can invoke
the randomized linear time MST algorithm [24] on a simple subgraph of H of size
O(m). It follows that the running time of the packing algorithm, and hence of the
entire procedure, is O(m log2 n). �	

2.2 Link-cut Trees

In our algorithm we will repeatedly use a structure that maintains a rooted tree T with
costs on the edges under the following operations:

1. T .add(u,	) adds 	 to the cost of every edge on the path from u to the root,
2. T .path(u) finds the minimum cost of an edge on the path from u to the root,
3. T .subtree(u) finds the minimum cost of an edge in the subtree rooted at u.

All three operations can be supported with a link-cut tree [39] in amortized O(log |T |)
time.2 We note that we only require these three operations and do not actually use the
link and cut functionality of link-cut trees. Other data structures might also be suitable.
See, e.g., the use of top-trees in [3].

2.3 Topologically Induced Subtrees

For a rooted tree T and a node v we denote by Tv the subtree of T rooted at v. For an
edge e of T we denote by Te the subtree of T rooted at the lower endpoint of e.

Let T be a binary tree with edge-costs and n nodes, equipped with a data structure
that can answer lowest common ancestor (LCA) queries on T in constant time [16].
Let 
 = {w1, w2, . . . , ws} be a subset of nodes of T . We define a smaller tree T


that is equivalent to T in the following sense (Fig. 1):

2 The original paper [39] did not include the third operation. However, as shown in [28, Appendix 17], it
is not difficult to add it.
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Fig. 1 On the left: a tree and (in red) a set 
 = {w1, w2, . . . , w6} sorted according to their preorder
numbers. On the right: the corresponding topologically induced tree

Definition 3 (topologically induced tree) We say that a tree T
 is topologically
induced on T by 
 if for every S ⊆ 
, the minimum cost edge f ∈ T
 with
T

f ∩ 
 = S has the same cost as the minimum cost edge e ∈ T with Te ∩ 
 = S.

To be clear, the above definition implies that, for any S ⊆ 
, there is an edge e ∈ T
with Te ∩ 
 = S, if and only if there is an edge f ∈ T
 with T


f ∩ 
 = S. The
term topologically induced tree will be justified by the construction in the following
lemma.

Lemma 2 There exists an algorithm that, given a binary tree T with edge costs,
equipped with a link-cut data structure, and a list 
 = {w1, w2, . . . , ws} of nodes
of T , ordered according to their visit time in a preorder traversal of T , constructs in
O(min{|T |, s log |T |}) time, a tree T
 of size O(s) that is topologically induced on
T by 
.

Proof We define the tree T
 to be a tree over all nodes wi ∈ 
, together with the root
and the lowest common ancestor in T of every pair of nodes wi and w j . For any two
nodes u, v ∈ T
, u is an ancestor of v in T
 if and only if u is an ancestor of v in T .
Thus, each edge (u, v) of T
 corresponds to the u-to-v path in T . The edges on this
path in T are exactly the edges e of T with Te ∩ 
 = T


(u,v) ∩ 
. Hence, the paths

of T corresponding to distinct edges of T
 are edge disjoint. We define the cost of
the edge (u, v) of T
 to be the minimum cost of an edge on the corresponding path
in T . It follows that for every ∅ = S ⊆ 
, the minimum cost edge f ∈ T
 with
T

f ∩ 
 = S has the same cost as the minimum cost edge e ∈ T with Te ∩ 
 = S.
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To guarantee that this condition holds for S = ∅ as well, we choose the edge e of T
with the minimum cost such that Te ∩ 
 = ∅ and proceed as follows if such an edge
exists. We create a new node v and change the root of T
 to v by making the old root
of T
 a child of v via an edge with infinite cost. We then add a new edge incident to
v, whose cost is set to the cost of e. This transformation does not change Te ∩ 
 for
any edge e of T
, but now that condition with S = ∅ is satisfied for the new edge
incident to the root.

We now turn to proving the construction time. We first prove that T
 consists of
at most 2s nodes. This is because T
 consists only of the root, the nodes wi and
LCA(wi , wi+1). To see this, consider two nodes wi and w j with i < j such that their
lowest common ancestor u is different than wi and w j . Let u� (ur ) be the left (right)
child of u. Then, wi is a descendant of u� and w j a descendant of ur . Let i ′ be the
largest index such that wi ′ is in the subtree rooted at u�. Then u =LCA(wi ′ , wi ′+1).

We next prove that T
 (without its edge weights) can be constructed edge weights)
in O(s) time. We use a method similar to constructing the Cartesian tree [8, 42] of a
sequence: we scanw1, w2, . . . , ws from the left to right while maintaining the subtree
of T
 induced by w0 = LCA(w1, ws), and w1, w2, . . . , wi . initially, the subtree of
T
 induced by w0 and w1 is just a single edge (w0, w1). We keep the rightmost path
of the subtree of T
 induced byw0, w1, . . . , wi on a stack, with the bottommost edge
on the top. To process wi+1, we first find x = LCA(wi , wi+1). Then, we pop from the
stack all edges (u, v) such that u and v are both below (or equal to) x in T . Finally, we
possibly split the edge on the top of the stack into two and push a new edge onto the
stack. The amortized complexity of every step is constant, so the total time is O(s).

Once T
 is constructed, we set the cost of every edge (u, v) in T
 to be the
minimum cost of an edge on the u-to-v path in T . This can be done in O(log |T |)
time per edge of T
 by first calling T .add(u)(∞), then T .path(v) to retrieve the
answer, and finally T .add(u)(−∞), for a total of O(s log |T |) time. Alternatively,
we can explicitly go over the edges of the corresponding paths of T for every edge of
T
. We had argued above that these paths are disjoint so this takes O(|T |) in total.

We also need to compute the cost of the edge e of T with the minimum cost such
that Te ∩ 
 = ∅. To this end, for each v ∈ 
 we add ∞ to the cost of all edges on the
path from v to the root of T . This takes O(min(|T |, s log |T |) by either a bottom-up
computation on T , or using T .add(u,∞) for every v ∈ 
. We then retrieve the edge
with minimum cost in the entire tree in O(log |T |) time by a call to subtree for the
root of T , and then subtract ∞ from the cost of all edges on the path from v to the
root of T for every v ∈ 
. �	

We will use the fact that the operation of taking the topologically induced subtree
is composable in the following sense.

Proposition 1 Let T be a binary tree with edge-costs. Let 
2 ⊆ 
1 be subsets of
nodes of T . Let T1 be topologically induced on T by 
1 and T2 be topologically
induced on T1 by 
2. Then T2 is topologically induced on T by 
2.
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3 Finding aMinimum 2-respecting Cut

Given a graph G and a spanning tree T of G, a cut in G is said to 2-respect the tree
T if at most two edges e, e′ of T cross the cut (these edges are said to determine the
cut). In this section we prove the main theorem of this paper:

Theorem 2 Given an edge-weighted graph G with n vertices and m edges and a
spanning tree T , the minimum (weighted) cut in G that 2-respects T can be found in
O(m log n) time.

Theminimum cut determined by every single edge can be easily found in O(m+n)

time [23, Lemma 5.1]. We therefore focus on finding the minimum cut determined
by two edges. Observe that the cut determined by {e, e′} is unique and consists of all
edges (u, v) ∈ G such that the u-to-v path in T contains exactly one of {e, e′}.

We begin by transforming T (in linear time) into a binary tree. This is standard and
is done by replacing every node of degree d with a binary tree of size O(d) where
internal edges have weight ∞ and edges incident to leaves have their original weight.
We also add an artificial root to T and connect it to the original root with an edge of
weight ∞. From now we will be working with binary trees only.

3.1 Descendant Edges

We first describe an O(m log n) time algorithm for finding the minimum cut deter-
mined by all pairs of edges {e, e′} where e′ is a descendant of e in T (i.e. e′ is in the
subtree of T rooted at the lower endpoint of e). To this end, we shall efficiently find,
for each edge e of T , the descendant edge e′ that minimizes the weight of the cut
determined by {e, e′}, and return the pair minimizing the weight of the cut.

For a given edge e of T , let Te denote the subtree of T rooted at the lower endpoint
of e. We associate with every node x a list of all edges (u, v) such that x is the lowest
common ancestor of u and v. Note that all these lists can be computed in linear time,
and form a partition of the edges ofG. We compute for every node x the total weight of
edges incident to x , and the total weight of edges (u, v) such that LCA(u, v) is x . This
also takes O(m) time. We then compute using an O(m)-time bottom-up computation
on T , for every edge e of T , the total weight A(e) of all edges with exactly one
endpoint in Te (in fact, this is the information computed by Karger’s algorithm for the
1-respecting case). To see how this is done, observe that for an edge e whose lower
endpoint is v and whose children in T are e� and er , A(e) is given by A(e�) + A(er )
minus twice the total weight of edges whose lowest common ancestor is v plus the
total weight of edges incident to v. Note that A(e) includes the weight of e.

Using a link-cut tree we maintain a score for every edge e of T . The scores will be
such that, when an edge e is first encountered by a depth first scan of T , the weight of
the cut determined by e and any descendant e′ of e is A(e) plus the score of e′. This
will allow us to find the best e′ for e using a single call to T .subtree. We next explain
the details.

All scores are first initialized to zero. Then, for every edge (u, v) of G, we increase
the score of all edges on the u-to-v path in T by the weightw(u, v) of (u, v). This takes
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O(log n) time per edge (u, v) by calling T .add(u, w(u, v)), T .add(v,w(u, v)) and
T .add(LCA(u, v),−2w(u, v)). This initialization takes O(m log n) time. We then
perform an Euler tour of T . When the tour first descends below a node x , for every
edge (u, v) in the list of x , we decrease the score of all edges on the u-to-v path in
T by 2w(u, v). Then, when the tour ascends above x , for every edge (u, v) in the list
of x , we increase the score of all edges on the u-to-v path in T by 2w(u, v). Note
that, at any point during this traversal, each edge (u, v) either contributes w(u, v) or
−w(u, v) to the score of every edge on the u-to-v path in T , depending on whether
the tour is yet to descend below LCA(u, v) or has already done so. As above, each
update can be implemented in O(log n) time. Since every edge appears in exactly one
list, the total time to perform all the updates is O(m log n).

Lemma 3 Consider the point in time when the Euler tour had just encountered an
edge e for the first time. At that time, for every descendant edge e′ of e, the weight of
the cut determined by {e, e′} is A(e) plus the score of e′.

Proof Observe that the weight of the cut determined by {e, e′} is the sum of weights of
all edges with (1) one endpoint in Te − Te′ and the other not in Te, or (2) one endpoint
in Te − Te′ and the other in Te′ . Note that the edges satisfying (1) have exactly one
endpoint in Te, and hence their weight is accounted for in A(e). However, A(e) also
counts the weight of edges (u, v) with one endpoint in Te′ and the other not in Te (see
Fig. 2). Such edges do not cross the cut. Note that for such edges both e and e′ are on
the u-to-v path in T . The fact that e is on the u-to-v path implies that the traversal has
already descended below LCA(u, v). Hence, (u, v) currently contributes −w(u, v) to
the score of e′, offsetting its contribution to A(e). Next note that the edges satisfying
(2) are edges (u, v) with both u and v in Te, which means that they are not accounted
for in A(e), and that the traversal did not yet descend below LCA(u, v). Hence the
contribution of such an edge (u, v) to the score of e′ is indeed the weight of (u, v). �	

By the lemma, the descendant edge e′ of e that minimizes the weight of the cut
determined by {e, e′} is the edge with minimum score in the subtree of e at that time.
The score of this edge e′ can be found in O(log n) time by calling T .subtree(x),
where x is the lower endpoint of e.

3.2 Independent Edges

We now describe an O(m log n) time algorithm for finding the minimum cut deter-
mined by all pairs of edges {e, e′} where e is independent of e′ in T (i.e. e is not a
descendant of e′ and e′ is not a descendant of e).We begin by showing that the problem
can be reduced to the following bipartite problem:

Definition 4 (The bipartite problem) Given two trees T1 and T2 with costs on the
edges and a list of non-tree edges L = {(u, v) : u ∈ T1, v ∈ T2} where each non-tree
edge has a cost, find a pair of edges e ∈ T1 and e′ ∈ T2 that minimize the sum of costs
of e, of e′, and of all non-tree edges (u, v) ∈ L where u is in T1e, and v is in T2e′ . The
size of such a problem is defined as the number of non-tree edges in L plus the sizes
of T1 and T2.

123



Theory of Computing Systems (2024) 68:814–834 825

Fig. 2 A tree T and two descendant edges e, e′. Edges e1 and e3 cross the cut determined by {e, e′}. Edge
e2 does not cross the cut. The edge e1 is not counted in A(e), while the edges e2, e3 are. The edge e1
contributes w(e1) to the score of e′, the edge e2 contributes −w(e2) to the score of e′, and the edge e3 does
not contribute to the score of e′

Lemma 4 Given an edge-weighted graph G with n vertices and m edges and a span-
ning tree T , finding the minimum cut among those determined by a pair of independent
edges {e, e′} can be reduced in O(m log n) time to multiple instances of the bipartite
problem of total size O(m).

Proof Recall that every node w of T has at most two children. We create a separate
bipartite problem for every node w of T that has exactly two children (x and y). This
bipartite problem will be responsible for finding the minimum cut determined by all
pairs of independent edges {e, e′} where e is in Tx (or possibly (w, x)) and e′ is in Ty
(or possibly (w, y)).

Throughout our description, note the distinction between edge weights and edge
costs. The input graphG has edgeweights, and the goal is to find the cut withminimum
weight. The bipartite problems we define have edge costs, which are derived from the
weights of edges in the input graph.

We initialize the cost of every edge ofG to be zero. Then, for every edge f = (u, v)

of G, we add the weight of f to the cost of every edge on the u-to-v path. We maintain
the costs in a link-cut tree so each f is handled in O(log n) time. Now consider any
node w with exactly two children x and y, and any pair of independent edges {e, e′}
where e is in Tx and e′ is in Ty . Observe that the edges crossing the cut determined
by {e, e′} are exactly the edges f = (u, v) with one endpoint in Te or in Te′ , and the
other endpoint not in Te nor in Te′ . Hence, the weight of the cut determined by {e, e′}
equals the sum of the cost of e plus the cost of e′ minus twice the total weight of all
non-tree edges f = (u, v) such that u is in Te and v is in Te′ .
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We therefore define the bipartite problem for w as follows: (1) T1 is composed
of the edge (w, x) and the subtree rooted at x with costs as described above, (2)
T2 is composed of the edge (w, y) and the subtree rooted at y with the costs as
described above, and (3) for every non-tree edge f = (u, v) with weight c such
that LCA(u, v) = w the list of non-tree edges L includes (u, v) with cost −2c. By
construction, the solution to this bipartite problem is the pair of independent edges
e, e′ with e ∈ Tx and e′ ∈ Ty that minimize the weight of the cut in G defined by e
and e′.

The only issuewith the above bipartite problem is that the overall size of all bipartite
problems (over all nodes w) might not be O(m). This is because the edges of T might
appear in the bipartite problems defined for more than a single node w. In order
to guarantee that the overall size of all bipartite problems is O(m), we construct a
compact bipartite problem using the topologically induced trees of Lemma 2.

We construct in O(m) time a constant-time LCAdata structure [16] for T . In overall
O(m log n) time, we construct, for each node w ∈ T with exactly two children x and
y:

1. A list Lw of all non-tree edges (u, v) with LCA(u, v) = w.
2. A list 
x = {w, x} ∪ {u : (u, v) ∈ Lw and u ∈ Tx }, sorted according to their visit

time in a preorder traversal of T .
3. A list 
y = {w, y} ∪ {v : (u, v) ∈ Lw and v ∈ Ty}, sorted according to their visit

time in a preorder traversal of T .

These lists require total O(m) space and can be easily computed in O(m log n) time
by going over the non-tree edges, because each non-tree edge is in the list Lw of a
unique node w.

The list L for the compact bipartite problem is identical to the list L for the non-
compact problem. The tree T ◦

1 (T ◦
2 ) for the compact bipartite problem of w is the

topologically tree induced on (w, x) ∪ Tx ((w, y) ∪ Ty) by 
x (
y). This is done
in O(|
x | log n) (O(|
y | log n)) time by invoking Lemma 2. It follows that the total
time for constructing all compact bipartite problems is O(m log n) and that their total
space is O(m). It remains to argue that the solution to the compact bipartite problem
is identical to the solution to the non-compact one. Observe that the cost of a solution
e, e′ for the non-compact bipartite problem is the cost of e plus the cost of e′ plus the
cost of all edges in L with one endpoint in T1e ∩
 and the other endpoint in T2e′ ∩
.

Consider now any pair of edges e and e′ for the non-compact bipartite problem.
By definition of topologically induced trees, the minimum cost edge f ∈ T ◦

1 with
T ◦
1 f ∩ 
 = T1e ∩ 
, has cost not exceeding that of e. An analogous argument holds

for e′ and an edge f ′ of T ◦
2 . Hence, the cost of the optimal solution for the compact

problem is not greater than that of the non-compact problem. Conversely, for any
edge f in T ◦

1 , there exists an edge e in T1 with cost not exceeding that of f and
T ◦
1 f ∩ 
 = T1e ∩ 
. Hence, the cost of the optimal solution for the compact problem

is not less than that of the non-compact problem. It follows that the two solutions are
the same. �	

The proof of Theorem2 follows from the above reduction and the following solution
to the bipartite problem:
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Lemma 5 A bipartite problem of size m can be solved in O(m logm) time.

Proof Recall that in the bipartite problem we are given two trees T1 and T2 with
edge-costs and a list of non-tree edges L = {(u, v) : u ∈ T1, v ∈ T2} where each
non-tree edge has a cost. To prove the lemma, we describe a recursive O(m logm)

time algorithm that finds, for every edge e ∈ T1, the best edge e′ ∈ T2 (i.e. the edge e′
that minimizes the sum of costs of e′ and of all non-tree edges (u, v) ∈ L where u in
T1e and v ∈ T2e′).

We begin by applying a standard heavy path decomposition [16] to T1, guided by
the number of non-tree edges: The heavy edge of a node of T1 is the edge leading to
the child (called the heavy child) whose subtree has the largest number of incident
non-tree edges in L (breaking ties arbitrarily). The other edges are called light. The
maximal sets of connected heavy edges define a decomposition of the nodes into heavy
paths.

We define a fragment of the tree T1 to be a subtree of T1 formed by a con-
tiguous subpath u1 − u2 − · · · − uk of some heavy path of T1, together with
all subtrees hanging from this subpath via light edges. Given a fragment f , let
L( f ) = {(x1, y1), (x2, y2) . . . , (x�, y�)} be the set of edges (x, y) of L with x ∈ f .
We define the induced subtree T2( f ) to be the tree topologically induced on T2 by the
root of T2 and {y1, y2, . . . , y�}. The size of T2( f ) is |T2( f )| = O(|L( f )|). We also
define a modified induced subtree T ′

2( f ) as follows. Let L↓( f ) be the set of edges
(x, y) ∈ L with x in the subtree rooted at the heavy child of the last node uk of the
fragment f (if such a heavy child exists). Consider the tree T2, where the cost of each
edge e′ of T2 is increased by the total cost of all edges (x, y) ∈ L↓( f ), where y is in
T2e′ . The modified induced subtree T ′

2( f ) is defined as the tree topologically induced
by the root of T2 and {y1, y2, . . . , y�} on this modified T2 (Fig. 3).

We are now ready to describe the recursion. The input to a recursive call is a
fragment f of T1 and the list (x1, y1), (x2, y2), . . . , (x�, y�) of all non-tree edges in
L with xi in f , together with T2( f ) and T ′

2( f ). A fragment f is specified by the top
node (u1) and the bottom node (uk) of the corresponding subpath of a heavy path of
T1. In the first call, f is specified by the root of T1 and the leaf ending the heavy path
of T1 that contains the root. That is, in the first call f is the entire tree T1. The list of
non-tree edges for the first call is the entire list L . The recursion works by selecting the
middle node of the subpath, defined as follows: We define the light size si of node ui
as the number of non-tree edges (x, y) ∈ L where either x = ui or x is in the subtree
rooted at the light child of ui . Note that s1 + s2 + . . .+ sk = |L( f )|. If s1 > |L( f )|/2
then the middle node is defined as u1. Otherwise, the middle node is defined as the
node ui such that s1 + . . . + si−1 ≤ |L( f )|/2 but s1 + . . . + si > |L( f )|/2. We keep,
for every heavy path P of T1 a list of the nodes of P with non-zero light size, ordered
according to their order on P . We find the middle node ui in O(|L( f )|) time by going
over the nodes in this list one after the other until we encounter the middle node.

After identifying the middle node ui we apply recursion on the following three
fragments: the fragment defined by subpath u1 − · · · − ui−1, the fragment defined by
subpath ui+1−· · ·−uk , and the fragment consisting of the entire subtree rooted at the
light child of ui . Before a recursive call to fragment g, we construct the appropriate
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Fig. 3 On the left: A fragment (in light gray) in the tree T1, defined by the top node u1 and the bottom node
uk , both laying on the same heavy path (solid edges). The triangles (in dark gray) are the subtrees hanging
from the heavy paths via light edges (dashed). On the right: The tree T2 (black) connected to the fragment
via three non-tree edges (blue). The endpoints w1, w2, w3 of these edges define the topologically induced
tree (in red)

T2(g) and T ′
2(g). The induced tree T2(g) can be computed from T2( f ) inO(|T2( f )|) =

O(|L( f )|) time by invoking Lemma 2 on T2( f ) with 
g = r ∪ {y : (x, y) ∈ L(g)},
where r is the root of T2. Note that we had defined T2(g) as the topologically induced
tree on T2 by 
g , not on T2( f ) by 
g . However, since 
g ⊆ 
 f , by Proposition 1,
the two definitions are equivalent.

For constructing T ′
2(g) from T ′

2( f ), we first need to increase the cost of each edge
ẽ of T ′

2( f ) by the total cost of edges in L↓(g) \ L↓( f ) that are incident to T ′
2( f )ẽ.

This can be done in a single bottom-up traversal of T ′
2( f ) in O(|T ′

2( f )|) time. Then,
we invoke Lemma 2 on T ′

2( f ) with 
g to obtain T ′
2(g). To summarize, constructing

the trees T2(g) and T ′
2(g) for all three recursive subproblems takes O(|L( f )|) time.

The three recursive calls will take care of finding the best edge e′ ∈ T2 for every
edge e ∈ T1 included in one of the recursive problems. It only remains to handle the
three edges that do not belong to any of the recursive problems; the edge between ui
and its light child, the edge (ui−1, ui ), and the edge (ui , ui+1). For each such edge e
we describe a procedure that finds its best e′ ∈ T2( f ) in time O(|T2( f )|).
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Recall that, by definition of the bipartite problem, the best edge e′ for e is the edge
e′ of T2 minimizing the cost of e′ plus the cost of all non-tree edges (x, y) ∈ L with
x ∈ T1e, and y ∈ T2e′ . For the case where e is the edge between ui and its light
child, T1e = T1( f )e. We therefore mark all non-tree edges (x, y) ∈ L( f ), where x
is in T1( f )e. A non-efficient solution would work directly on T2 by propagating, in a
bottom-up traversal of T2, the cost of all marked edges so that, after the propagation,
the cost of every edge e′ in T2 has been increased by the total cost of all non-tree
edges (x, y) ∈ L with x ∈ T1( f )e, and with y ∈ T2e′ . Then we can take the edge
e′ ∈ T2 with the minimum cost. However, this would take O(|T2|) = O(m), which
is too slow. Instead, we perform the propagation in T2( f ). Namely, in a bottom-
up traversal of T2( f ), we propagate the cost of all marked edges so that, after the
propagation, the cost of every edge e′ in T2( f ) has been increased by the total cost of
all non-tree edges (x, y) ∈ L( f ) with x ∈ T1( f )e, and with y ∈ T2( f )e′ . This takes
O(|T2( f )|) = O(|L( f )|) time. Since the propagation process affects all the edges ẽ
with the same T2 ẽ ∩ 
 f in the same way, the definition of topologically induced tree
guarantees that the edges with the minimum cost in T2 and in T2( f ) have the same
cost, so using T2( f ) instead of T2 is correct.

The procedure for the cases where e is the edge (ui−1, ui ) or (ui , ui+1) is identical,
except that we apply it with T ′

2( f ) instead of T2( f ). This difference stems from the
fact that applying the above procedure on T2( f ) only considers the costs of the non-
tree edges in L( f ), but not the costs of the non-tree edges in L↓( f ), which might
also cross cuts involving the edges (ui−1, ui ) or (ui , ui+1). The definition of the costs
of edges in T ′

2( f ) takes into account the contribution of costs of non-tree edges in
L↓( f ). The rest of the propagation procedure and the proof of its correctness remain
unchanged.

To analyze the overall running time, let T (m) be the time to handle a fragment f
corresponding to a whole heavy path, and T ′(m) be the time to handle a fragment
f corresponding to a proper subpath of some heavy path, where m = |L( f )|. Then
T (m) = T ′(m1)+T (m2)+T ′(m3) for somem1,m2,m3, wherem1 +m2 +m3 = m
since the subproblems are disjoint, m1,m3 ≤ m/2 by the choice of the middle node,
and m2 ≤ m/2 by the definition of a heavy path. This is since the light child of ui
does not have more incident non-tree edges in its subtree than the number of non-
tree edges incident to the subtree of the heavy child ui+1. When f corresponds to
a whole heavy path the number of non-tree edges incident to the subtree of ui+1 is
exactlym3. Similarly, for the case where f does not correspond to a whole heavy path,
T ′(m) = T ′(m1)+T (m2)+T ′(m3) for somem1,m2,m3, wherem1+m2+m3 = m
and m1,m3 ≤ m/2 (but now we cannot guarantee that m2 ≤ m/2). Considering the
tree describing the recursive calls, on any path from the root (corresponding to the
fragment consisting of the whole T1) to a leaf, we have the property that the value of
m decreases by at least a factor of 2 every two steps. Hence, the depth of the recursion
is O(logm). It follows that the total time to handle a bipartite problem of size m is
O(m logm). �	

To conclude, we have shown how to find the minimum cut determined by two
descendant edges and the minimum cut determined by two independent edges. If we
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wish to find for every edge e of T the edge e′ that minimizes the weight of the cut
determined by {e, e′}, then we need to run every bipartite problem twice (switching
the roles of T1 and T2). This does not incur any asymptotic overhead.

4 A log logn Speedup

Karger modified his O(m log3 n) timeminimum cut algorithm towork in O(m log3 n/

log log n + n log6 n) time by observing that 1-respecting cuts can be found faster than
2-respecting cuts, and tweaking the parameters of the tree packing. In this section we
explain how to apply this idea, together with our new O(m log n) time algorithm for
the 2-respecting problem, to derive a new O(m log2 n/ log log n + n log3+δ n) time
minimum cut algorithm, for any δ > 0.

As in Karger’s implementation [23, Section 9.1], we start with an initial sampling
step, except that instead of ε = 1

4 log n we use ε = 1
4 logγ n , for some γ ∈ (0, 1) to be

fixed later. This produces in linear time a graph H with m′ = O(n/ε2 log n) edges
and minimum cut c′ = O(ε−2 log n) such that the minimum cut in G corresponds
to a (1 + ε)-times minimum cut in H . We find a packing in H of weight c′/2 with
Gabow’s algorithm [7] inO(m′c′ log n) = O(n/ε4 log3 n) time.We choose 4 log1+γ n
trees at random from the packing and for each tree we find the minimum cut that 1-
respects it. This takes total O(m log1+γ n) time. Then, we choose log n/ log(logγ n) =
O(log n/ log log n) trees at random from the packing and for each tree we find the
minimum cut that 2-respects it. This takes total in O(m log2 n/ log log n) time using
our new algorithm.

Let ρ ≥ c′/2 be the weight of the packing, let αρ be the total weight of trees that
1-respect the minimum cut, and let βρ be the total weight of trees that 2-respect the
minimum cut. As observed by Karger, β ≥ 1− 2ε − 2α. Thus, either α > 1

4 logγ n and

choosing 4 log1+γ n trees guarantees that none of them 1-respects the minimum cut
with probability at most

(1 − α)4 log
1+γ n ≤

(

1 − 1

4 logγ n

)4 logγ n·log n
< 1/n,

or β ≥ 1 − 1/ logγ n and choosing log n/ log(logγ n) trees guarantees that none of
them 2-respects the minimum cut with probability at most

(1 − β)log n/ log(logγ n) ≤
(

1

logγ n

)log n/ log(logγ n)

= 1/n.

The overall complexity is O(n/ε4 log3 n + m log1+γ n + m log2 n/ log log n) =
O(m log2 n/ log log n + n log3+4γ n). By adjusting γ = δ/4 we obtain the claimed
complexity of O(m log2 n/ log log n + n log3+δ n).
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Appendix A: A Constant Factor Approximation Of theMinimum Cut

Matula [32] gave an O(m/ε) time algorithm that finds a (2+ ε) approximation of the
minimum cut in an unweighted graph G. The algorithm proceeds in iterations, where
each iteration takes O(m) time, and either finds a (2+ε) approximate cut, or produces
a subgraph G ′ that contains the minimum cut of G, but has only a constant fraction
of the edges of G. Hence there are O(log n) iterations, and the total running time is
O(m) for any fixed ε.

Matula’s algorithm can be easily extended to the weighted setting. Each iteration
can be implemented in O(m log n) time (cf. [20]), and produces a subgraph G ′ with a
constant factor of the total edge weight of G. Thus, the algorithm produces a (2 + ε)

approximation of the minimum cut in a weighted graph G in O(m log n logW ) time,
where W is the sum of edge weights in G.

The running time can be decreased toO(m log2 n) at the expense of aworse constant
factor approximation as follows. Let G be a weighted graph. Let c denote the weight
of the minimum cut in G. Compute a maximum spanning tree T of G, and let w∗
be the minimum weight of an edge in T . It is easy to see [22] that w∗ ≤ c ≤ n2w∗.
Contract all edges e with w(e) > n2w∗. Clearly, this does not affect the minimum
cut. If w∗ ≤ n3, then all edge weights are now bounded by n5, and we can run
Matula’s algorithm in O(m log2 n) time, and obtain a (2+ ε)-approximate minimum
cut. Otherwise, set w̃(e) ← �w(e)/w∗

n3
�, and delete all edges with w̃ = 0. Call the

resulting graph G̃. Observe that G̃ has integer edge weights bounded by n5, so we can
find a (2+ ε)-approximate minimum cut in G̃ in O(m log2 n) time. Now scale up the
edge weights in G̃ by w∗

n3
. The weight of each edge in G̃ is now off from its original

weight inG by at most w∗
n3

≤ c
n3
. Thus, the weights of any cut in G̃ and inG differ by at

most c/n. Hence, an (2+ ε)-approximate minimum cut in G̃ is an O(1)-approximate
minimum cut in G.

Appendix B: Proof of Lemma 1

We follow the classical alias method by Walker [43], see Kronmal and Peterson for
O(n) construction time [29]. Thismethod, given x1, x2, . . . , xn , finds a1, a2, . . . , an ∈
{1, 2, . . . , n} and b1, b2, . . . , bn ∈ {1, 2, . . . , n} and integers q1, q2, . . . , qn such that
choosing i ∈ {1, 2, . . . , n} with probability pi = xi/X reduces to the following
two-step process:

1. choose uniform j ∈ {1, 2, . . . , n},
2. choose uniform k ∈ [Xn],
3. if k < q j then return a j , otherwise return b j .

First, we describe how to choose uniform j ∈ [n] in O(log n) time or fail with
probability at most 1/nc. Let � = �(c + 1) log n� = O(log n), and y = �2�/n�. We
have the following inequalities:

2�(1 − 1/nc) ≤ 2� − n ≤ n · y ≤ 2�.
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We choose uniform j ′ ∈ [2�] by choosing � random bits in O(log n) time. If
j ′ ≥ n · y then we fail, which happens with probability at most 1/nc. Otherwise, we
return � j ′/y�.

Next, instead of first choosing uniform k ∈ [Xn] and then checking if k < q j , we
combine the two steps. Let �′ = �(c+1) log n� = O(log n), and choose integer y′ such
that Xn/2�′ ≤ y′ and Xn/(2�′ − 1) > y′, which is possible as long as Xn ≥ 22�

′
. To

ensure this, for X = nO(c) we simply choose uniform k ∈ [Xn] or fail with probability
at most 1/nc as described in the previous paragraph in O(log n) time. Otherwise, we
have the following inequalities:

(2�′ − 1)y′ < Xn ≤ 2�′
y′.

We choose �′ random bits in O(log n) time to form a uniform x ∈ [2�′ ]. If x = 2�′ −1
or x = �q j/y′� then we fail, which happens with probability at most 2/nc. Otherwise,
if x < �q j/y′� then we return a j , and otherwise we return b j .

The above procedure is equivalent to first choosing i with probability pi/X and
then choosing whether to fail with probability at most 3/nc or return i .
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