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Frequency characteristics of

dissipative and generative fractional RLC circuits

Kristian Haška∗ Dušan Zorica† ‡ Stevan M. Cvetićanin§

October 21, 2021

Abstract

Equations governing the transient and steady-state regimes of the fractional series RLC circuits
containing dissipative and/or generative capacitor and inductor are posed by considering the electric
current as a response to electromotive force. Further, fractional RLC circuits are analyzed in the
steady-state regime and their energy consumption/production properties are established depending on
the angular frequency of electromotive force. Frequency characteristics of the modulus and argument
of transfer function, i.e., of circuit’s equivalent admittance, are analyzed through the Bode diagrams
for the whole frequency range, as well as for low and high frequencies as the asymptotic expansions
of transfer function modulus and argument.
Key words: dissipative and generative capacitor and inductor, fractional series RLC circuits, fre-
quency characteristics of transfer function modulus and argument

1 Introduction

Electric elements made of materials having history dependent polarization and magnetization processes
rather than only instantaneous ones, can be constitutively modeled by adding a hereditary type term in
a classical constitutive equation, as proposed in [14], so that in the case of capacitor one may express
either charge q at the time-instant t > 0 in terms of history of capacitor voltage uC , or vice versa, as

q(t) = C uC(t) + Cα 0I
1−α
t uC(t), α ∈ (0, 1), (1)

uC(t) =
1

C
q(t) +

1

Cµ
0I

µ
t q(t), µ ∈ (0, 1), (2)

where 0I
ξ
t denotes the Riemann-Liouville fractional integral of order ξ > 0, defined as in [23] by

0I
ξ
tf (t) =

tξ−1

Γ (ξ)
∗ f (t) =

1

Γ(ξ)

∫ t

0

f(t′)

(t− t′)1−ξ
dt′,

where Γ is the Euler gamma function, with ∗ denoting the convolution and C[F], Cα[
F

s1−α ], and Cµ[F sµ]
being classical and fractional capacitances, while for the inductor, the same type of equations express
either magnetic flux φ in terms of history of inductor current iL, or vice versa, reading

φ(t) = L iL(t) + Lβ 0I
1−β
t iL(t), β ∈ (0, 1), (3)

iL(t) =
1

L
φ(t) +

1

Lν
0I

ν
t φ(t), ν ∈ (0, 1), (4)

where L[H], Lβ [
H

s1−β ], and Lν [H sν ] are classical and fractional inductances. Although constitutive mod-
els (1) - (4) share the same mathematical form, they describe different elements regarding the energy
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consumption and production properties, since models (1) and (3) correspond to the dissipative capacitor
and inductor, while models (2) and (4) represent elements’ generative counterparts, according to the
thermodynamic analysis of elements’ steady state regime conducted in [14]. Fractional electric elements
modeled by (2) and (3) can be viewed as a series connection of either classical and generative fractional
capacitor, or classical and dissipative fractional inductor, while models (1) and (4) represent a parallel
connection of either classical and dissipative fractional capacitor, or classical and generative fractional
inductor.

The aim is to analyze thermodynamic properties and frequency characteristics of the fractional RLC

circuit formed by the series connection of dissipative capacitor and inductor, modeled by (1) and (3),
already considered in [15] in transient and steady state regimes, along with three other combinations
of dissipative/generative capacitor and inductor forming series RLC circuits. Governing equation cor-
responding to the dissipative-dissipative RLC circuit, formed as a series connection of resistor with
dissipative capacitor and inductor, is obtained in Section 2 as

R

(

τLτC
d2

dt2
+ τLτα 0D

1+α
t + τCτβ 0D

1+β
t

+ τατβ 0D
α+β
t + τC

d

dt
+ τα 0D

α
t + 1

)

i(t) =

(

τC
d

dt
+ τα 0D

α
t

)

E(t), (5)

by coupling constitutive equations (1) and (3) with the second Kirchhoff’s and Ohm’s laws. Analogously,
using constitutive equations of generative capacitor and inductor (2) and (4), equation

R

(

τν 0D
1+ν
t +

τν

τL
0D

ν
t + 1 +

τν

τLτC
0I

1−ν
t

+
1

τC
0It +

τν

τLτµ
0I

1+µ−ν
t +

1

τµ
0I

1+µ
t

)

i(t) =

(

τν

τL
0D

ν
t + 1

)

E(t), (6)

governing the behavior of generative-generative RLC circuit is obtained, while dissipative-generative and
generative-dissipative RLC circuits are described by

R

(

τCτν 0D
2+ν
t + τατν 0D

1+α+ν
t +

τCτν

τL
0D

1+ν
t

+ τC
d

dt
+

τατν

τL
0D

α+ν
t + τα 0D

α
t +

τν

τL
0D

ν
t + 1

)

i(t)

=

(

τCτν

τL
0D

1+ν
t + τC

d

dt
+

τατν

τL
0D

α+ν
t + τα 0D

α
t

)

E(t), (7)

and

R

(

τL
d

dt
+ τβ 0D

β
t + 1 +

1

τC
0It +

1

τµ
0I

1+µ
t

)

i(t) = E(t), (8)

respectively, former by employing constitutive equations of dissipative capacitor and generative inductor
(1) and (4), and latter by the use of generative capacitor and dissipative inductor models (2) and (3).
Governing equations (5) - (8) share the same notation: 0D

n+ξ
t , with n ∈ N0 and ξ ∈ (0, 1), denotes the

operator of Riemann-Liouville fractional differentiation, defined as in [23] by

0D
n+ξ
t f (t) =

dn+1

dtn+1 0I
1−ξ
t f (t) =

dn+1

dtn+1

(

t−ξ

Γ (1− ξ)
∗ f (t)

)

,

E is the electromotive force, R denotes resistor’s resistance, τC = RC [s] and τL = L
R
[s] are classical time

constants, while τα = RCα [sα], τµ = RCµ [s
1+µ], τβ =

Lβ

R
[sβ ], and τν = Lν

R
[s1+ν ] are fractional time

constants.
Modeling electrical devices utilized for storing energy, like supercapacitors, ultracapacitors, and elec-

trochemical double-layer capacitors (EDLC), require the use of nonclassical constitutive models and the
application of fractional calculus proved to be useful in formulating constitutive equations for such de-
vices. In particular, the soundness of fractional order models of electric elements is discussed in [51]
regarding their physical properties. The review of supercapacitor’s models involving fractional calculus
along with their application is presented in [2], while [43] reviews the characteristics of electric elements of
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fractional order, as well as the possibilities of their modeling, realizations, and applications. Mathemati-
cally, the behavior of supercapacitors and ultracapacitors is described either by linear constitutive models,
see [8, 33, 34], or by the nonlinear constitutive equations, see [10]. Moreover, the constitutive equation
of fractional capacitor may also involve fractional differentiation orders higher than one, as in [20]. The
experimental work includes testing of supercapacitors at various frequencies and comparison of obtained
results with the theoretical models, see [1, 22], or even manufacturing electric elements of fractional order,
see [21, 24, 28], as well as their realizations by the use of constant phase element, as demonstrated in
[5, 6]. The modeling of electrochemical double-layer capacitors also includes the fractional calculus, that
is investigated in [19] through the frequency characteristics, in [26, 35] through the time domain analysis,
and in [27] by the analysis of capacitor’s quality properties. The experiments conducted in [3] aimed to
test the presence of hereditariness effects in electric double-layer capacitors. Fractional order models of
the memory effects in inductor are discussed in [25, 42, 48], while [41, 53] investigate the complex electric
networks containing electric elements of fractional order. Derivation of elements’ constitutive models
from Maxwell’s equations and models of material can be found in [29, 46, 47].

The equations describing time domain behavior of RLC and RC circuits are generalized in [12, 13]
by the simple replacement of the integer order derivatives by the fractional ones, while the transient
response investigations of the series RCα circuit, as well of the series and parallel RLβCα are conducted in
[16, 17, 18], where the fractional models of capacitor and inductor are taken into account. The analytical
tools in obtaining the time domain response of electrical circuits containing fractional capacitor and
inductor are applied in [4], while [7, 44, 45] use numerical tools for the same purpose. The analysis of
RLβCα and fractional RC, RL, and LC circuits in the frequency domain is performed in [37, 38, 39],
while [9, 40] investigate the Wien bridge oscillators. Fractional order filters, like the Kalman filter, and
filter realizations are studied in [30, 49], while [36, 50] deal with the resonance phenomena in fractional
electric circuits.

Comprehensive material regarding the modeling of classical and fractional systems, signal propagation,
and fractional order circuits is contained in [31, 32, 52].

2 Model formulation

In order to derive governing equations (5) - (8), the second Kirchhoff’s law, combined with Ohm’s law,

E(t) = R i(t) + uL(t) + uC(t) (9)

is coupled with constitutive models of dissipative/generative capacitor and inductor, that rewritten in
terms of current and voltage for dissipative elements modeled by (1) and (3) are obtained as

i(t) = C
d

dt
uC(t) + Cα 0D

α
t uC(t), (10)

uL(t) = L
d

dt
i(t) + Lβ 0D

β
t i(t), (11)

by differentiation and use of defining relation of current i(t) = d
dtq(t) and Faraday’s law of electromagnetic

induction uL(t) =
d
dtφ(t), while constitutive equations (2) and (4) of generative elements are rewritten as

uC(t) =
1

C
Iti(t) +

1

Cµ

I1+µ
t i(t), (12)

i(t) =
1

L
ItuL(t) +

1

Lν

I1+ν
t uL(t), (13)

by the use of q(t) =
∫ t

0
i(t′)dt′ = 0I

1
t i(t) and φ(t) =

∫ t

0
uL(t

′)dt′ = 0I
1
tuL(t), provided that q(0) = 0 and

φ(0) = 0, along with the semi-group property for fractional integrals, i.e., 0I
ξ
t 0I

ζ
t = 0I

ζ
t 0I

ξ
t = 0I

ξ+ζ
t .

Governing equation of the dissipative-dissipative RLC circuit in the complex domain takes the form

R
(

τLτCs
2 + τLταs

1+α + τCτβs
1+β + τατβs

α+β + τCs+ ταs
α + 1

)

î(s) = (τCs+ ταs
α) Ê(s),

implying the transfer function

ĝ
(dd)
i (s) =

î(s)

Ê(s)
=

1

R

τCs+ ταs
α

Φdd(s)
, with (14)
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Φdd(s) = τLτCs
2 + τLταs

1+α + τCτβs
1+β + τατβs

α+β + τCs+ ταs
α + 1,

and it is obtained by coupling the Laplace transforms of the second Kirchhoff’s law (9) and constitutive
models of dissipative capacitor (10) and inductor (11), yielding

Ê(s) = R î(s) + ûL(s) + ûC(s) (15)

and

î(s) = (C s+ Cα sα) ûC(s), (16)

ûL(s) =
(

Ls+ Lβ s
β
)

î(s), (17)

respectively, where the Laplace transform, defined as

f̂(s) = L[f(t)](s) =

∫ ∞

0

f(t) e−stdt, for Res > 0,

is used along with the Laplace transforms of Riemann-Liouville fractional derivative and fractional integral

L
[

0D
ξ
tf (t)

]

(s) = sξ f̂(s)−
[

0I
1−ξ
t f (t)

]

t=0
= sξ f̂(s) and L

[

0I
ξ
tf (t)

]

(s) =
1

sξ
f̂(s),

holding for f bounded at zero, and by taking into account defining relations for classical and fractional
time constants as well. Analogously, by taking the Laplace transform of constitutive equations (12) for
generative capacitor and (13) for generative inductor, one has

ûC(s) =

(

1

C s
+

1

Cµ s1+µ

)

î(s), (18)

î(s) =

(

1

Ls
+

1

Lν s1+ν

)

ûL(s), (19)

that coupled with the second Kirchhoff’s law in complex domain (15) and by the use of defining relations
for time constants yields the governing equation of generative-generative RLC circuit in the form

R

(

τνs
1+ν +

τν

τL
sν + 1 +

τν

τLτC

1

s1−ν

+
1

τC

1

s
+

τν

τLτµ

1

s1+µ−ν
+

1

τµ

1

s1+µ

)

î(s) =

(

τν

τL
sν + 1

)

Ê(s),

so as the transfer function

ĝ
(gg)
i (s) =

î(s)

Ê(s)
=

1

R
τCτµs

1+µ τνs
ν + τL

Φgg(s)
, with (20)

Φgg(s) = τLτCτµτνs
2+µ+ν + τCτµτνs

1+µ+ν + τLτCτµs
1+µ + τµτνs

µ+ν + τLτµs
µ + τCτνs

ν + τLτC .

Equations in complex domain governing the dissipative-generative and generative-dissipative RLC cir-
cuits

R

(

τCτνs
2+ν + τατνs

1+α+ν +
τCτν

τL
s1+ν

+ τCs+
τατν

τL
sα+ν + ταs

α +
τν

τL
sν + 1

)

î(s)

=

(

τCτν

τL
s1+ν + τCs+

τατν

τL
sα+ν + ταs

α

)

Ê(s), (21)

and

R

(

τLs+ τβs
β + 1 +

1

τC

1

s
+

1

τµ

1

s1+µ

)

î(s) = Ê(s), (22)

along with the transfer functions

ĝ
(dg)
i (s) =

î(s)

Ê(s)
=

1

R

τCτνs
1+ν + τLτCs+ τατνs

α+ν + τLταs
α

Φdg(s)
, with (23)
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Φdg(s) = τLτCτνs
2+ν + τLτατνs

1+α+ν + τCτνs
1+ν + τLτCs+ τατνs

α+ν + τLταs
α + τνs

ν + τL

and

ĝ
(gd)
i (s) =

î(s)

Ê(s)
=

1

R

τCτµs
1+µ

Φgd(s)
, with (24)

Φgd(s) = τLτCτµs
2+µ + τCτβτµs

1+β+µ + τCτµs
1+µ + τµs

µ + τC ,

corresponding to governing equations (21) and (22) respectively, are obtained as a consequence of the
second Kirchhoff’s law (15) combined either with the constitutive equations of dissipative capacitor (16)
and generative inductor (19), or with the models of generative capacitor (18) and dissipative inductor
(17), where the definitions of classical and fractional time constants are used as well.

3 Thermodynamical considerations in the steady state regime

In order to analyze energy consumption/production properties of fractional RLC circuits containing dis-
sipative and/or generative elements, the steady state regime of circuits is assumed, i.e., the electromotive
force, circuits’ current, and voltages of dissipative/generative capacitor and inductor are assumed as
harmonic functions of angular frequency ω as

E(t) = E0 e
jωt, i(t) = i0 e

j(ωt+φi), uC(t) = uC0 e
j(ωt+φC), and uL(t) = uL0 e

j(ωt+φL), (25)

where E0, i0, uC0, and uL0 are amplitudes and φi, φC , and φL are phase angles. Electromotive force and
current, assumed as (25)1 and (25)2, when plugged into governing equations (5) - (8) of fractional RLC

circuits, lead to the sine and cosine of current’s phase angle φi, expressed in terms of ratio of current and
electromotive force amplitudes i0

E0
, due to the linearity of governing equations, properties of integer order

derivatives, and large time asymptotics of Riemann-Liouville fractional derivative and fractional integral,
being given by

0D
ξ
t e

j(ωt+φ) = (jω)
ξ
ej(ωt+φ) = ωξ ej(ωt+φ+ ξπ

2 ) as t → ∞, (26)

0I
ξ
t e

j(ωt+φ) =
1

(jω)
ξ
ej(ωt+φ) =

1

ωξ
ej(ωt+φ− ξπ

2 ) as t → ∞, (27)

see [11]. The same result would be achieved by substituting s = jω into the transfer functions (14),
(20), (23), and (24), followed by the separation of real and imaginary parts in such obtained expressions,
assuming î(jω) = i0 e

j(ωt+φi) and Ê(jω) = E0 e
j(ωt+φi).

The sign of current’s phase angle cosine determines whether circuit dissipates or generates energy,
since the energy consumed/produced by the fractional RLC circuit during one period T of harmonic
functions (25) is determined by

W =

∫ (n+1)T

nT

E(t) i(t) dt = E0i0

∫ (n+1)T

nT

cos(ωt) cos(ωt+ φi) dt =
1

2
E0i0T cosφi, (28)

where
E = Re E and i = Re i,

while the sign of phase angle sine determines whether the circuit has capacitive or inductive character,
so that if cosφi > 0 (cosφi < 0), then circuit dissipates (generates) energy and if sinφi > 0 (sinφi < 0),
then circuit has capacitive (inductive) character, since current leads (lags) the electromotive force.

Rather than plugging harmonic electromotive force and current into governing equations, harmonic
current and appropriate harmonic voltage are inserted into constitutive equations for dissipative elements
(10) and (11) yielding dissipative capacitor’s admittance and dissipative inductor’s impedance as

Y
(d)
C (ω) =

i(t)
uC(t)

= C ω ej
π
2 + Cα ωα ej

απ
2 ,

Z
(d)
L (ω) =

uL(t)

i(t)
= Lω ej

π
2 + Lβ ω

β ej
βπ
2 ,

by the large time asymptotics of Riemann-Liouville fractional derivative (26), so that

1

Y
(d)
C (ω)

=
Cαω

α cos απ
2 − j

(

Cω + Cαω
α sin απ

2

)

C2ω2 + 2CCαω1+α sin απ
2 + C2

αω
2α

, (29)
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Z
(d)
L (ω) = Lβω

β cos
βπ

2
+ j

(

Lω + Lβω
β sin

βπ

2

)

, (30)

while generative capacitor’s impedance and generative inductor’s admittance

Z
(g)
C (ω) =

uC(t)

i(t)
=

1

C

1

ωej
π
2
+

1

Cµ

1

ω1+µej
(1+µ)π

2

,

Y
(g)
L (ω) =

i(t)
uL(t)

=
1

L

1

ωej
π
2
+

1

Lν

1

ω1+νej
(1+ν)π

2

,

are obtained using large time asymptotics of the fractional integral (27) in generative capacitor’s and
inductor’s models (12) and (13), so that

Z
(g)
C (ω) = −

sin µπ
2

Cµω1+µ
− j

(

1

Cω
+

cos µπ
2

Cµω1+µ

)

, (31)

1

Y
(g)
L (ω)

= −LLνω
1+ν

L sin νπ
2 − j

(

Lνω
ν + L cos νπ

2

)

L2
νω

2ν + 2LLνων cos νπ
2 + L2

. (32)

The second Kirchhoff’s law (9) in the steady state regime

E(t) = R i(t) + uL(t) + uC(t), i.e., E(t) = Ze i(t), (33)

with Ze = R+ZC +ZL being the equivalent impedance of the fractional RLC circuit, using (25)1,2 yields

Ze =
E0
i0

e−jφi implying cosφi =
ReZe

|Ze|
and sinφi = −

ImZe

|Ze|
, (34)

so that in the case of dissipative-dissipative RLC circuit the equivalent impedance

Z(dd)
e (ω) = R+

1

Y
(d)
C (ω)

+ Z
(d)
L (ω) (35)

gives

cosφ
(dd)
i (ω) =

1

|Z
(dd)
e (ω)|

(

R+
Cαω

α cos απ
2

C2ω2 + 2CCαω1+α sin απ
2 + C2

αω
2α

+ Lβω
β cos

βπ

2

)

, (36)

sinφ
(dd)
i (ω) =

1

|Z
(dd)
e (ω)|

(

Cω + Cαω
α sin απ

2

C2ω2 + 2CCαω1+α sin απ
2 + C2

αω
2α

− Lω − Lβω
β sin

βπ

2

)

, (37)

using (34) along with capacitor’s and inductor’s impedances (29) and (30). Clearly, the circuit is dissi-
pative for all frequencies since cosφi > 0, see (36), having the asymptotics

cosφ
(dd)
i (ω) ∼ cos

απ

2
as ω → 0 and cosφ

(dd)
i (ω) ∼

Lβ

L

1

ω1−β
cos

βπ

2
→ 0+ as ω → ∞, (38)

while its character changes from capacitive for low frequencies to inductive for high frequencies, due to
the low and high frequency asymptotics of phase angle sine

sinφ
(dd)
i (ω) ∼ sin

απ

2
> 0 as ω → 0 and sinφ

(dd)
i (ω) ∼ −1 as ω → ∞. (39)

The phase angle cosine and sine as functions of the angular frequency, obtained by (36) and (37),
are depicted in Figure 1, illustrating that the dissipative-dissipative RLC circuit consumes energy for
all frequencies, with the possibility that the phase angle cosine may even have an additional minimum,
compare Figures 1a and 1b, nevertheless slowly tending to zero from above, as predicted by the asymp-
totics (38), while the phase angle sine either monotonically or non-monotonically changes from positive
to negative values inferring the change of circuit’s character from capacitive to inductive, as predicted by
the asymptotics (39).

The equivalent impedance of the generative-generative fractional RLC circuit

Z(gg)
e (ω) = R+ Z

(g)
C (ω) +

1

Y
(g)
L (ω)

, (40)
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cos ϕ
i

(dd)

sin ϕ
i

(dd)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

ω
(a) Curves obtained for model parameters as below and
τα = 3.

cos ϕ
i

(dd)

sin ϕ
i

(dd)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

ω
(b) Curves obtained for model parameters as below and
τα = 0.2.

Figure 1: Energy consumption/production properties and capacitive/inductive character of the
dissipative-dissipative RLC circuit: cosφ

(dd)
i and sinφ

(dd)
i as functions of angular frequency ω, obtained

for model parameters: α = 0.4, β = 0.8, τC = 0.5, τL = 0.5, and τβ = 1.5.

using (34) together with capacitor’s and inductor’s impedances (31) and (32) yields

cosφ
(gg)
i (ω) =

1

|Z
(gg)
e (ω)|

(

R−
sin µπ

2

Cµω1+µ
− LLνω

1+ν L sin νπ
2

L2
νω

2ν + 2LLνων cos νπ
2 + L2

)

, (41)

sinφ
(gg)
i (ω) =

1

|Z
(gg)
e (ω)|

(

1

Cω
+

cos µπ
2

Cµω1+µ
− LLνω

1+ν Lνω
ν + L cos νπ

2

L2
νω

2ν + 2LLνων cos νπ
2 + L2

)

, (42)

inferring that circuit is generative for both low and high frequencies and may be dissipative for mid-range
frequencies, due to

cosφ
(gg)
i (ω) ∼ − sin

µπ

2
< 0 as ω → 0 and cosφ

(gg)
i (ω) ∼ −

L

Lνων
sin

νπ

2
→ 0− as ω → ∞,

(43)
and, as for the dissipative-dissipative RLC circuit, capacitive properties prevail for low frequencies, while
the circuit is inductive for high frequencies, since

sinφ
(gg)
i (ω) ∼ cos

µπ

2
> 0 as ω → 0 and sinφ

(gg)
i (ω) ∼ −1 as ω → ∞. (44)

Figure 2 depicts the phase angle cosine and sine versus the angular frequency for the generative-
generative RLC circuit, obtained according to (41) and (42), where the energy is produced for all fre-
quencies in the case of model parameters used to obtain the plot from Figure 2c, while in the other
two cases, the energy is produced for both low and high frequencies, see Figures 2a and 2b, that is in
accordance with the asymptotics (43), while the circuit consumes energy for the mid-range frequencies,
with the possibility of the abrupt change in energy consumption/production properties, as illustrated
in Figure 2b. The change of circuit’s predominant character from capacitive to inductive, see also the
asymptotics (44), is non-monotonic for all depicted cases of model parameters, again with the possibility
of the abrupt character change.

The equivalent impedances corresponding to the dissipative-generative and generative-dissipative
RLC circuits are

Z(dg)
e (ω) = R+

1

Y
(d)
C (ω)

+
1

Y
(g)
L (ω)

and Z(gd)
e (ω) = R+ Z

(g)
C (ω) + Z

(d)
L (ω), (45)

so that for the dissipative-generative RLC circuit the equivalent impedance Z
(dg)
e , given by (45)1, with

capacitor’s and inductor’s impedances (29) and (32), according to (34) gives

cosφ
(dg)
i (ω) =

1

|Z
(dg)
e (ω)|

7



cos ϕ
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(a) Curves obtained for model parameters as below and
τµ = 2.5.
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(b) Curves obtained for model parameters as below and
τµ = 0.20980 . . .

cos ϕ
i
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sin ϕ
i

(gg)
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ω
(c) Curves obtained for model parameters as below and
τµ = 0.055.

Figure 2: Energy consumption/production properties and capacitive/inductive character of the
generative-generative RLC circuit: cosφ

(gg)
i and sinφ

(gg)
i as functions of angular frequency ω, obtained

for model parameters: µ = 0.7, ν = 0.9, τC = 0.75, τL = 0.75, and τν = 0.025.

×

(

R+
Cαω

α cos απ
2

C2ω2 + 2CCαω1+α sin απ
2 + C2

αω
2α

− LLνω
1+ν L sin νπ

2

L2
νω

2ν + 2LLνων cos νπ
2 + L2

)

,

(46)

sinφ
(dg)
i (ω) =

1

|Z
(dg)
e (ω)|

×

(

Cω + Cαω
α sin απ

2

C2ω2 + 2CCαω1+α sin απ
2 + C2

αω
2α

− LLνω
1+ν Lνω

ν + L cos νπ
2

L2
νω

2ν + 2LLνων cos νπ
2 + L2

)

,

(47)

along with their asymptotics

cosφ
(dg)
i (ω) ∼ cos

απ

2
> 0 as ω → 0 and cosφ

(dg)
i (ω) ∼ −

L

Lνων
sin

νπ

2
→ 0− as ω → ∞, (48)

sinφ
(dg)
i (ω) ∼ sin

απ

2
> 0 as ω → 0 and sinφ

(dg)
i (ω) ∼ −1 as ω → ∞, (49)

while for the generative-dissipative RLC circuit, the equivalent impedance Z
(gd)
e , see (45)2, employing

capacitor’s and inductor’s impedances (30) and (31), by (34) yields

cosφ
(gd)
i (ω) =

1

|Z
(gd)
e (ω)|

(

R−
sin µπ

2

Cµω1+µ
+ Lβω

β cos
βπ

2

)

, (50)

sinφ
(gd)
i (ω) =

1

|Z
(gd)
e (ω)|

(

1

Cω
+

cos µπ
2

Cµω1+µ
− Lω − Lβω

β sin
βπ

2

)

, (51)
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having the asymptotics

cosφ
(gd)
i (ω) ∼ − sin

µπ

2
< 0 as ω → 0 and cosφ

(gd)
i (ω) ∼

Lβ

L

1

ω1−β
cos

βπ

2
→ 0+ as ω → ∞,

(52)

sinφ
(gd)
i (ω) ∼ cos

µπ

2
> 0 as ω → 0 and sinφ

(gd)
i (ω) ∼ −1 as ω → ∞. (53)

Regarding the energy consumption/production properties, one concludes that the dissipative-generative
RLC circuit dissipates energy for low frequencies and generates it for high frequencies, see (48), while
generative-dissipative circuit behaves exactly in the opposite way, see (52). Capacitive and inductive
character of both circuits remains same as in all previous cases, compare (49) and (53) with (39) and
(44).

cos ϕ
i

(dg)

sin ϕ
i

(dg)
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ω
(a) Curves obtained for model parameters as below and
τν = 5.
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(b) Curves obtained for model parameters as below and
τν = 0.23329 . . .
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sin ϕ
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(c) Curves obtained for model parameters as below and
τν = 0.09.

Figure 3: Energy consumption/production properties and capacitive/inductive character of the
dissipative-generative RLC circuit: cosφ

(dg)
i and sinφ

(dg)
i as functions of angular frequency ω, obtained

for model parameters: α = 0.25, ν = 0.85, τC = 0.25, τα = 0.005, and τL = 0.75.

Plots of the cosine and sine of phase angle as functions of the angular frequency, shown in Figures
3 and 4, are obtained according to (46) and (47) for dissipative-generative and according to (50) and
(51) for generative-dissipative RLC circuits, respectively. Figures 3a and 4c illustrate that the energy
is consumed, respectively produced, for quite a large frequency range, changing the energy consump-
tion/production properties for high frequencies in accordance with the high frequency asypmtotics (48)
and (52), respectively. One notices from Figure 3a that the circuit changed its character from capacitive
(capacitor is the dissipative element) to inductive (inductor is the generative element) and still being
energy consuming, contrary to the case depicted in Figure 3c, where the circuit started to produce energy
while still being of predominantly capacitive (dissipative) character. Figures 4a and 4c illustrate the sim-
ilar behavior of the generative-dissipative RLC circuit as well, since the circuit became energy consuming
while still being of predominantly capacitive character (capacitor is the generative element), see Figure
4a, contrary to the case depicted in Figure 4c, where the circuit changed its character to predominantly

9



inductive (inductor is the dissipative element), while still producing energy. The possibility that both
types of RLC circuits suddenly change their energy consumption/production properties and predominant
character is illustrated in Figures 3b and 4b.

cos ϕ
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(gd)

sin ϕ
i

(gd)
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ω
(a) Curves obtained for model parameters as below and
τβ = 5.5.
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(b) Curves obtained for model parameters as below and
τβ = 0.46607 . . .
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sin ϕ
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(c) Curves obtained for model parameters as below and
τβ = 0.01.

Figure 4: Energy consumption/production properties and capacitive/inductive character of the
generative-dissipative RLC circuit: cosφ

(gd)
i and sinφ

(gd)
i as functions of angular frequency ω, obtained

for model parameters: µ = 0.2, β = 0.6, τC = 0.025, τµ = 0.01, and τL = 0.95.

4 Frequency characteristics and their asymptotics

Traditionally, frequency characteristics of the transfer function modulus and argument are obtained by
substituting s = jω into the transfer function and subsequently by determining its modulus and argument,
where, in this particular case, the transfer function ĝi takes the forms respectively given by (14), (20),
(23), and (24) for the dissipative-dissipative, generative-generative, dissipative-generative, and generative-
dissipative fractional RLC circuits, respectively.

However, the approach of considering the second Kirchhoff’s law (33), corresponding to the fractional
RLC circuit in the steady state regime, is adopted, so that the transfer function is equivalently defined
by

ĝ = R
i(t)
E(t)

yielding ĝ =
R

Ze

=
R

|Ze|2
(ReZe − j ImZe) (54)

and implying that the transfer function ĝ is physically the equivalent admittance of the RLC circuit
multiplied by resistor’s resistance R. Hence, the transfer function modulus and argument, along with
their asymptotics, are determined using (54) as

|ĝ (ω)|dB = 20 log |ĝ(ω)| = −10 log

(

Re2
Ze(ω)

R
+ Im2 Ze(ω)

R

)

and arg ĝ (ω) = arccot
ReZe(ω)

−ImZe(ω)
, (55)
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with the equivalent impedance Ze given by (35) in the case of dissipative-dissipative fractional RLC cir-
cuit, expression (40) for generative-generative circuit, and by (45) for dissipative-generative and generative-
dissipative circuits. Note that the definition of transfer function (54), using i and E given by (25), also
implies

ĝ = R
i0

E0
ejφi yielding |ĝ|dB = 20 log |ĝ| = 20 log

R i0

E0
and arg ĝ = φi.

4.1 Dissipative-dissipative fractional RLC circuit

Considering the dissipative-dissipative fractional RLC circuit and by rewriting the real and imaginary
parts of circuit’s equivalent impedance (35) in terms of the classical and fractional time constants, one
has

ReZ(dd)
e (ω) = R

(

1 +
ταω

α cos απ
2

τ2Cω
2 + 2τCταω1+α sin απ

2 + τ2αω
2α

+ τβω
β cos

βπ

2

)

, (56)

ImZ(dd)
e (ω) = −R

(

τCω + ταω
α sin απ

2

τ2Cω
2 + 2τCταω1+α sin απ

2 + τ2αω
2α

− τLω − τβω
β sin

βπ

2

)

, (57)

yielding the transfer function modulus and argument according to (55).
Figure 5 presents frequency characteristics of the transfer function modulus and argument, i.e., Bode

diagrams, for same two sets of model parameters as in the case of plots from Figure 1. The transfer
function modulus, shown in Figure 5a, is a non-monotonic function of the angular frequency, tending to
the negative infinity for low frequencies, implying that it has a zero of non-integer order at the origin,
as obvious from the form (14) of the transfer function ĝ(dd). Further, the transfer function modulus
attains a maximum and tends to the negative infinity for high frequencies, suggesting that the transfer
function ĝ(dd) has a pair of complex conjugated poles, that is exactly the case for the model parameters
used to produce dashed-line plot, while the parameters used for the solid-line plot yield no poles of the
transfer function. The shape of the transfer function modulus suggests that the dissipative-dissipative
RLC circuit behaves as the band-pass filter with different band-widths.

The transfer function argument, so as its sine, either monotonically or non-monotonically changes from
positive to negative values as the angular frequency increases, as obvious from Figure 5b, implying the
change of circuit’s behavior from predominantly capacitive to predominantly inductive, with argument’s
span between −π

2 and π
2 implying dissipativity of the circuit for the whole range of frequencies, since

argument’s cosine is positive.

0.001 0.010 0.100 1 10

-40

-35

-30

-25

-20

-15

-10

-5

ω

|g (dd)
(ω) dB

(a) Modulus of the transfer function ĝ
(dd).

10-5 0.001 0.100 10

- π
2

- π
4

0

π
4

ω

ar
g
g (dd) (

ω)

(b) Argument of the transfer function ĝ
(dd).

Figure 5: Frequency characteristics of transfer function modulus and argument for dissipative-dissipative
RLC circuit, obtained for model parameters: α = 0.4, β = 0.8, τC = 0.5, τL = 0.5, τβ = 1.5, and τα = 3
- solid line and τα = 0.2 - dashed line.

As already noted in Section 3, the capacitive character of the fractional RLC circuit prevails for low
frequencies and therefore the corresponding asymptotics of ReZ(dd)

e and ImZ
(dd)
e , given by (56) and (57),

is

ReZ(dd)
e (ω) = R

cos απ
2

ταωα

{

1 + ταωα

cos απ
2

+O(ω1−α), if α ∈
(

0, 1
2

)

,

1 +O(ω1−α), if α ∈
[

1
2 , 1
)

,
as ω → 0, (58)
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ImZ(dd)
e (ω) = −R

sin απ
2

ταωα

(

1 +O(ω1−α)
)

, as ω → 0, (59)

where only the leading terms of real and imaginary parts of dissipative capacitor’s impedance 1

Y
(d)
C

, given

by (29), are taken into account, since they are of the order −α, which is certainly smaller than the order
β > 0 of the leading terms of dissipative inductor’s impedance ReZ

(d)
L and ImZ

(d)
L , see (30), so that, by

(55)1, (58), and (59), for the transfer function modulus one has

∣

∣

∣ĝ(dd) (ω)
∣

∣

∣

dB
= 20 log (ταω

α)− 10 log











1 + 2ταω
α cos απ

2 + τ2αω
2α +O(ω1−α), if α ∈

(

0, 1
3

)

,

1 + 2ταω
α cos απ

2 +O(ω1−α), if α ∈
[

1
3 ,

1
2

)

,

1 +O(ω1−α), if α ∈
[

1
2 , 1
)

,

as ω → 0,

(60)
while the transfer function argument, by (55)2, (58), and (59), is

cot arg ĝ(dd)(ω) = cot
απ

2

{

1 + ταωα

cos απ
2

+O(ω1−α), if α ∈
(

0, 1
2

)

,

1 +O(ω1−α), if α ∈
[

1
2 , 1
)

,
as ω → 0. (61)

On the other hand, the inductive properties of the fractional RLC circuits are more prominent for
the high frequencies and therefore ReZ

(dd)
e and ImZ

(dd)
e , given by (56) and (57), are of the form

ReZ(dd)
e (ω) = Rτβω

β cos
βπ

2

(

1 +
ω−β

τβ cos
βπ
2

+O(ω−1−β)

)

, as ω → ∞, (62)

ImZ(dd)
e (ω) = RτLω

(

1 +
τβ

τL
ω−1+β sin

βπ

2
+O(ω−2)

)

, as ω → ∞, (63)

due to the leading terms of dissipative capacitor’s impedance (29), that are

Re
1

Y
(d)
C

∼ R
τα

τ2C
ω−2+α cos

απ

2
and Im

1

Y
(d)
C

∼ −R
1

τC
ω−1, as ω → ∞, (64)

so that (62) and (63), by (55), yield the high frequency asymptotics of transfer function modulus and
argument in the respective forms
∣

∣

∣
ĝ(dd) (ω)

∣

∣

∣

dB
= −20 log (τLω)

− 10 log

(

1 + 2
τβ

τL
ω−1+β sin

βπ

2
+

τ2β

τ2L
ω−2+2β + 2

τβ

τ2L
ω−2+β cos

βπ

2
+O(ω−2)

)

,

(65)

cot arg ĝ(dd)(ω) = −
τβ

τL
ω−1+β cos

βπ

2

(

1−
τβ

τL
ω−1+β sin

βπ

2

+



















































ω−β

τβ cos βπ
2

− 1
τL

ω−1 tan βπ
2 +O(ω−1−β), if β ∈

(

0, 1
3

]

,

ω−β

τβ cos βπ
2

− 1
τL

ω−1 tan βπ
2 +

τ2
β

τ2
L

ω−2+2β sin2 βπ
2 +O(ω−1−β), if β ∈

(

1
3 ,

1
2

]

,

ω−β

τβ cos βπ
2

+
τ2
β

τ2
L

ω−2+2β sin2 βπ
2 − 1

τL
ω−1 tan βπ

2 +O(ω−3+3β), if β ∈
(

1
2 ,

2
3

)

,

τ2
β

τ2
L

ω−2+2β sin2 βπ
2 + ω−β

τβ cos βπ
2

+O(ω−3+3β), if β ∈
[

2
3 ,

3
4

)

,

τ2
β

τ2
L

ω−2+2β sin2 βπ
2 +O(ω−3+3β), if β ∈

[

3
4 , 1
)

,



























(66)

as ω → ∞, since (62) and (63) used in (55)2 yield

cot arg ĝ(dd)(ω) =−
τβ

τL
ω−1+β cos

βπ

2

(

1 +
ω−β

τβ cos
βπ
2

+O(ω−1−β)

)

×

(

1−
τβ

τL
ω−1+β sin

βπ

2
+

τ2β

τ2L
ω−2+2β sin2

βπ

2
+

{

O(ω−2), if β ∈
(

0, 1
3

]

,

O(ω−3+3β), if β ∈
(

1
3 , 1
)

,

)
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as ω → ∞, according to the series expansion 1
1+x

= 1− x+ x2 +O(x3) as x → 0.
Transfer function modulus and argument versus the angular frequency for different values of fractional

order of dissipative capacitor are depicted in Figure 6, along with their asymptotics. The transfer function
modulus, see Figure 6a, is a linear function of logω, for both low and high frequencies, with the slope
either determined by the fractional order α for low frequencies, or with the slope equal to one for high
frequencies, as predicted by the asymptotics formulae (60) and (65). The transfer function argument,
depicted in Figure 6b, agrees very well with the low and high frequency asymptotics (61) and (66).
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α = 0.8
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(a) Modulus of the transfer function ĝ
(dd).
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(b) Argument of the transfer function ĝ

(dd).

Figure 6: Comparison of frequency characteristics of transfer function modulus and argument (solid
line) with their asymptotics (dashed line) for dissipative-dissipative RLC circuit, obtained for model
parameters: β = 0.2, τC = 0.1, τα = 2.5, τL = 0.75, and τβ = 0.25.

Note that the leading term in the low frequency asymptotics of the transfer function modulus (60)
provides the possibility of determining the model parameters α and τα, since they respectively represent
the slope and intercept of the function linear in logω, while the leading term of the high frequency
asymptotics (65) yields τL as the intercept of the linear function in logω. Further, by considering the
logarithm of the absolute value of transfer function argument’s cotangent, see the first term in high
frequency asymptotics (66), one determines the remaining model parameters β and τβ , since

log
∣

∣

∣cot arg ĝ(dd)(ω)
∣

∣

∣ ∼ (−1 + β) logω + log

(

τβ

τL
cos

βπ

2

)

as ω → ∞.

4.2 Generative-generative fractional RLC circuit

The real and imaginary parts of the equivalent impedance Z
(gg)
e , given by (40) and corresponding to the

generative-generative fractional RLC circuit, rewritten in terms of classical and fractional time constants
read

ReZ(gg)
e (ω) = R

(

1−
sin µπ

2

τµω1+µ
− τLτνω

1+ν τL sin νπ
2

τ2νω
2ν + 2τLτνων cos νπ

2 + τ2L

)

, (67)

ImZ(gg)
e (ω) = −R

(

1

τCω
+

cos µπ
2

τµω1+µ
− τLτνω

1+ν τνω
ν + τL cos νπ

2

τ2νω
2ν + 2τLτνων cos νπ

2 + τ2L

)

, (68)

yielding the transfer function modulus and argument according to (55).
The frequency characteristics of transfer function modulus and argument, presented in Figure 7 and

obtained for the same model parameters as in the case of plots from Figure 2, illustrate the possibility
that the transfer function modulus has a vertical asymptote, while the argument abruptly changes by
π, see the solid-line plots from Figures 7a and 7b, which is the property of transfer function having
purely imaginary poles, that is exactly the case for the selected set of model parameters. In addition
to non-integer zeros of the transfer function - its modulus tends to negative infinity as the frequency
tends to zero, see also the form of transfer function ĝ(gg) given by (20) - the occurrence of a maximum
followed by modulus’ tendency to negative infinity as the frequency tends to infinity, see dashed- and
dot-dashed-line plots from Figure 7a, is a consequence of the existence of complex conjugated poles of
the transfer function, as it is the case for the selected sets of model parameters.
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The transfer function argument in the case of dashed-line plot from Figure 7b decreases, which un-
derlines the similarity with the integer order case, since the complex conjugated poles for selected model
parameters have negative real part, contrary to the case of transfer function argument represented by
dot-dashed line, that actually increases over π, although in Figure 7b drops by 2π due to the codomain of
arcus tangent function being (−π, π], again underlining the similarity with the integer order case, since
the complex conjugated poles for this set of model parameters have positive real part.

Again, the transfer function argument illustrates the transition from the capacitive to inductive charac-
ter of the circuit with the increase of the angular frequency, as well as its energy consumption/production
properties, that in the case of solid- and dashed-line plots change with frequency from generative to
dissipative, since the argument drops below π

2 , and again to generative when the argument further drops
below −π

2 , while for the dot-dashed-line plot circuit’s character is generative for the whole frequency
range, since the argument has values either higher than π

2 , or lower than −π
2 in the whole frequency

range.
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(a) Modulus of the transfer function ĝ
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Figure 7: Frequency characteristics of transfer function modulus and argument for generative-generative
RLC circuit, obtained for model parameters: µ = 0.7, ν = 0.9, τC = 0.75, τL = 0.75, τν = 0.025, and
τµ = 2.5 - dot-dashed line, τµ = 0.20980 . . . - solid line, and τµ = 0.055 - dashed line.

As for the dissipative-dissipative fractional RLC circuit, the capacitive character is dominant for low
frequencies, so that the asymptotics of expressions (67) and (68), corresponding to ReZ

(gg)
e and ImZ

(gg)
e ,

takes the following forms

ReZ(gg)
e (ω) = −R

sin µπ
2

τµω1+µ

(

1−
τµω

1+µ

sin µπ
2

+O(ω2+µ)

)

, as ω → 0, (69)

ImZ(gg)
e (ω) = −R

cos µπ
2

τµω1+µ

(

1 +
τµω

µ

τC cos µπ
2

+O(ω2+µ)

)

, as ω → 0, (70)

since the leading terms of real and imaginary parts of generative inductor’s impedance 1

Y
(g)
L

, given by

(32), are

Re
1

Y
(g)
L

∼ −Rτνω
1+ν sin

νπ

2
and Im

1

Y
(g)
L

∼ Rτνω
1+ν cos

νπ

2
as ω → 0, (71)

so that the low frequency asymptotics of transfer function modulus, by (55)1, (69), and (70), reads

∣

∣

∣ĝ(gg) (ω)
∣

∣

∣

dB
= 20 log

(

τµω
1+µ
)

− 10 log

(

1 + 2
τµ

τC
ωµ cos

µπ

2
+

τ2µ

τ2C
ω2µ − 2τµω

1+µ sin
µπ

2
+O(ω2+µ)

)

,

(72)
as ω → 0, while the transfer function argument, by (55)2, (69), and (70), is

cot arg ĝ(gg)(ω) = − tan
µπ

2

(

1−
τµω

µ

τC cos µπ
2

+
τ2µω

2µ

τ2C cos2 µπ
2

−
τ3µω

3µ

τ3C cos3 µπ
2
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+































O(ω4µ), if µ ∈
(

0, 1
3

]

,

−
τµω

1+µ

sin µπ
2

+O(ω4µ), if µ ∈
(

1
3 ,

1
2

]

,

−
τµω

1+µ

sin µπ
2

+
τ2
µω

1+2µ

τC sin µπ
2 cos µπ

2
+O(ω4µ), if µ ∈

(

1
2 ,

2
3

]

,

−
τµω

1+µ

sin µπ
2

+
τ2
µω

1+2µ

τC sin µπ
2 cos µπ

2
+O(ω2+µ), if µ ∈

(

2
3 , 1
)

,

















(73)

as ω → 0, since

cot arg ĝ(gg)(ω) = − tan
µπ

2

(

1−
τµω

1+µ

sin µπ
2

+O(ω2+µ)

)

×

(

1−
τµω

µ

τC cos µπ
2

+
τ2µω

2µ

τ2C cos2 µπ
2

−
τ3µω

3µ

τ3C cos3 µπ
2

+

{

O(ω4µ), if µ ∈
(

0, 2
3

]

,

O(ω2+µ), if µ ∈
(

2
3 , 1
)

,

)

due to the series expansion 1
1+x

= 1− x+ x2 − x3 +O(x4) as x → 0.
Generative-generative fractional RLC circuit displays inductive properties for high frequencies as

already noted, see (43)2 and (44)2, therefore the corresponding asymptotics of ReZ
(gg)
e and ImZ

(gg)
e ,

given by (67) and (68), reads

ReZ(gg)
e (ω) = −R

τ2L
τν

ω1−ν sin
νπ

2

(

1− 2
τL

τν
ω−ν cos

νπ

2
+

{

O(ω−2ν), if ν ∈
(

0, 1
3

]

,

− τνω
−1+ν

τ2
L
sin νπ

2
+O(ω−2ν), if ν ∈

(

1
3 , 1
)

,

)

(74)

ImZ(gg)
e (ω) = RτLω

(

1−
τL

τν
ω−ν cos

νπ

2
−

τ2L
τ2ν

ω−2ν
(

1− 2 cos2
νπ

2

)

+O(ω−3ν)

)

, (75)

as ω → ∞, since for the generative inductor, according to (32), the high frequency asymptotics of Re 1

Y
(g)
L

is

Re
1

Y
(g)
L

(ω) = −R
τ2L
τν

ω1−ν sin
νπ

2

1

1 + 2 τL

τν
ω−ν cos νπ

2 +
τ2
L

τ2
ν
ω−2ν

= −R
τ2L
τν

ω1−ν sin
νπ

2

(

1− 2
τL

τν
ω−ν cos

νπ

2
+O(ω−2ν)

)

, (76)

due to the series expansion 1
1+x

= 1 − x + O(x2) as x → 0, while according to (32), the high frequency
asymptotics of Im 1

Y
(g)
L

is

Im
1

Y
(g)
L

(ω) = RτLω
1 + τL

τν
ω−ν cos νπ

2

1 + 2 τL

τν
ω−ν cos νπ

2 +
τ2
L

τ2
ν
ω−2ν

= RτLω

(

1 +
τL

τν
ω−ν cos

νπ

2

)(

1− 2
τL

τν
ω−ν cos

νπ

2
−

τ2L
τ2ν

ω−2ν
(

1− 4 cos2
νπ

2

)

+O(ω−3ν)

)

= RτLω

(

1−
τL

τν
ω−ν cos

νπ

2
−

τ2L
τ2ν

ω−2ν
(

1− 2 cos2
νπ

2

)

+O(ω−3ν)

)

, (77)

due to the series expansion 1
1+x

= 1 − x + x2 + O(x3) as x → 0, taking into account that the leading
terms of generative capacitor’s impedance (31) are

ReZ
(g)
C ∼ −R

1

τµ
ω−1−µ sin

µπ

2
and ImZ

(g)
C ∼ −R

1

τC
ω−1, as ω → ∞, (78)

so that (74) and (75), by (55), yield the high frequency asymptotics of transfer function modulus and
argument in the respective forms

∣

∣

∣ĝ(gg) (ω)
∣

∣

∣

dB
= −20 log (τLω)− 10 log

(

1− 2
τL

τν
ω−ν cos

νπ

2
−

τ2L
τ2ν

ω−2ν
(

1− 4 cos2
νπ

2

)

+











O(ω−3ν), if ν ∈
(

0, 1
2

]

,

−2 1
τν

ω−1−ν sin νπ
2 +O(ω−3ν), if ν ∈

(

1
2 ,

2
3

]

,

−2 1
τν

ω−1−ν sin νπ
2 + 1

τ2
L

ω−2 +O(ω−3ν), if ν ∈
(

2
3 , 1
)

,






,

(79)
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cot arg ĝ(gg)(ω) =
τL

τν
ω−ν sin

νπ

2

(

1−
τL

τν
ω−ν cos

νπ

2

+















O(ω−2ν), if ν ∈
(

0, 1
3

]

,

− ω−1+ν

τν sin νπ
2

+O(ω−2ν), if ν ∈
(

1
3 ,

1
2

]

,

− ω−1+ν

τν sin νπ
2

− 1
τL

ω−1 cot νπ
2 +O(ω−2ν), if ν ∈

(

1
2 , 1
)

,









(80)

as ω → ∞, since (74) and (75) used in (55)2 yield

cot arg ĝ(gg)(ω) =
τL

τν
ω−ν sin

νπ

2

(

1− 2
τL

τν
ω−ν cos

νπ

2
+

{

O(ω−2ν), if ν ∈
(

0, 1
3

]

,

− τνω
−1+ν

τ2
L
sin νπ

2
+O(ω−2ν), if ν ∈

(

1
3 , 1
)

,

)

×

(

1 +
τL

τν
ω−ν cos

νπ

2
+

τ2L
τ2ν

ω−2ν sin2
νπ

2
+O(ω−3ν)

)

,

as ω → ∞, according to the series expansion 1
1+x

= 1− x+ x2 +O(x3) as x → 0.
Figure 8 presents the plots of transfer function modulus and argument versus the angular frequency

for different values of fractional order of generative capacitor, together with their asymptotics. According
to the low frequency asymptotics (72), the transfer function modulus is a linear function of logω, with
the slope and intercept respectively determined by the model parameters µ and τµ, see also Figure 8a,
while the low frequency asymptotics of transfer function argument (73) implies the dependence on the
parameter µ, as obvious from Figure 8b. On the other hand, the high frequency asymptotics of transfer
function modulus (79) yields τL as the intercept of the linear function in logω, see Figure 8a, while the
remaining model parameters ν and τν are determined by the logarithm of the absolute value of transfer
function argument’s cotangent for high frequencies, see the asymptotics (80) and agreement between the
asymptotic curve and the frequency characteristics in Figure 8b.
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Figure 8: Comparison of frequency characteristics of transfer function modulus and argument (solid
line) with their asymptotics (dashed line) for generative-generative RLC circuit, obtained for model
parameters: ν = 0.9, τC = 0.75, τµ = 0.15, τL = 0.75, and τν = 0.025.

4.3 Dissipative-generative fractional RLC circuit

Rewriting the real and imaginary parts of the equivalent impedance Z
(dg)
e , given by (45)1, of the

dissipative-generative fractional RLC circuit using classical and fractional time constants yields

ReZ(dg)
e (ω) = R

(

1 +
ταω

α cos απ
2

τ2Cω
2 + 2τCταω1+α sin απ

2 + τ2αω
2α

− τLτνω
1+ν τL sin νπ

2

τ2νω
2ν + 2τLτνων cos νπ

2 + τ2L

)

,

(81)

ImZ(dg)
e (ω) = −R

(

τCω + ταω
α sin απ

2

τ2Cω
2 + 2τCταω1+α sin απ

2 + τ2αω
2α

− τLτνω
1+ν τνω

ν + τL cos νπ
2

τ2νω
2ν + 2τLτνων cos νπ

2 + τ2L

)

,

(82)

giving the transfer function modulus and argument according to (55).
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Figure 9 presents the Bode diagrams of transfer function modulus and argument, obtained for the
same set of model parameters as the plots in Figure 3, corresponding to the band-pass filter. The
transfer function ĝ(dg) given by (23) has a non-integer zero at the origin, that can be recognized from the
plots of transfer function modulus from Figure 9a, as well as complex conjugated poles, obtained as a
consequence of the chosen sets of model parameters, either with nonzero real part, that correspond to the
plots of transfer function modulus depicted by dot-dashed and dashed lines, or purely imaginary ones,
corresponding to the solid-line plot. Plots of the transfer function argument versus the angular frequency
support the statement regarding the type of poles and their real part, since if poles have nonzero real
part, the argument decreases if pole’s real part is obtained to be negative and increases over π if pole’s
real part is obtained to be positive, while in the case of purely imaginary poles, the value of argument
drops by π.

Clearly, the fractional RLC circuit is dissipative for relatively low frequencies, since arguments’ values
belong to interval (−π

2 ,
π
2 ), and eventually becomes generative: abruptly for the model parameters cor-

responding to the solid-line plot when the circuit simultaneously becomes of inductive type as well, since
the argument drops below −π

2 , and gradually either for mid-range frequencies in the case of dashed-line
plots, or for high frequencies in the case of dot-dashed-line plots.
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Figure 9: Frequency characteristics of transfer function modulus and argument for dissipative-generative
RLC circuit, obtained for model parameters: α = 0.25, ν = 0.85, τC = 0.25, τα = 0.005, τL = 0.75, and
τν = 5 - dot-dashed line, τν = 0.23329 . . . - solid line, and τν = 0.09 - dashed line.

Although the dissipative-generative RLC circuit contains dissipative capacitor so as the dissipative-
dissipative circuit, due to the different orders of the leading terms corresponding to the generative and
dissipative inductor, compare (71) with (30), the low frequency asymptotics of real and imaginary parts
of dissipative capacitor’s impedance Re 1

Y
(d)
C

and Im 1

Y
(d)
C

, according to (29), is calculated as

Re
1

Y
(d)
C (ω)

= R
cos απ

2

ταωα

1

1 + 2 τC

τα
ω1−α sin απ

2 +
τ2
C

τ2
α
ω2−2α

= R
cos απ

2

ταωα

(

1− 2
τC

τα
ω1−α sin

απ

2
+O(ω2−2α)

)

, as ω → 0,

Im
1

Y
(d)
C (ω)

= −R
sin απ

2

ταωα

1 + τC

τα
ω1−α 1

sin απ
2

1 + 2 τC

τα
ω1−α sin απ

2 +
τ2
C

τ2
α
ω2−2α

= −R
sin απ

2

ταωα

(

1− 2
τC

τα
ω1−α sin

απ

2

(

1−
1

2 sin2 απ
2

)

+O(ω2−2α)

)

, as ω → 0,

by the series expansion 1
1+x

= 1 − x + O(x2), as x → 0, transforming the real and imaginary parts of

circuit’s equivalent impedance ReZ
(dg)
e and ImZ

(dg)
e , given by (81) and (82), into

ReZ(dg)
e (ω) = R

cos απ
2

ταωα

(

1− 2
τC

τα
ω1−α sin

απ

2
+

{

ταωα

cos απ
2

+O(ω2−2α), if α ∈
(

0, 2
3

)

,

O(ω2−2α), if α ∈
[

2
3 , 1
)

,

)

(83)
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ImZ(dg)
e (ω) = −R

sin απ
2

ταωα

(

1− 2
τC

τα
ω1−α sin

απ

2

(

1−
1

2 sin2 απ
2

)

+O(ω2−2α)

)

, (84)

as ω → 0, so that, by (55)1, (83), and (84), for the transfer function modulus one has
∣

∣

∣ĝ(dg) (ω)
∣

∣

∣

dB
= 20 log (ταω

α)− 10 log

(

1− 2
τC

τα
ω1−α sin

απ

2

+











2ταω
α cos απ

2 + τ2αω
2α − 4τCω sin απ

2 cos απ
2 +O(ω2−2α), if α ∈

(

0, 1
2

)

,

2ταω
α cos απ

2 +O(ω2−2α), if α ∈
[

1
2 ,

2
3

)

,

O(ω2−2α), if α ∈
[

2
3 , 1
)

,







(85)

as ω → 0, while the transfer function argument, by (55)2, (83), and (84), is

cot arg ĝ(dg)(ω) = cot
απ

2

(

1−
τC

τα
ω1−α 1

sin απ
2

+















ταωα

cos απ
2

+ 2τCω tan απ
2

(

1− 1
2 sin2 απ

2

)

+O(ω2−2α), if α ∈
(

0, 1
2

)

,
ταωα

cos απ
2

+O(ω2−2α), if α ∈
[

1
2 ,

2
3

)

,

O(ω2−2α), if α ∈
[

2
3 , 1
)

,









(86)

as ω → 0, since

cot arg ĝ(dg)(ω) = cot
απ

2

(

1− 2
τC

τα
ω1−α sin

απ

2
+

{

ταωα

cos απ
2

+O(ω2−2α), if α ∈
(

0, 2
3

)

,

O(ω2−2α), if α ∈
[

2
3 , 1
)

,

)

×

(

1 + 2
τC

τα
ω1−α sin

απ

2

(

1−
1

2 sin2 απ
2

)

+O(ω2−2α)

)

as ω → 0,

according to 1
1+x

= 1− x+O(x2), as x → 0.
In the case of dissipative-generative fractional RLC circuit, as for all previously considered circuits,

the inductive properties are dominant for high frequencies and therefore one uses already calculated
asymptotics (76) and (77) of the real and imaginary parts of generative inductor’s impedance 1

Y
(g)
L

,

given by (32), since the upper limits of orders of leading terms of dissipative and generative capacitors’
impedances are equal, compare (64) with (78), which implies that the high frequency asymptotics of the
real and imaginary parts of circuit’s equivalent impedance ReZ

(dg)
e and ImZ

(dg)
e are the same as the real

and imaginary parts of equivalent impedance of the generative-generative circuit ReZ
(gg)
e and ImZ

(gg)
e ,

i.e., ReZ(dg)
e = ReZ

(gg)
e and ImZ

(dg)
e = ImZ

(gg)
e as ω → ∞, thus being given by (74) and (75), yielding

the transfer function modulus and argument in the same forms as for the generative-generative circuit,
i.e., given by the expression (79) for the transfer function modulus and (80) for the transfer function
argument.

Frequency characteristics of transfer function modulus and argument, together with their asymptotics,
are presented in Figure 10. The discussion about the low frequency asymtotic behavior of the dissipative-
generative RLC circuit is the same as for the dissipative-dissipative RLC circuit, since the capacitive
character of circuit prevails, compare also the leading terms in the low frequency asymptotics of transfer
function modulus and argument (60) with (85) and (61) with (86), respectively. On the other hand, the
discussion about the high frequency asymtotic behavior of the dissipative-generative circuit is the same
as for the generative-generative circuit, since the inductive character of circuit prevails, see the leading
terms in the high frequency asymptotics of transfer function modulus and argument (79) and (80).

4.4 Generative-dissipative fractional RLC circuit

Equivalent impedance Z
(gd)
e of the generative-dissipative fractional RLC circuit, given by (45)2, implies

ReZ(gd)
e (ω) = R

(

1−
sin µπ

2

τµω1+µ
+ τβω

β cos
βπ

2

)

, (87)

ImZ(gd)
e (ω) = −R

(

1

τCω
+

cos µπ
2

τµω1+µ
− τLω − τβω

β sin
βπ

2

)

, (88)
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Figure 10: Comparison of frequency characteristics of transfer function modulus and argument (solid
line) with their asymptotics (dashed line) for dissipative-generative RLC circuit, obtained for model
parameters: ν = 0.75, τC = 0.2, τα = 0.5, τL = 0.75, and τν = 0.5.

when its real and imaginary parts are rewritten in terms of classical and fractional time constants, yielding
the transfer function modulus and argument according to (55).

Frequency characteristics of transfer function modulus and argument corresponding to the generative-
dissipative RLC circuit, presented in Figure 11 and obtained for the same set of model parameters as the
plots in Figure 4, are of the same shape as the frequency characteristics corresponding to the dissipative-
generative circuit, see Figure 9, since the transfer function ĝ(gd), given by (24), for selected sets of
model parameters also has either complex conjugated poles with positive or negative real parts, or purely
imaginary poles.

Although, the plots of transfer function argument from Figure 11b are qualitatively the same as the
ones from Figure 9b, they quantitatively correspond to the generative circuit for relatively low frequencies,
since arguments’ values are above π

2 , while the circuit eventually becomes dissipative: abruptly for
the model parameters corresponding to the solid-line plot when the circuit simultaneously becomes of
inductive type as well, since the argument drops to interval (−π

2 , 0), and gradually either for mid-range
frequencies in the case of dashed-line plots, or for high frequencies in the case of dot-dashed-line plots.
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Figure 11: Frequency characteristics of transfer function modulus and argument for generative-dissipative
RLC circuit, obtained for model parameters: µ = 0.2, β = 0.6, τC = 0.025, τµ = 0.01, τL = 0.95, and
τβ = 5.5 - dot-dashed line, τβ = 0.46607 . . . - solid line, and τβ = 0.01 - dashed line.

In the low frequency limit, the impedance Z
(g)
C of dissipative capacitor, given by (31), dominates the

equivalent impedance and therefore expressions (87) and (88) become

ReZ(gd)
e (ω) = −R

sin µπ
2

τµω1+µ

(

1−
τµω

1+µ

sin µπ
2

+O(ω1+µ+δ)

)

, as ω → 0, (89)

ImZ(gd)
e (ω) = −R

cos µπ
2

τµω1+µ

(

1 +
τµω

µ

τC cos µπ
2

+O(ω1+µ+δ)

)

, as ω → 0, (90)
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where δ is chosen to be smaller than β, i.e., smaller than the order of the leading terms of the real and
imaginary parts of dissipative inductor’s impedance ReZ

(d)
L and ImZ

(d)
L , see (30), implying by (55)1,

(89), and (90) the low frequency asymptotics of the transfer function modulus as
∣

∣

∣ĝ(gd) (ω)
∣

∣

∣

dB
= 20 log

(

τµω
1+µ
)

−10 log

(

1 + 2
τµ

τC
ωµ cos

µπ

2
+

τ2µ

τ2C
ω2µ − 2τµω

1+µ sin
µπ

2
+O(ω1+µ+δ)

)

,

(91)
as ω → 0, while the transfer function argument, by (55)2, (89), and (90), is

cot arg ĝ(gd)(ω) = − tan
µπ

2

(

1−
τµω

µ

τC cos µπ
2

+
τ2µω

2µ

τ2C cos2 µπ
2

+















O(ω3µ), if µ ∈
(

0, 1
2

]

,

−
τµω

1+µ

sin µπ
2

+O(ω3µ), if µ ∈
(

1
2 ,

1+δ
2

]

,

−
τµω

1+µ

sin µπ
2
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as ω → 0, since

cot arg ĝ(gd)(ω) = − tan
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2
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×
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+

{
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(
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,
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(
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2 , 1

)

.

)

In the case of generative-dissipative fractional RLC circuit, as for all previously considered circuits, the
inductive properties are dominant for high frequencies and since the upper limits of orders of leading terms
of generative and dissipative capacitors’ impedances are equal, compare (78) with (64), the high frequency
asymptotics of the real and imaginary parts of circuit’s equivalent impedance ReZ

(gd)
e and ImZ

(gd)
e are

the same as the real and imaginary parts of equivalent impedance of the dissipative-dissipative circuit
ReZ

(dd)
e and ImZ

(dd)
e , i.e., ReZ(gd)

e = ReZ
(dd)
e and ImZ

(gd)
e = ImZ

(dd)
e as ω → ∞, and therefore given

by (62) and (63), yielding the transfer function modulus and argument in the same forms as for the
dissipative-dissipative circuit, i.e., given by the expression (65) for the transfer function modulus and
(66) for the transfer function argument.
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Figure 12: Comparison of frequency characteristics of transfer function modulus and argument (solid
line) with their asymptotics (dashed line) for generative-dissipative RLC circuit, obtained for model
parameters: β = 0.5, τC = 0.07, τµ = 0.01, τL = 0.75, and τβ = 0.5.

Frequency characteristics of transfer function modulus and argument, together with their asymptotics,
are presented in Figure 12. The discussion about the low frequency asymtotic behavior of the generative-
dissipative RLC circuit is the same as for the generative-generative RLC circuit, since the capacitive
character of circuit prevails, compare also the leading terms in the low frequency asymptotics of transfer
function modulus and argument (72) with (91) and (73) with (92), respectively. On the other hand, the
discussion about the high frequency asymtotic behavior of the generative-dissipative circuit is the same
as for the dissipative-dissipative circuit, since the inductive character of circuit prevails, see the leading
terms in the high frequency asymptotics of transfer function modulus and argument (65) and (66).
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5 Conclusion

Constitutive equations of dissipative and generative capacitor (1) and (2), along with the constitutive
models (3) and (4) corresponding to the dissipative and generative inductor are employed to model:
dissipative-dissipative fractional series RLC circuit, consisting of dissipative electric elements, by the
governing equation (5); generative-generative circuit, consisting of generative elements, using the govern-
ing equation (6); as well as to model dissipative-generative and generative-dissipative circuits, consisting
of dissipative capacitor and generative inductor for the former and generative capacitor and dissipative
inductor for the latter, by the governing equations (7) and (8).

Constitutive models of dissipative and generative electric elements, expressed in terms of current and
voltage, are used in the steady-state regime to define the corresponding impedances and admittances,
further to be used in equivalent impedances of the aforementioned RLC circuits. Through the phase angle,
the equivalent impedance determines the energy consumption/production properties of the circuit as well
as its predominant behavior, see (28) and (34). It is concluded that for each of the circuits capacitive
properties prevail for low frequencies, while for the high frequencies inductive properties are dominant,
see (39), (44), (49), and (53). As far as the energy consumption/production properties of the fractional
RLC circuits are concerned, the dissipative-dissipative circuit consumes energy for all frequencies, see
expression (36) and Figure 1, since its constituents are dissipative elements, while all other RLC circuits
may both consume and generate energy, depending on the frequency range, see Figures 2, 3, and 4.
Since capacitive (inductive) properties are dominant for low (high) frequencies, whether the capacitor
(inductor) is dissipative or generative determines the energy consumption/production properties of the
circuit itself for low (high) frequencies.

The equivalent impedance of the fractional RLC circuit also determines the explicit form of transfer
function modulus and argument, see (55), governing the frequency characteristics. The Bode diagrams,
presented in Figures 5, 7, 9, and 11 underline the similarities of the transfer functions corresponding to
the fractional RLC circuits with the integer-order transfer functions. Namely, aforementioned figures
illustrate that if the transfer function has complex conjugated poles, then the corresponding frequency
characteristics of its modulus attains a maximum and then tend to the negative infinity as the frequency
tends to infinity, while the occurrence of purely imaginary poles imply that modulus’ characteristics has
a vertical asymptote. Also, modulus’ frequency characteristics illustrate the fact that transfer function
has a zero of non-integer order at the origin and indicate that all considered RLC circuits behave as
the band-pass filter. Whether the complex conjugated poles of the transfer function have negative or
positive real part, determine whether the frequency characteristics of the transfer function argument
decreases or increases with the increase of frequency, while if poles are purely imaginary, then argument’s
characteristics display a sudden drop by π. Predominant character of the fractional RLC circuit, as
well as its energy consumption/production properties are discussed by the use of argument’s frequency
characteristics.

The leading terms in the low and high frequency asymptotics of transfer function modulus and ar-
gument are useful in determining model parameters, since for low frequencies, the transfer function
modulus is a linear function in logω, with the slope α and intercept τα in cases of dissipative-dissipative
and dissipative-generative RLC circuits, see (60) and (85), while the slope is determined by 1 + µ and
intercept by τµ in cases of generative-generative and generative-dissipative RLC circuits, see (72) and
(91). For high frequencies, the transfer function modulus is a linear function in logω, with the inter-
cept being τL for all fractional RLC circuits, while log | cot arg ĝ(ω)| proves to be a linear function in
logω, with the slopes −1 + β and −ν and intercepts proportional to τβ and τν , see (66) and (80), in
cases of dissipative/generative-dissipative RLC circuit and generative/dissipative-generative RLC circuit,
respectively. Figures 6, 8, 10, and 12 vividly illustrate these statements.
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