Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Normal fuzzy hyperideals in hypernear-rings

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Applying the concept of fuzzy sets to hypernear-rings, Davvaz introduced the notion of a fuzzy hyperideal as early as 1999, and it has been studied by several authors. In this paper, we introduce the notion of fuzzy hyperideals in hypernear-rings and investigate some related properties. Also, we characterize maximal fuzzy hyperideals and show that every maximal fuzzy hyperideal of a hypernear-ring is completely normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abou-Zaid S (1991) On fuzzy sub-near-rings and ideals. Fuzzy Sets Syst 44:139–146

    Article  MATH  MathSciNet  Google Scholar 

  2. Ameri R, Zahedi MM (1999) Hyperalgebraic system. Ital J Pure Appl Math 6:21–32

    MATH  MathSciNet  Google Scholar 

  3. Bakhshi M, Borzooei RA (2007) Lattice structure on fuzzy congruence relations of a hypergroupoid. Inf Scisy 177:3305–3313

    Article  MATH  MathSciNet  Google Scholar 

  4. Clay JR (1992) Near-rings: geneses and applications. Oxford, New York

    Google Scholar 

  5. Corsini P (1993) Prolegomena of hypergroup theory, 2nd edn. Aviani editor, Udine

    Google Scholar 

  6. Corsini P (1994) Join spaces, power sets, fuzzy sets. In: Stefanescu M (ed) Proceedings of the 5th international congress on algebraic hyperstructures and applications. Iaşi, Romania, 4–10 July 1993. Hadronic Press, Palm Harbor, pp 45–52

  7. Corsini P, Leoreanu V (2003) Applications of hyperstructure theory (advances in mathematics). Kluwer, Dordrecht

    Google Scholar 

  8. Corsini P, Tofan T (1997) On fuzzy hypergroups. Pure Math Appl 8:29–37

    MATH  MathSciNet  Google Scholar 

  9. Cristea I (2009) Hyperstructures and fuzzy sets endowed with two membership functions. Fuzzy Sets Syst 160(8):1114–1124

    Article  MATH  MathSciNet  Google Scholar 

  10. Cristea I, Davvaz B (2010) Atanassov’s intuitionistic fuzzy grade of hypergroups. Inf Sci 180(8):1506–1517

    Article  MATH  Google Scholar 

  11. Dasic V (1990) Hypernear-rings. In: Proceedings of fourth international congress on AHA. World Scientific, pp 75–85

  12. Davvaz B (1999) Fuzzy H v -groups. Fuzzy Sets Syst 101:191–195

    Article  MATH  MathSciNet  Google Scholar 

  13. Davvaz B (1999) On hypernear-rings and fuzzy hyperideals. J Fuzzy Math 7:745–753

    MATH  MathSciNet  Google Scholar 

  14. Davvaz B (1999) Interval-valued fuzzy subhypergroups. Korean J Comput Appl Math 6:197–202

    MATH  MathSciNet  Google Scholar 

  15. Davvaz B (2000) H v -near-rings. Math Japonica 52:387–392

    MATH  MathSciNet  Google Scholar 

  16. Davvaz B (2000) Product of fuzzy H v -groups. Fuzzy Math 8:43–51

    MATH  MathSciNet  Google Scholar 

  17. Davvaz B (2001) Fuzzy H v -submodules. Fuzzy Sets Syst 117:477–484

    Article  MATH  MathSciNet  Google Scholar 

  18. Davvaz B (2001) Fuzzy ideals of near-rings with interval-valued membership functions. J Sci Islam Repub Iran 12:171–175

    MathSciNet  Google Scholar 

  19. Davvaz B (2003) A study on the structure of H v -near-rings modules. Indian J Pure Appl Math 34:693–700

    MATH  MathSciNet  Google Scholar 

  20. Davvaz B (2003) A brief survey of the theory of H v -structures. In: Proceedings of 8th international congress on AHA, Greece 2002, Spanidis Press, pp 39–70

  21. Davvaz B (2004) T H and S H - interval-valued fuzzy H ϑ subgroups. Indian J Pure Appl Math 35:61–69

    MATH  MathSciNet  Google Scholar 

  22. Davvaz D (2006) (∈ , ∈ ∨q)-fuzzy subnear-rings and ideals. Soft Comput 10:206–211

    Article  MATH  Google Scholar 

  23. Davvaz B, Corsini P (2006) Generalized fuzzy hyperideals of hypernear-rings and many valued implications. J Intell Fuzzy Syst 17:241–251

    MATH  Google Scholar 

  24. Davvaz B, Dudek WA, Jun YB (2006) Intuitionistic fuzzy Hv-submodules. Inf Sci 176:285–300

    Article  MATH  MathSciNet  Google Scholar 

  25. Davvaz B, Kim KH (2006) Generalized hypernear-ring modules. Southeast Asian Bull Math 30:621–630

    MATH  MathSciNet  Google Scholar 

  26. Davvaz B, Zhan J, Kim KH (2010) Fuzzy Γ-hypernear-rings. Comput Math Appl 59(8):2846–2853

    Article  MATH  MathSciNet  Google Scholar 

  27. Dutta TK, Biswas BK (2002) On fuzzy congress of a near-ring module. Fuzzy Sets Syst 112:343–348

    Article  MathSciNet  Google Scholar 

  28. Gontineac VM (1994) On hypernear-rings and H-hypergroups. In: Proceedings of fifth international congress on AHA 1993, Hadronic Press, USA, pp 171–179

  29. Kim KH (2003) On intuitionistic fuzzy sub-hypernear-rings of hypernear-rings. Turkish J Math 27:447–459

    MATH  MathSciNet  Google Scholar 

  30. Kim KH, Jun YB (2001) Normal fuzzy R-subgroups in near-rings. Fuzzy Sets Syst 121:341–345

    Article  MATH  MathSciNet  Google Scholar 

  31. Kim KH, Davvaz B, Roh EH (2006) On fuzzy hyper R-subgroups of hypernear-rings. Ital J Pure Appl Math 20:177–192

    MATH  MathSciNet  Google Scholar 

  32. Kim KH, Jun YB, Yon YH (2005) On anti fuzzy ideals in near-rings, Iran. J Fuzzy Syst 2:71–80

    MATH  MathSciNet  Google Scholar 

  33. Krasner M (1983) A class of hyperrings and hyperfields. Int J Math Math Sci 2:307–312

    Article  MathSciNet  Google Scholar 

  34. Leoreanu V, Davvaz B (2009) Fuzzy hyperrings. Fuzzy Sets Syst 160:2366–2378

    Article  MATH  Google Scholar 

  35. Marty F (1934) Sur une generalization de la notation de grouse. In: 8th congress, Math Scandianaves, Stockholm, pp 45–49

  36. Meldrum JDP (1985) Near-rings and their link with groups, Pitman Publishing, Boston, London, Melbourne

    Google Scholar 

  37. Pilz G (1983) Near-rings. The theory and its applications. North-Holand, Amesterdam

    MATH  Google Scholar 

  38. Roh EH , Davvaz B, Kim KH (2005) T-fuzzy subhypernear-rings of hypernear-rings. Sci Math Japonica 61:535–545

    MATH  MathSciNet  Google Scholar 

  39. Rosenfeld A (1971) Fuzzy groups. J Math Anal Appl 35:512–517

    Article  MATH  MathSciNet  Google Scholar 

  40. Vougiouklis T (1994) Hyperstructures and their representations. Hadronic Press Inc., Palm Harber

    MATH  Google Scholar 

  41. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  42. Zahedi MM, Bolurian M, Hasankhani A (1995) On polygroups and fuzzy subpolygroups. J Fuzzy Math 3:1–15

    MATH  MathSciNet  Google Scholar 

  43. Zhan J (2006) On properties of fuzzy hyperideals in hypernear-rings with t-norms. J Appl Math Comput 20:255–277

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhan J, Davvaz B, Shum KP (2008) A new view of fuzzy hypernear-rings. Inf Sci 178:425–438

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to referees and Professor John Maclntyre, Editor-in-Chief, for their valuable comments and suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yamak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamak, S., Kazancı, O. & Davvaz, B. Normal fuzzy hyperideals in hypernear-rings. Neural Comput & Applic 20, 25–30 (2011). https://doi.org/10.1007/s00521-010-0459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0459-4

Keywords

Navigation