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Abstract A core concept is a solution concept on the class of balanced games that
exclusively selects core allocations. We show that every continuous core concept that
satisfies both the equal treatment property and a new property called independence of
irrelevant core allocations (IIC) necessarily selects egalitarian allocations. IIC requires
that, if the core concept selects a certain core allocation for a given game, and this
allocation is still a core allocation for a new game with a core that is contained in the
core of the first game, then the core concept also chooses this allocation as the solution
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to the new game. When we replace the continuity requirement by a weak version of
additivity we obtain an axiomatization of the egalitarian solution concept that assigns
to each balanced game the core allocation minimizing the Euclidean distance to the
equal share allocation.

Keywords TU-game · Egalitarianism · Axiomatization

1 Introduction

Egalitarianism is the strife of a community to spread the total wealth of the community
as equally as possible among its members, while satisfying certain stability require-
ments of the allocation. The notion of egalitarianism is frequently used outside the
theory of transferable utility games. See for example Thomson (1994) for applications
in bargaining theory and Moulin (1988) for applications in welfare economics.

Dutta and Ray (1989) first introduced egalitarianism1 for TU-games. They showed
that, for their definition of an egalitarian allocation, a TU-game can have at most one
such allocation. They also showed that for convex games the egalitarian allocation
always exists and that it is an element of the core. On the other hand, they present
two examples, one showing that the egalitarian allocation may exist for games with
an empty core and another one showing that the egalitarian allocation need not be a
core element even if the core is not empty.

Arin and Iñarra (2001) used another definition of egalitarian allocations. The diffe-
rence does not lie in the notion of egalitarianism,2 but in a the notion of stability they
use. Dutta and Ray (1989) define stability of a given allocation recursively, by requi-
ring that no coalition can object to it using an allocation that is both stable with respect
to the coalition and better for all of its members. Arin and Iñarra (2001) require that the
allocation be in the core of the game. As a consequence, the latter type of egalitarian
allocation exists for a given game precisely when the core of the game is not empty.
Arin and Iñarra (2001) showed that their definition coincides with the definition in
Dutta and Ray (1989) on the class of convex games. This, together with the guarantee
of existence for a relatively large and manageable class of games, makes the notion of
Arin and Iñarra an interesting alternative for the notion of Dutta and Ray. The most
prominent drawback of the definition of Arin and Iñarra is that more than one alloca-
tion may be egalitarian. For this reason we will introduce, in Sect. 3, several solution
concepts that assign exactly one egalitarian allocation (according to the definition of
Arin and Iñarra) to each balanced game.

An objective way to support the rationale of a certain solution concept (no matter
whether it is single valued or set valued) is through axiomatizations. For example,
the solution concept of Dutta and Ray has been axiomatized on the class of convex
games, by Dutta (1990); Klijn et al. (1998). In this paper, we aim for the axiomatiza-

1 In Dutta and Ray (1991) the authors present an alternative version of their definition in the paper of
(1989).
2 Both Arin and Iñarra’s paper and Dutta and Ray’s paper use the widely accepted Lorenz criterion as a
measure for egalitarianism.
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tion of egalitarian solution concepts on the larger class of balanced games. While the
axiomatizations of the Dutta and Ray solution are all based on some form of consis-
tency (both Hart–Mas–Colell and Maschler–Davis reduced games can be used, even
both at once), we will use an axiom that is closely related to the property known as
independence of irrelevant alternatives. The connection of this property with egalita-
rianism has already been established outside the context of TU-games. More precisely,
we will show, in Sect. 4, that any continuous core concept3 that satisfies the equal treat-
ment property and a property we called independence of irrelevant core allocations
(IIC) must necessarily be egalitarian. By replacing continuity with a weak version of
additivity,4 we obtain, in Sect. 5, an axiomatization of the egalitarian solution concept
known as the least squares solution concept.

2 Preliminaries

Let v : 2N → R be a TU-game on the player set N = {1, . . . , n}. We assume n ≥ 2
throughout. The central problem is how to allocate the total gain v(N ) among the
players.

An allocation is a vector x ∈ R
N . The i th coordinate xi of the allocation x represents

the payoff to player i ∈ N . For any subset of players S ⊆ N , their aggregate payoff∑
i∈S xi is denoted by x(S). An allocation x is efficient if it distributes the worth of

the grand coalition among the players, i.e. if x(N ) = v(N ). An efficient allocation x
is called a core allocation if

x(S) ≥ v(S) for all S ⊆ N .

The set C(v) of core allocations is called the core of the game v. We restrict attention
to games with a non-empty core, that is, to balanced games (see Bondareva 1963;
Shapley 1967).

For two players k and l in a game v, an efficient allocation x , and a real number
α > 0, we say that (k, l, x, α) is an equalizing bilateral transfer (of size α from k to
l with respect to x) if

xk − α ≥ xl + α.

A core allocation x is egalitarian if no core allocation y is the result of an equalizing
bilateral transfer with respect to x . A core allocation x is strongly egalitarian if no core
allocation y is the result of a finite sequence of equalizing bilateral transfers starting
from x .

For both notions we will frequently use alternative descriptions. We will briefly
explain these. A coalition S is said to be tight at an allocation x if

x(S) = v(S).

3 A core concept is a solution concept that exclusively assigns core allocations.
4 In Sect. 5, we will show that neither linearity nor its usual substitutes additivity and covariance are
compatible with egalitarianism.
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The collection of all tight coalitions at x is denoted by T (v, x). A core allocation x
is egalitarian if and only if for any pair of players k and l with xk > xl there exists a
coalition S ∈ T (v, x) with k ∈ S and l /∈ S.

The alternative description of strong egalitarianism is a bit more complicated. Let
x be an allocation in R

n . By x we denote the vector that results from x by permuting
the coordinates of x in such a way that x1 ≥ x2 ≥ · · · ≥ xn . We say that the vector x
Lorenz dominates the vector y if

k∑

i=1

xi ≤
k∑

i=1

yi for all k ∈ {1, . . . , n}

and if at least one of these inequalities is strict. Now, Lemma 2 of Hardy et al. (1952)
implies that a core allocation y Lorenz dominates another core allocation x only if y
can be obtained from x by a finite sequence of equalizing bilateral transfers. Hence,
since the converse of this Lemma is trivial, a core element is strongly egalitarian if and
only if it is undominated in the sense of Lorenz. We use this characterization of strong
egalitarianism in terms of the Lorenz criterion freely throughout the paper. We also
frequently use the term Lorenz allocation for a strongly egalitarian core allocation.

Observe that the equal share allocation Es(v) (the allocation that allocates v(N )
|N | to

each player) is the unique Lorenz allocation whenever it is a core element. If Es(v) is
not in the core of v, then there may be more Lorenz allocations as the next example
shows.

Example 1 Consider the four player game v defined by

v(S) :=
⎧
⎨

⎩

7 if S = {1, 2} or {1, 3}
12 if S = {1, 2, 3, 4}
0 else.

Note that v(S ∪ {1}) ≥ v(S ∪ {2}) for all S ⊆ N \ {1, 2}. It follows that an equalizing
transfer from 2 to 1 is possible if x1 < x2 for some core element x . Hence, any
egalitarian allocation x must satisfy x1 ≥ x2. We also have x2 = x3, since v(S∪{2}) =
v(S ∪ {3}) for all S ⊆ N \ {2, 3}, and x3 ≥ x4 since v(S ∪ {3}) ≥ v(S ∪ {4}) for
all S ⊆ N \ {3, 4}. Moreover, x1 > x4, since the equal share allocation is not in the
core. Therefore, x1 + x2 = x1 + x3 = 7, since an equalizing transfer from player 1
to player 4 would be possible in case x1 + x2 = x1 + x3 > 7. We conclude that all
egalitarian allocations are of the form

x = (7 − λ, λ, λ, 5 − λ)

with 2 1
2 ≤ λ ≤ 3 1

2 . Finally, observe that none of these allocations Lorenz dominates
any of the other allocations. Hence, these are indeed also all Lorenz allocations.
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3 Some egalitarian concepts

Since a balanced game may have more than one core allocation, it makes sense to
study solution concepts that select precisely one core allocation for each balanced
game. We call such a solution concept a core concept. We say that a core concept is an
egalitarian concept if it assigns only egalitarian core allocations. It is called a Lorenz
concept if it exclusively assigns Lorenz allocations.

Definition 1 For a balanced game v, the least squares solution LS(v) is defined as the
unique allocation x in C(v) for which ‖x‖ ≤ ‖y‖ for all y ∈ C(v). Here, ‖x‖ denotes

the Euclidean length
√∑

i∈N x2
i of x .

Notice that LS is indeed a Lorenz concept, since the value of ‖·‖ decreases whenever
an equalizing bilateral transfer is made. A useful geometric interpretation of LS(v) is
that it is the unique point in C(v) that minimizes the Euclidean distance to Es(v), the
ideal, or maybe better, ultimate, egalitarian allocation.

The LS concept is not the only egalitarian core concept. For example, Arin and
Iñarra (2001) introduced the lexmax and the lexmin concept. The definition of these
concepts is as follows. An allocation x said to be preferred to another allocation y if
x �= y and if xi < yi for the first coordinate i with xi �= yi , i.e. if the vector x is
lexicographically smaller than y. This is denoted by x ≺lex y. By x 
lex y we mean
x = y or x ≺lex y.

Definition 2 For a balanced game v, the lexmax solution Lmax(v) is defined as the
set of most preferred core allocations, i.e.

Lmax(v) = {x ∈ C(v) | x 
lex y for all y ∈ C(v)}.

Similarly, the lexmin solution Lmin(v) is defined as

Lmin(v) = {x ∈ C(v) | −x 
lex −y for all y ∈ C(v)}.

It is easy to prove that allocations in Lmax(v) and Lmin(v) are Lorenz allocations,
and it follows from Lemma 1.1 in Moulin (1988) that Lmax(v) and Lmin(v) consist of
a unique core allocation for every game v. Therefore, we may interpret Lmax and Lmin
as Lorenz concepts and we will abuse notation slightly by writing e.g. x = Lmax(v)
instead of x ∈ Lmax(v). In the following, we will provide a proof for the continuity of
the Lmax concept. A similar proof can be given for Lmin. The proof closely resembles
the proof of Kohlberg (1971) for uniqueness and continuity of the nucleolus.5 Also,
a similar proof for the continuity of the set of all Lorenz allocations was given in
Hougaard et al. (2001).

Definition 3 Let I = (I1, . . . , Ip) be an ordered partition of N and let T be a collec-
tion of subsets of N . We say that the pair (I, T ) has property I if z = 0 is the unique
solution to the following system of (in)equalities.

5 This type of proof was suggested to us by one of the referees.
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(1) z(N ) = 0,
(2) z(S) ≥ 0 for all S ∈ T ,
(3) For every k ∈ {1, . . . , p}: If zi = 0 for all i ∈ ⋃

�<k I�, then zi ≤ 0 for all i ∈ Ik .

Definition 4 Given an allocation x , we define

I1(x) = {i ∈ N | xi ≥ x j for all j ∈ N },

and for k ≥ 2 we define Ik(x) ⊆ N recursively by

Ik(x) = {
i /∈ ⋃

�<k I�(x) | xi ≥ x j for all j /∈ ⋃
�<k I�(x)

}
.

Take p = max{k | Ik(x) �= ∅}. The vector I(x) = (I1(x), . . . , Ip(x)) of coalitions
is called the ordered partition associated with x . Using this terminology, we get the
following characterization of the Lmax(v) allocation.

Lemma 1 Let v be a balanced game and let x ∈ C(v). Then

x = Lmax(v) ⇔ the pair (I(x), T (v, x)) has property I.

Proof Necessity: suppose that (I(x), T (v, x)) does not have property I. Then there
exists a z �= 0 that satisfies conditions (1) till (3). Let

k = min{� | there is an i ∈ I�(x) with zi �= 0}.

Let i ∈ Ik(x) such that zi �= 0. Then zi < 0 by (3). Therefore x + εz ≺lex x for
sufficiently small ε > 0. Also, by (1) and (2), x + εz ∈ C(v) for ε > 0 sufficiently
small. Hence, x cannot be equal to Lmax(v).

Sufficiency: Suppose (I(x), T (v, x)) has property I. Let y ∈ C(v) such that y 
lex

x and let z = y − x . We show that z = 0. Clearly z(N ) = y(N ) − x(N ) = v(N ) −
v(N ) = 0, which shows (1). Further, since y(S) ≥ v(S) for all S ⊆ N , z(S) =
y(S)− x(S) = y(S)− v(S) ≥ 0 for all S ∈ T (v, x), which shows (2). To prove (3),
let k ∈ {1, . . . , p} and assume

zi = 0 for all i ∈ ⋃
�<k I�(x). (∗)

Let i∗ ∈ Ik(x). It remains to show that zi∗ ≤ 0. Without loss of generality we can
assume that x = x and yi ≥ y j for all i, j ∈ Ik(x) with i ≤ j . (This can be achieved
by permuting the player set if necessary.) Since y 
lex y 
lex x = x , zi∗ ≤ 0 by
Eq. (∗). ��

Before we go on to prove that Lmax is continuous, we introduce the following
terminology. We say that (J ,S) is derived from (I, T ) if T ⊆ S and if J1 =
I1 ∪ · · · ∪ Ik1 , J2 = Ik1+1 ∪ · · · ∪ Ik2 , etc. It is easy to see that, if (I, T ) has property
I, then also (J ,S) has property I if it is derived from (I, T ).
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Theorem 1 The core concept Lmax is continuous.

Proof Let (vk)k∈N be a sequence of balanced games converging to v. Denote, for
every k ∈ N, Lmax(vk) by xk . Since the core correspondence is compact valued and
continuous, we know that the sequence (xk)k∈N is bounded. Thus, we have to show that
every convergent subsequence of (xk)k∈N converges to Lmax(x). Assume without loss
of generality that (xk)k∈N converges to x . Consider the sequence (I(xk), T (vk, xk))k∈N.
Since there are only finitely ordered partitions and only finitely many collections of
coalitions, we can assume without loss of generality that there is a pair (I, T ) such
that (I(xk), T (vk, xk)) = (I, T ) for all k ∈ N. By Lemma 1, (I, T ) has property
I. Since all weak inequalities are preserved in passing to the limit, it follows that
(I(x), T (v, x)) is derived from (I, T ). We conclude that (I(x), T (v, x)) has pro-
perty I as well. By Lemma 1, x = Lmax(v). ��

The LS solution minimizes a continuous and strictly convex function over the core
of the game. Since the core is compact-valued and continuous, it follows immediately
that LS is also continuous. Therefore, all three concepts Lmax, Lmin and LS are
continuous (CON).

We now introduce another property that is also shared by all three of the solutions
LS, Lmax and Lmin. Informally, this property states that a chosen core allocation
should not be discarded if it is still available in a smaller core. The interpretation
of this is that only “irrelevant” core allocations have disappeared, hence there is no
reason to change. A related property, called independence of irrelevant alternatives, is
widely used in the context of bargaining situations. Formally, a core concept φ is called
independent of irrelevant core allocations (IIC) if φ(v) = φ(w) for any two games
v and w with φ(v) ∈ C(w) ⊆ C(v). Since LS, Lmax and Lmin all maximize some
preference relation on R

N over the core, it is immediate that all three core concepts
satisfy IIC.

Say that two players i and j are symmetric in a game v if v(S ∪ {i}) = v(S ∪ { j})
for all S ⊆ N \ {i, j}. Say that a core concept φ satisfies the equal treatment property
(ETP) if φi (v) = φ j (v) whenever i and j are symmetric in v. It is trivial that LS,
Lmax and Lmin all satisfy ETP.

4 Sufficient conditions for egalitarianism

We have seen that the Lorenz concepts Lmax, Lmin and LS all satisfy IIC, ETP and
CON. Hence, these three properties do not single out a unique core concept when
n ≥ 4.6 It is also not true that every egalitarian solution concept satisfies IIC or CON
(egalitarian solution concepts always satisfy ETP).7 We show however that every core

6 For the game v in Example 1, one can check that Lmax(v) =
(

3 1
2 , 3 1

2 , 3 1
2 , 1 1

2

)
, Lmin(v) =

(
4 1

2 , 2 1
2 , 2 1

2 , 2 1
2

)
, and LS(v) = (4, 3, 3, 2) (since for λ = 3 the squared distance of an arbitrary Lorenz

point (7 − λ, λ, λ, 5 − λ) to the origin, i.e. (7 − λ)2 + 2λ2 + (5 − λ)2, is minimized). So the concepts are
indeed different.
7 Using Example 1 it is straightforward to construct an egalitarian concept that is not continuous.
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concept satisfying IIC, ETP and CON is egalitarian. We will first prove this statement
for a special class of games.

Lemma 2 Letφ be a core concept that satisfies ETP and IIC. Let v be a game for which
the equal share allocation Es(v) is an element of the core of v. Then φ(v) = Es(v).

Proof Let v be a game such that Es(v) is an element of the core of v. Define m :=
min{v(S) | S ⊆ N } and define the game w by

w(S) :=
{

m if S �= N
v(N ) if S = N .

Since w ≤ v and w(N ) = v(N ), we have Es(v) ∈ C(v) ⊆ C(w). Hence, w is a
balanced game and it immediately follows from ETP that φ(w) = Es(v). Applying
IIC we also find that φ(v) equals Es(v). ��

For a core concept that satisfies IIC, the solution is not discarded if the core shrinks
and the solution stays available, by definition. If the core concept is also continuous,
then the solution is not discarded even if the core grows, provided that the growth is not
in the neighborhood of the solution. The following lemma formalizes this statement.

Lemma 3 Let φ be a core concept satisfying IIC and CON. Let v and w be two
balanced games such that φ(v) ∈ C(w), andw(S) = v(S) for every S ∈ T (v, φ(v)).
Then φ(w) = φ(v).

Proof Let φ, v andw be as described above. For every λ ∈ [0, 1] define the (balanced)
game u(λ) by u(λ) := λw + (1 − λ)v. Define

λ := max{λ | φ(u(λ)) = φ(v)}.

This maximum exists, since φ is continuous. Clearly we only need to show that λ = 1.
Suppose that λ < 1. We derive a contradiction. Consider a coalition S for which
w(S) �= v(S). By assumption φ(v)(S) > v(S), and hence

φ(u(λ))(S) = φ(v)(S) > v(S).

Since φ is continuous and there are only finitely many coalitions S withw(S) �= v(S),
we can find a number µ > λ such that we still have φ(u(µ))(S) > v(S) for all such
coalitions S. Define the game u∗ by, for all S, u∗(S) = max{u(µ)(S), v(S)}. Since
for all remaining coalitions S, the ones with w(S) = v(S), we have

φ(u(µ))(S) ≥ u(µ)(S) = µw(S)+ (1 − µ)v(S) = v(S)

it follows that φ(u(µ)) ∈ C(u∗). However, also φ(v) ∈ C(u∗) since φ(v) ∈ C(u(λ))
for allλ by assumption. Therefore, since both u∗ ≥ v and u∗ ≥ u(µ),φ(v) = φ(u∗) =
φ(u(µ)) by IIC. Contradiction. ��

Now, we can prove the main result of this section.
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Theorem 2 Every core concept on the class of balanced games that satisfies IIC, ETP
and CON is egalitarian.

Proof Let φ be a core concept that satisfies the axioms IIC, ETP and CON, and let v be
a balanced game. Assume that we have two players k and l such that φ(v)k > φ(v)l .
By the alternative description of egalitarianism we have to show that there is a coalition
S with k ∈ S and l /∈ S such that φ(v)(S) = v(S).

Let B denote the collection of coalitions S with k ∈ S and l /∈ S. Assume conversely
that φ(v)(S) > v(S) for every S ∈ B. We will derive a contradiction by showing that
φ(v)k = φ(v)l . Construct the auxiliary game w as follows.

w(S) :=
{
v((S ∪ {l}) \ {k}) if S ∈ B
v(S) if S /∈ B.

We first show that φ(v) ∈ C(w). Clearly φ(v)(S) ≥ v(S) = w(S) for S /∈ B. For
S ∈ B,

φ(v)(S) > φ(v)((S ∪ {l}) \ {k}) ≥ v((S ∪ {l}) \ {k}) = w(S).

Now take a coalition S with w(S) �= v(S). Necessarily S ∈ B. Thus φ(v)(S) > v(S)
by assumption. It follows from Lemma 3 that φ(v) = φ(w).

Finally notice that players k and l are symmetric inw. Therefore φ(v)k = φ(w)k =
φ(w)l = φ(v)l by ETP. Contradiction. ��

We show that all three requirements in Theorem 2 are necessary to ensure egalita-
rianism. To see that ETP and CON are not sufficient, notice that the nucleolus satisfies
these two properties, while it is not egalitarian. Let φ denote the core concept that
assigns the lexicographically maximal vector in C(v) to any balanced game v. (It is
indeed a core concept, since the core is compact and convex, hence the lexicogra-
phically maximal vector in C(v) is uniquely determined.) Then φ is IIC, and it also
satisfies CON, which can be shown using an appropriately adapted version8 of the
proof of the continuity of Lmax. Clearly, φ is not egalitarian, which shows that IIC
and CON are not sufficient to ensure egalitarianism.

Also, the requirements of ETP and IIC are not enough to ensure that a core concept
is egalitarian on the class of balanced games, as the following example shows. For
any balanced TU game v, define M1(v) as the set of players with lowest payoff in
Lmax(v) and M2(v) as the set of players with second-lowest payoff in Lmax(v). We
define ψ(v) = Lmax(v), unless M1(v) and M2(v) both consist of exactly one player.
In this case, let k denote the unique player in M1(v) and let l denote the unique player
in M2(v). Write

x(λ) = Lmax(v)+ λ(el − ek),

define

λ∗ = max{λ | x(λ) ∈ C(v) and x(λ)l ≤ Lmax(v)i for all i �= k, l},
and define ψ(v) = x(λ∗). Clearly, ψ is a core concept.

8 In fact the proof is somewhat easier because the lexicographic ordering is applied directly to core elements
x instead of to the ordered vector x .
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Proposition 1 The core concept ψ satisfies ETP and IIC.

Proof To see that ψ satisfies ETP, suppose that players i and j are symmetric in v.
Since Lmax satisfies ETP, it is trivial thatψ(v)i = ψ(v) j , wheneverψ(v) = Lmax(v).
Now consider the case that there is a unique player k in M1(v) and a unique player
l in M2(v). Since Lmax satisfies ETP, it follows that {i, j} has an empty intersection
with {k, l}. Therefore,

ψ(v)i = Lmax(v)i = Lmax(v) j = ψ(v) j .

Next, we show that ψ satisfies IIC. Suppose that games v and w are such that ψ(v) ∈
C(w) ⊆ C(v). We show that ψ(w) = ψ(v). First consider the case that M1(v) and
M2(v) are not both singleton sets. Then ψ(v) = Lmax(v), hence Lmax(v) ∈ C(w).
It follows that Lmax(w) = Lmax(v). Then trivially, M1(w) and M2(w) are not both
singleton sets, hence ψ(w) = Lmax(w) = Lmax(v) = ψ(v).

Now assume that k is the unique player in M1(v) and l is the unique player in M2(v).
Since C(w) ⊆ C(v), we have Lmax(v) 
lex Lmax(w), and since ψ(v) ∈ C(w), we
have Lmax(w) 
lex ψ(v). Hence,

Lmax(v) 
lex Lmax(w) 
lex ψ(v).

By definition of ψ(v), we have ψ(v)i = Lmax(v)i for all i ∈ N \ {k, l}, i.e. ψ(v)i =
Lmax(v)i for the n − 2 highest coordinates of Lmax(v). It follows that

Lmax(v)i = Lmax(w)i = ψ(v)i for i = 1, . . . , n − 2,

and it even follows that Lmax(w)i = Lmax(v)i for all i �= k, l.
Thus, we have

Lmax(w) = Lmax(v)+ µ̂(el − ek)

for some real number µ̂. Note that µ̂ ≥ 0, since for µ < 0, Lmax(v)+ µ(el − ek) /∈
C(v), hence Lmax(v)+µ(el − ek) /∈ C(w). This shows that k is the unique player in
M1(w). We distinguish two cases for the number of players in M2(w).

A. M2(w) contains more than one player. This implies that µ̂ = λ∗. It follows that
ψ(w) = Lmax(w) = Lmax(v)+ λ∗(el − ek) = ψ(v).

B. Player l is the unique element of M2(w). Then ψ(w) = y(µ∗), where y(µ) :=
Lmax(w)+ µ(el − ek) and

µ∗ := max{µ | y(µ) ∈ C(w) and y(µ)l ≤ Lmax(w)i for all i �= k, l}.

Note that y(µ) = x(µ+ µ̂) for all µ. Therefore, we have

µ∗ = max{µ | x(µ+ µ̂) ∈ C(w) and x(µ+ µ̂)l ≤ Lmax(v)i for all i �= k, l}
≤ max{µ | x(µ+ µ̂) ∈ C(v) and x(µ+ µ̂)l ≤ Lmax(v)i for all i �= k, l}
= λ∗ − µ̂.
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We also have µ∗ ≥ λ∗ − µ̂, since y(λ∗ − µ̂) = x(λ∗) = ψ(v) ∈ C(w), and
yl(λ

∗ − µ̂) = xl(λ
∗) ≤ Lmax(v)i = Lmax(w)i for all i �= k, l. It follows that

ψ(w) = y(µ∗) = x(λ∗) = ψ(v). ��
We verified that ψ satisfies IIC and ETP. To see that it is not egalitarian, consider

the game v with player set N = {1, 2, . . . , n} defined by

v(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−10 if S = N
−10 if S = {1, 2}
−7 if S = {1}
−4 if S = {2}

0 else.

It is easily verified thatψ(v)1 = −7,ψ(v)2 = −3 andψ(v)i = 0 for all i ∈ N \{1, 2},
while the unique egalitarian allocation x is defined by x1 = −6, x2 = −4 and xi = 0
for all i ∈ N \ {1, 2}.

We could neither prove nor disprove that a core concept with the properties of
Theorem 2 is also a Lorenz concept.

5 An axiomatization of the LS solution concept

In this section, we will provide an axiomatization of the least squares solution concept.
This will be done by replacing the axiom of continuity by another one that is closely
related to additivity. We first show that egalitarianism is incompatible with additivity
itself, as well as with its usual substitutes.

Example 2 Let v be the two-person game defined by v({1, 2}) = 2 and v({1}) =
v({2}) = 0. The only egalitarian point in the core of this game is the allocation (1, 1).
Furthermore, let β be the additive game defined by β({1, 2}) = 0, β({1}) = 1 and
β({2}) = −1. Then the only core element, and hence the only egalitarian allocation,
is (1,−1). However, the only egalitarian allocation in the core of the game v + β is
the allocation (1, 1), which is not equal to (1, 1) + (1,−1). The example is easily
extended to games with n ≥ 2.

Hence, no egalitarian core concept satisfies additivity. The example also shows
that no egalitarian core concept satisfies covariance under strategic equivalence,9 not
even the usual weak versions thereof. One way around this problem is the use of the
following weak (and admittedly technical) version of additivity. A core concept φ is
conditionally additive (CADD) if

φ(v + w) = φ(v)+ φ(w)

for any two balanced games v and w with T (v, φ(v)) = T (w, φ(w)). Note that, in
this case, the collection of tight coalitions at φ(v + w) in the game v + w equals the
collection of tight coalitions at φ(v) in the game v.

9 Dutta and Ray (1989) have already shown that the solution they propose is not covariant. See their paper
for a convincing argument why an egalitarian solution concept should not satisfy covariance.
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Although the condition under which we require additivity in our CADD axiom
is technical, there are core concepts that are conditionally additive in a natural way,
while they do not satisfy additivity. For any solution concept φ on the class of balanced
games, define the core concept P(φ) as the one that assigns to a balanced game v the
unique allocation in C(v) for which the Euclidean distance to φ(v) is minimal.

Theorem 3 If φ is an additive solution concept, then P(φ) satisfies CADD.

Proof Define π = P(φ) and let v and w be two games such that

T (v, π(v)) = T (w, π(w)) =: T .

We show thatπ(v+w) = π(v)+π(w). Since it is clear thatπ(v)+π(w) is an element
of the core of the game v + w, it remains to show that π(v) + π(w) is the (unique)
element of C(v + w) for which the Euclidean distance to φ(v + w) is minimal. Let
z ∈ C(v + w). It remains to show that

‖z − φ(v + w)‖ ≥ ‖π(v)+ π(w)− φ(v + w)‖.

Write	 = z − π(v)− π(w). Let 〈x, y〉 denote the inner product of x and y. First we
show 〈	,π(v)− φ(v)〉 ≥ 0. Suppose the contrary. Since

	(T ) = z(T )− π(v)(T )− π(w)(T ) ≥ v(T )+ w(T )− π(v)(T )− π(w)(T ) = 0

for all T ∈ T , it follows thatπ(v)+λ	 ∈ C(v) for sufficiently smallλ > 0. Moreover,
from the assumption 〈	,π(v)− φ(v)〉 < 0 we obtain

‖π(v)+ λ	− φ(v)‖2 = λ2‖	‖2 + 2λ〈	,π(v)− φ(v)〉 + ‖π(v)− φ(v)‖2

< ‖π(v)− φ(v)‖2

for λ > 0 close to zero. This contradicts the definition of π(v) as the closest point in
C(v) to φ(v). Hence, 〈	,π(v) − φ(v)〉 ≥ 0. Similarly one shows that 〈	,π(w) −
φ(w)〉 ≥ 0, and we have 〈	,π(v) + π(w) − φ(v + w)〉 ≥ 0 by the additivity of φ.
Thus,

‖z − φ(v + w)‖2 = ‖	+ π(v)+ π(w)− φ(v + w)‖2

= ‖	‖2 + 2〈	,π(v)+ π(w)− φ(v + w)〉 + ‖π(v)+ π(w)

−φ(v + w)‖2

≥ ‖π(v)+ π(w)− φ(v + w)‖2,

which completes the proof. ��
We already know that the LS solution satisfies IIC and ETP. It also follows from

Theorem 3 that it satisfies CADD, since LS(v) = P(Es(v)), while the equal shares
solution Es is clearly additive. Our objective now is to show that the LS concept is the
only core concept on the class of balanced games that satisfies IIC, ETP and CADD.
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We will first show that any core concept satisfying IIC, ETP and CADD must
assign the core allocation LS for a collection of specific games. Let T be a collection
of coalitions in N with ∅ ∈ T and N ∈ T . Take T ∈ T and κ > 0. Define the game
wT,T ,κ by

wT,T ,κ (S) :=
{ |S ∩ T | if S ∈ T

−κ else.

It is easy to verify that the incidence vector eT of coalition T is an element of the core
of the game wT,T ,κ . So, wT,T ,κ is balanced. Note however that this allocation need
not be the only core element of wT,T ,κ . Nevertheless,

Lemma 4 Let φ be a core concept satisfying IIC, ETP and CADD, and let λ ≥ 0.
Then φ(λwT,T ,κ ) = λeT .

Proof Take wT,T ,κ as above, and let λ ≥ 0 and µ > 0. Define the game u∗ by10

u∗(S) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if S = ∅
λ|T | if S = T or S = N

−µ|N \ T | if S = N \ T and T �= ∅, N
−µ|N | otherwise.

Note that u∗ is balanced, since λeT ∈ C(u∗). First we show that φ(u∗) = λeT . If
T = N or T = ∅ the equal share allocation λeT is in the core of u∗, and φ(u∗) = λeT

by Lemma 2.
If T �= N and T �= ∅, by ETP there exist numbers α and β such that φi (u∗) = α

for all i ∈ T and φi (u∗) = −β for all i ∈ N \ T . From the fact that φ(u∗) is a core
allocation it follows that

α ≥ λ by the core-constraint for T ,

β ≤ µ by the core-constraint for N \ T ,

α|T | − β|N \ T | = λ|T | by the core-constraint for N .

Equivalently,

0 ≤ β ≤ µ and α = λ+ β
|N\T |

|T | .

It remains to show that β = 0 and that hence α = λ. Suppose that β > 0. We derive
a contradiction. Define the game u∗∗ by

u∗∗(S) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if S = ∅
λ|N \ T | if S = N

(λ+ β − µ)
|N\T |2

|N | if S = N \ T
−µ else.

10 To avoid subcases u∗(∅) is defined twice when T = ∅.
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It is easily verified that

Es(u∗∗) = λ
|N\T |
|N | eN ∈ C(u∗∗),

Hence, by Lemma 2, we have φ(u∗∗) = Es(u∗∗). Furthermore, it is straightfor-
ward to check that T (u∗, φ(u∗)) = {N , N \ T } = T (u∗∗, φ(u∗∗)) if β = µ

and that T (u∗, φ(u∗)) = {N } = T (u∗∗, φ(u∗∗)) if 0 < β < µ. It follows that
T (u∗∗, φ(u∗∗)) = T (u∗, φ(u∗)). Thus, applying CADD yields

φ(u∗ + u∗∗) = φ(u∗)+ φ(u∗∗) = αeT − βeN\T + λ
|N \ T |

|N | eN �= λeN .

On the other hand, it is easily verified that λeN = Es(u∗ + u∗∗) ∈ C(u∗ + u∗∗), so it
follows from Lemma 2 that φ(u∗ + u∗∗) = λeN . Contradiction.

So, φ(u∗) = λeT . By choosing µ sufficiently large (µ ≥ λκ), we obtain u∗ ≤
λwT,T ,κ . Moreover, we have φ(u∗) = λeT ∈ C(λwT,T ,κ ). The lemma now follows
from IIC. ��
Lemma 5 Let v be a balanced game and let T := T (v,LS(v)). Then there exist
nonnegative numbers λT (T ∈ T \ {N }) and a real number λN such that LS(v) =∑

T ∈T λT eT .

Proof Recall that LS(v) is defined as the (unique) solution to the following minimi-
zation problem.

min〈x, x〉 subject to x ∈ C(v)

Now, the Kuhn Tucker optimality conditions for this problem state that

2LS(v)+
∑

S⊆N

µSeS = 0,

with µS ≤ 0 for all S �= N and µS(LS(v)(S)− v(S)) = 0 for all S ⊆ N . The claim
of the Lemma follows immediately. ��
Lemma 6 Let φ be a core concept that satisfies IIC, ETP and CADD. Then φ(v +
λeN ) = φ(v)+ λeN for all balanced games v and all λ ∈ R.

Proof We may assume that λ �= 0. We distinguish the two cases λ > 0 and λ < 0.
If λ > 0, write T := T (v, φ(v)) and w := λwN ,T ,1. By Lemma 4, φ(w) = λeN .
Therefore T (w, φ(w)) = T . Then by CADD,

φ(v + w) = φ(v)+ φ(w) = φ(v)+ λeN .

Moreover, v + λeN ≥ v + w. Hence C(v + λeN ) ⊆ C(v + w), and

φ(v + w) = φ(v)+ λeN ∈ C(v + λeN ).
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Applying IIC, we obtain

φ(v + λeN ) = φ(v + w) = φ(v)+ λeN .

Now assume that λ< 0. In this case, define u = v+λeN and apply the above reasoning
to the game u. This yields φ(v) = φ(u − λeN ) = φ(u)− λeN . By rearranging terms
we obtain

φ(v + λeN ) = φ(u) = φ(v)+ λeN .

��
Now, we have devised enough tools to prove the main result of this section.

Theorem 4 The LS concept is the only core concept that satisfies IIC, ETP and CADD.

Proof We have shown already that LS indeed satisfies the three axioms. Let φ be a
solution that satisfies IIC, ETP and CADD. We show that φ = LS.

Take an arbitrary balanced game v and let T := T (v,LS(v)). By Lemma 5 we can
write

LS(v) =
∑

T ∈T
λT eT

with λT ≥ 0 for all T �= N . Define, for κ > 0, uκ := ∑
T ∈T \{N } λTw

T,T ,κ , and

define wκ = uκ + λN eN . By Lemma 4, φ(λTw
T,T ,κ ) = λT eT . From this it follows

that T (λTw
T,T ,κ , λT eT ) = T for all T ∈ T with λT > 0. Thus, by CADD,

φ(uκ) =
∑

T ∈T \{N }
λT eT .

Now Lemma 6 yields

φ(wκ) = φ(uκ + λN eN ) = φ(uκ)+ λN eN =
∑

T ∈T
λT eT = LS(v).

Finally, observe that v ≥ wκ for sufficiently large κ , and that φ(wκ) ∈ C(v). By
taking a sufficiently large κ it follows from IIC that φ(v) = φ(wκ) = LS(v). ��

In Sect. 4 we constructed a non-egalitarian core concept that satisfies IIC and ETP
according to Proposition 1. To prove independence of the axioms that determine the
LS concept, we conclude this paper with two examples; a core concept that satisfies
IIC and CADD but not ETP, and a core concept that satisfies CADD and ETP but not
IIC.

For an arbitrary player i ∈ N , let δi denote the solution that assigns the vector
v(N )ei to a game v. Clearly, the core concept P(δi ) does not satisfy ETP. Since δi
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is additive, it follows from Theorem 3 that P(δi ) satisfies CADD. It is also easily
verified that P(δi ) satisfies IIC.

It is not difficult to prove that, if φ is a solution that satisfies ETP, then also P(φ)
satisfies ETP. Denote the Shapley value by Sh. Then the core concept P(Sh) satisfies
ETP (since Sh satisfies ETP) and CADD (by Theorem 3 and the fact that Sh is additive).
It is easy to demonstrate that P(Sh) does not satisfy IIC.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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