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Abstract: Although conventional control systems are simple and widely used, they may not be 

effective for complex and uncertain systems. This study proposes a Hermite broad-learning 

recurrent neural network (HBRNN) to address such challenges. The HBRNN has a wide 

network structure and incorporates an internal feedback loop that enables fast learning and 

dynamic mapping. Furthermore, a Hermite broad-learning recurrent neural control (HBRNC) 

with the HBRNN as the main controller is proposed. All the network parameters of the 

HBRNN are updated online according to parameter learning laws through the gradient descent 

approach. To prevent network parameter overtraining of the HBRNN, an adaptive learning rate 

(ALR) is established using a discrete-type Lyapunov function to determine the least upper 

bound for the learning rate. The ALR can dynamically adjust the learning rates within specified 

ranges during the training process, thus achieving an appropriate balance between convergence 

speed and system stability. Finally, the HBRNC system with ALR is applied to a chaotic circuit 

and a reaction wheel pendulum, and its effectiveness is validated through simulation and 

experimentation. 

 

Keywords: Hermite broad-learning system; online parameter learning; adaptive learning rate; 

Lyapunov function; gradient descent approach. 
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1.  Introduction 

In linear systems, the output is directly proportional to the input, resulting in linear 

characteristics with a simple mathematical equation. Nonlinear systems can be found in various 

real-world applications in fields ranging from physics and engineering to biology, economics, 

and social sciences. Because of their complex and unpredictable behavior, nonlinear systems 

are unable to exhibit a linear relationship between the input and output variables, making their 

analysis and control more challenging compared to linear systems. To address these challenges, 

researchers have developed several methods for controlling nonlinear systems, including 

feedback linearization, sliding-mode control, adaptive control, and backstepping control, 

among others. These control systems rely on mathematical models of system dynamics; 

however, obtaining accurate models for many real-time control applications can be challenging 

or even impossible.  

Recently, deep-learning neural networks have emerged as powerful tools for modeling and 

approximating complex nonlinear relationships, even in changing or uncertain environments, 

making them well-suited for solving control problems that lack explicit knowledge of dynamic 

models (Cheng et al., 2019; Fang et al., 2019; Elhaki and Shojaei, 2020; Huynh et al., 2020; 

Zhang et al., 2022; Zhang and Wai, 2022). However, deep-learning neural networks have 

certain drawbacks, including complex network structures, high computational power 

requirements, and the requirement of a substantial amount of training data. These complexities 

pose challenges for deploying and running deep-learning neural networks in real-time control 

applications, where quick and efficient processing is crucial. 

As an alternative learning architecture, a broad learning system (BLS) was proposed to 

address some of the limitations of deep-learning neural networks (Chen and Liu, 2018). Unlike 

deep-learning neural  networks, the BLS is realized through broad expansion in order to reduce 

the computational complexity, memory requirements, and processing delays associated with 
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deep-learning neural networks (Wang et al., 2021; Tian et al., 2022; Yi et al., 2022). The BLS 

achieves good performance without requiring a large number of training parameters, making it 

more suitable for real-time control applications. Feng and Chen (2018) proposed a BLS control 

system in which network parameters are tuned online using the gradient descent approach; 

however, the control strategy has not yet undergone a stability analysis. Sui et al. (2020) and 

Huang et al. (2020) utilized a BLS to identify unknown dynamic models while ensuring global 

stability and finite-time stability. Xu et al. (2022) employed a BLS to develop a control strategy 

for microswimmer trajectory tracking. Additionally, Yuan et al. (2022) applied 

approximation-based adaptive optimal control and a BLS to model unknown dynamics and 

approximated an optimal cost function and an optimal control law using two BLSs. 

Although these BLS controllers outperform deep-learning neural controllers in terms of 

robustness and convergence speed, the sparse autoencoder in the BLS requires numerous 

iterations to converge to an optimal solution. To mitigate the computational burden, a fuzzy 

broad learning system (FBLS) was proposed, where each feature node is replaced by a set of 

fuzzy logic systems (Tsai et al., 2020; Han et al., 2022; Bai et al., 2022; Chen et al., 2022). 

Although the FBLS demonstrates good effectiveness and low computational cost, a major 

drawback is that its inherent feed-forward network structure limits its application to static 

problems. To enable dynamic mapping capabilities, Du et al. (2021), Huang et al. (2021) and 

Wang et al. (2022) proposed a broad long short-term memory network and Hsu et al. (2022) 

proposed a broad-learning recurrent Hermite neural network to enhance the learning process 

for modeling complex systems while maintaining the same width design as the BLS and FBLS.  

However, determining an appropriate learning rate in parameter learning laws can be a 

challenging and time-consuming task. If the learning rate is too law, then convergence may 

require an excessively long time, whereas if the learning rate is too high, this can lead to 

oscillations during the learning process. In most studies, the learning rate is typically set as a 



Submit to Soft Comput 

4 

constant and determines the step size for each parameter update. However, employing a fixed 

learning rate can sometimes result in suboptimal convergence or slow learning (Feng and Chen, 

2018; Sui et al., 2020; Huang et al., 2020; Xu et al., 2022; Yuan et al., 2022). Instead of using a 

fixed learning rate, researchers have explored the use of adaptive learning rate (ALR) 

techniques to optimize learning performance. Fan et al. (2019) proposed a time-based learning 

rate schedule, where the learning rates decrease over time and iterations. Zhao and Lin (2019), 

Lin et al. (2021), and Tsai et al. (2020) determined the least upper bound of the learning rate 

through theoretical analysis using a discrete-type Lyapunov function to ensure system stability. 

Le and Ngo (2022) applied the Jaya algorithm to obtain the optimal learning rate for the 

designed parameter adaptation laws. 

Motivated by the above discussion, this study proposes a Hermite broad-learning recurrent 

neural network (HBRNN), which has the advantages of high accuracy, significantly short 

training time, and dynamic mapping ability. Additionally, the proposed HBRNN can mimic an 

ideal controller and be used to realize a Hermite broad-learning recurrent neural control 

(HBRNC) system, which can be operated without explicit knowledge of dynamic models. The 

HBRNC system consists of a neural controller using an HBRNN and a supervisory controller to 

handle approximator errors introduced by the neural controller. The stability of the HBRNC 

system was ensured using a Lyapunov function. To enhance the learning capability of the 

HBRNN, a fully tuned parameter learning law was applied to adjust all the parameters of the 

HBRNN based on the online gradient descent method. Furthermore, this study proposes a novel 

ALR based on a discrete-type Lyapunov function, capable of dynamically adjusting the 

learning rate of parameter learning laws during the training process to ensure the convergence 

of tracking errors and increase the convergence speed. Finally, the HBRNC system was applied 

to a chaotic circuit and a reaction wheel pendulum. The simulation and experimental results 

indicated that the HBRNC system with ALR can achieve superior control performance.  
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2.  Problem Formulation 

Consider an nth-order nonlinear system defined as follows: 

 ugfx n )()()( xx +=  (1) 

where Tnxxx ],,,[ )1( −= K&x  is the state vector, )(xf  and 0)( ≠xg  represent the system 

dynamics, and   is the control input. A control rule is designed such that the system state x  

closely tracks a desired reference command cx . The tracking error can be defined as: 

 xxe c −= . (2) 

To simplify the controller design process, the error dynamics can be expressed as follows (Hsu 

and Lee, 2017): 

 uze n −= )()( x  (3) 

where: 
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is the lumped dynamics term. Therefore, an ideal controller *u  can be designed as (Slotine and 

Li, 1991): 

 ekx
Tzu += )(

*
 (5) 

where 
T

nkkk ],...,,[ 21=k , 
Tneee ],...,,[

)1( −= &e , and niki ,..,2,1, =  are positive constant gains. 

Substituting (5) into (3) yields: 

 0)( =+ ek
Tne . (6) 

The dynamics equation (6) can be expressed as a state vector as follows: 
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where: 
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Using appropriate niki ,..,2,1, = , the control performances such as rise time, settling time, and 

overshoot can be determined (Slotine and Li, 1991). However, designing accurate models with 

the lumped dynamics term )(xz  can be challenging or even impossible in many real-time 

control applications. On the other hand, sliding-mode control is a robust and effective control 

technique with various advantages, such as robustness, fast response, and insensitivity to 

modeling errors, making it a valuable approach for various control applications (Slotine and Li, 

1991). A sliding surface with a special integral term was proposed by Wai et al. (2014): 

 τd
C

CCs
t

Λe
e

e
ee ∫ ∂

∂−−=
0

0

)(
)()(  (9) 

where )(eC  is the vector to be designed, and 0e  is the initial state of e . From (8) and (9), 

0=s  at 0=t  and: 

 Λe
e

e
e

e

e

∂
∂−

∂
∂= )()( CC

s && 0= . (10) 

Unlike traditional sliding-mode control, the sliding surface is maintained at   at all time instants. 

There is also no reaching phase, so the ideal controller provides superior robustness against 

system uncertainties and disturbances (Slotine and Li, 1991). 

 

3.  Description of HBRNN 

Although deep-learning neural networks have achieved remarkable success in various 

control applications, they often consist of multiple layers with a large number of interconnected 

nodes or neurons. As a result, deep-learning neural networks have high computational and 
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memory requirements, making them unsuitable for real-time control applications that 

necessitate fast and efficient processing. Figure 1 illustrates the network structure of the 

proposed HBRNN, which comprises an input layer, a recurrent feature layer, an enhancement 

layer, and an output layer. 

Layer 1 (Input Layer): 

This is the first layer of HBRNN, where the input data is fed into the network. The input 

variable to layer 1 is given by the sliding surface s  in (9) to reduce the network complexity and 

computational burden.  

Layer 2 (Recurrent Feature Layer): 

The recurrent feature layer is responsible for capturing temporal dependencies in the input 

sequence. There are m  feature subsystems in HBRNN, where the i-th Hermite node of the j-th 

feature subsystem is given as (Hsu et al., 2022): 

 )(
!2

1
)(

)
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(
2

sHe
i

sh i

s

i
ji

−=
π

, for li ,...,2,1=  (11) 

where: 
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M
. (12) 

The output of j-th feature subsystem can be expressed as: 

 ji

l

i
jij hvV ∑

=

=
0

, for mj ,...,2,1=  (13) 

where jiv  are the adjustable parameters of j-th subsystem and the output signal of recurrent 

node is given as: 

 )( 00

pre
j

pre
jj hVh ⋅+= κψ  (14) 



Submit to Soft Comput 

8 

in which pre
jV  denotes the output signal of j-th subsystem in the previous time, pre

jh 0  denotes the 

output signal of a recurrent node in the previous time, )(⋅ψ  is the sigmoid function, and 

10 ≤≤ κ  is the fixed feedback gain value. This feedback mechanism facilitates dynamic 

mapping by incorporating previous outputs as part of the current input, making HBRNN 

suitable for controlling nonlinear dynamic systems. 

Layer 3 (Enhancement Layer): 

The enhancement layer aims to enhance the representation learned from the recurrent 

feature layer by incorporating additional information or modeling higher-level dependencies. 

There are n  groups of enhancement nodes in HBRNN. The output of k-th enhancement node 

can be expressed as: 

 )(
0

∑
=

=
m

j
jjkk VwW ξ , for nk ,...,2,1=  (15) 

where jkw  are the adjustable parameters of k-th group of enhancement nodes, 10 =V  and )(⋅ξ  

is the hyperbolic tangent function. 

Layer 4 (Output Layer): 

The output layer is the final layer of HBRNN, where the network produces the desired 

output. By connecting the Hermite feature layer and the enhancement layer, it means that 

HBRNN has a flatted structure. The HBRNN output denotes as: 

 ∑∑
==

+=
n

k
kk

m

j
jjnc WVu

11

βα  (16) 

where jα  and kβ  are the adjustable parameters of output layer. For ease of notation, the 

HBRNN output can be re-expressed as:  

 WβVα
TT

ncu +=  (17) 
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where T
m ],,[ 1 αα K=α , T

n ],,[ 1 ββ K=β , T
mVV ],,[ 1 K=V  and T

nWW ],,[ 1 K=W . Assume 

that an optimal HBRNN can approximate the ideal controller *u  in (5) such that (Wnag, 1994): 

 ε++= WβVα TTu ***  (18) 

where *
α  and *β  are the optimal parameter vectors of α  and β , respectively, and ε  denotes 

the approximation error assumed to be bounded as E≤≤ ε0 .  

It is worth noting that the HBRNN incorporates an internal feedback loop to capture the 

dynamic responses without relying on external feedback through delays, thus improving the 

dynamic characteristics and convergence speed. Unlike traditional deep-learning neural 

networks that rely on stacking multiple layers to capture complex representations, the proposed 

HBRNN extends the network width while maintaining a shallow architecture. Thus, the 

HBRNN has fewer hyperparameters compared with deep-learning neural networks, making it 

more suitable for controller design applications. 

 

4.  Design of the HBRNC System 

The proposed HBRNC system for the nth-order nonlinear system, as shown in Fig. 2, can 

be defined as: 

 sc
TT

scnchc uuuu ++=+= WβVα ˆˆ  (19) 

The neural controller ncu  uses an HBRNN to approximate the ideal controller *u  in (5), the 

supervisor controller scu  is designed to cope with the approximator error introduced by the 

neural controller, and α̂  and β̂  are the optimal parameter vectors of α  and β , respectively.  

4.1. Stability Analysis 

Substituting (19) into (3) and using (5) yield: 
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where T]1,...,0,0[=b . A sliding surface is choose as (9), then differentiating (9) with respect to 

time and using (20) give as: 

 Λe
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s &&  

 scnc uuu −−= *  (21) 

where )(eC  is designed to satisfy ]1,...,0,0[
)( =

∂
∂

e

eC
. Using the universal approximation 

theorem (Wnag, 1994), (21) can be rewritten as: 

 s& sc
TTTT u−−−++= WβVαWβVα ˆˆ** ε  

 sc
TT u−++= εWβVα

~~  (22) 

where ααα ˆ~ * −=  and βββ ˆ~ * −= . To analysis the stability of the HBRNC system, a Lyapunov 

function is defined by: 
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where αη  and βη  are the learning rates. Taking the derivative of the Lyapunov function yields: 
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If the parameter learning laws and supervisor controller are derived as: 

 Vα sαη=&̂  (25) 

 Wβ sβη=&̂  (26) 

 )sgn(sEusc =  (27) 

(24) can be obtained as: 

 sEsV −= ε1
&  

 sEs −≤ ε  

 0)( ≤−−= sE ε . (28) 

Therefore, the stability of the HBRNC system can be guaranteed using the parameter learning 

laws (25) and (26) and supervisor controller (27) in the sense of the Lyapunov function (Slotine 

and Li, 1991). 

4.2. Full-Tuned Parameter Learning Law 

To increase the learning capability of  HBRNN, a full-tuned parameter learning law should 

be considered to online adjust all the parameters of HBRNN. A cost function is defined as: 

 2

2

1
e=Ω . (29) 

The parameter learning law of parameters jα  in output layer using the gradient descent method 

can be represented as (Lin and Lee, 1996): 
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where 
ncu∂

Ω∂
 is the Jacobian term of the system. Comparing (25) with (30), the Jacobian term 

can be obtained as: 

 s
unc

−=
∂

Ω∂
 (31) 

and 

 
e

s

u

e
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−=
∂
∂

. (32) 

Thus, the parameter learning law of parameters jα  and kβ  can be represented as: 

 jj sVαηα =∆  (33) 
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Further, the parameter learning laws of parameters jkw  and jiv  can be given as: 
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where wη  and vη  are the learning rates.  

4.3 Adaptive Learning Rate 

The selection of learning rates in the parameter learning laws (33)–(36) has a significant 

impact on the network performance of HBRNN. If the learning rates are too high, the network 

may undergo oscillations or fail to converge during the learning process. Conversely, if the 

leaning rates are too low, then this may result in slow parameter learning. In this study, an ALR 

was derived for the designed parameter learning laws to accelerate the convergence of HBRNN 

parameters. The ALR assigns four specific learning rates to the designed parameter learning 

laws (33)–(36) to ensure  accurate tracking control of the HBRNC system. The learning rates 

for each layer are specified in the Appendix. 

Unlike the previous study conducted by Hsu et al. (2022), this study incorporated two 

features. (1) A sliding surface with a special integral term was employed through a 

sliding-mode control approach to enhance robustness and the complexity of the network was 

further reduced by feeding the sliding surface into an HBRNN. (2) A discrete-type Lyapunov 

function was employed to determine the learning rate ranges, ensuring the convergence of the 

tracking error. Additionally, the ALR was applied to adjust the learning rates within a given 

range to accelerate the convergence of network parameters.  

 

5.  Simulation and Experimental Results 
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The effectiveness of the proposed HBRNC system with ALR was verified using two 

systems: a chaotic circuit and a reaction wheel pendulum. 

5.1. Chaotic Circuit 

The chaotic circuit is a well-known electronic circuit that exhibits chaotic behavior. It is 

designed to produce complex and nonlinear dynamics, including chaos and bifurcations. The 

behavior of a chaotic circuit is highly sensitive to initial conditions and system parameters. It 

has been utilized in various applications, such as random number generators, secure 

communications, and even artistic installations. The dynamic equation of the chaotic circuit, as 

proposed by Wang et al. (2002), is expressed as follows: 

 ufx += )()3( x  (37) 

where Txxx ],,[ &&&=x  is the state vector,  

 xxf &
9025

168

1805

14
)( −=x −+ x&&

38

1 3)
95

7

361

28
(

45

2
xxx &&& ++   (38) 

is the system dynamics, and u  is the control input. The open-loop system behavior is simulated 

with two different initial points, as shown in Fig. 3. The uncontrolled chaotic system is 

sensitive to the initial points, such that even small changes in the initial points can lead to 

significantly different trajectories over time. 

To demonstrate the control performance of the HBRNC system in this study, a set of low 

learning rates ( 01.0==== vw ηηηη βα ) was applied to control the chaotic circuit. The 

controller parameters were set as 11 =k , 32 =k , 33 =k , 5.0=κ , and 01.0=E . The 

simulation results of the HBRNC system with low learning rates for the chaotic circuit are 

shown in Fig. 4. They show that the HBRNC system with low learning rates can easily achieve 

parameter convergence; however, the corresponding learning speed is low. Subsequently, a set 

of high learning rates ( 8.0==== vw ηηηη βα ) was employed to accelerate the convergence 
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of the tracking error. The simulation results of the HBRNC system with high learning rates for 

the chaotic circuit are shown in Fig. 5. They show that the HBRNC system with high learning 

rates can achieve better control performance and faster convergence; however, the parameter 

overtraining of the HBRNN caused a phenomenon called chattering. Comparing Figs. 4 and 5 

reveals that a fixed learning rate may not be optimal for all stages of training. 

Finally, the HBRNC system with ALR was employed to control the chaotic circuit again, 

where the learning rates ( αη , βη , wη  and vη ) were dynamically adjusted during the training 

process using the developed ALR. The simulation results of the HBRNC system with ALR for 

the chaotic circuit are shown in Fig. 6. They show that the HBRNC system with ALR can 

achieve faster convergence and better performance for both initial points compared to the 

HBRNC system with a fixed learning rate. 

5.2. Reaction Wheel Pendulum 

As shown in Fig. 7, the reaction wheel pendulum offers a challenging and practical 

nonlinear system for testing and verifying control schemes. The reaction wheel is a spinning 

flywheel that can generate a torque when its angular momentum is changed. The dynamic 

equation of the reaction wheel pendulum is given as (Zhang et al., 2020; Jiang and Astolfi, 

2021; Chen et al., 2022): 

 τφφ
pprcpppprcpp

prcpp

JlmlmJlmlm

glmlm

++
−

++
+

−=
2222

2
sin

)(
&&  (39) 

where φ  is the pendulum angle, τ  is the control input torque acting on the reaction wheel, and 

definitions of other parameter symbols are given in Table 1. The control objective is to drive 

the pendulum at an upward unstable balance point and keep it controlled there. To investigate 

the effectiveness of the proposed HBRNC method, a payload scenario and a disturbance 

scenario are tested. A comparison among the fuzzy neural control (FNC) (Chang et al., 2018), 
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the fuzzy broad-learning neural control (FBNC) (Chen et al., 2022), and the proposed HBRNC 

is made. 

First, the FNC system (Chang et al., 2018) is applied to the reaction wheel pendulum. The 

structure settings of the used fuzzy neural network are as follows: one node in the input layer, 

seven Gaussian functions in the membership layer, and one node in the output layer. The 

controller parameters are selected as 201 =k , 1002 =k , 2.0=κ , 1.0=ωη , and 

01.0== cηησ , where ωη  is the learning rate in the output layer, and ση  and cη  are the 

learning rates in the membership layer. The experimental results of the AFNC system for the 

reaction wheel pendulum are shown in Fig. 8. They demonstrate that the AFNC system can 

stabilize the pendulum at the upward unstable equilibrium point, under the effect of the added 

payloads and external disturbances. However, the swing amplitude on the pendulum is large in 

both test scenarios.  

Next, the FBNC system (Chen et al., 2022) is applied to the reaction wheel pendulum again. 

The structure settings of the used FBLS are as follows: five fuzzy subsystems, three fuzzy sets 

of each input, two enhancement nodes, and one output node. The controller parameters are 

selected as 4.0=wk , 201 =k , 1002 =k , 1.0== βα ηη , 01.0== cηησ , and 001.0== ba ηη , 

where αη  and βη  are the learning rates in the output layer, ση  and cη  are the learning rates in 

the feature layer, and aη  and bη  are the learning rates in the enhancement layer. The 

experimental results of the AFBNC system for the reaction wheel pendulum are shown in Fig. 9. 

It shows that the AFBNC system can stabilize the pendulum at the upward unstable equilibrium 

point with a smaller swing amplitude and faster convergence speed, thanks to the stronger 

capability of the FBLS, compared to the fuzzy neural network.  

Finally, the HBRNC system is applied to the reaction wheel pendulum again. The structure 

settings of the used HBRNN are as follows: five feature subsystems, three Hermite nodes for 
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each input, and three enhancement nodes. The controller parameters are selected as 201 =k , 

1002 =k , and 2.0=κ . The experimental results of the HBRNC system with low learning rates 

( 02.0== βα ηη , 01.0== vw ηη ) for the reaction wheel pendulum are shown in Fig. 10. 

Though the HBRNC system with low learning rates can stabilize the pendulum at the upward 

unstable equilibrium point, the corresponding learning speed is low. To increase the 

convergence speed, the experimental results of the HBRNC system with high learning rates 

( 1.0==== vw ηηηη βα ) for the reaction wheel pendulum are shown in Fig. 11. It 

demonstrates that better control performance and faster convergence can be obtained. However, 

in both test scenarios, it is observed that the chattering phenomenon of control input results in 

high-frequency and small jitter in the pendulum angle, which is caused by the parameter 

overtraining problem of HBRNN. The chattering phenomenon will result in damage to 

actuators or plants, and the system may even eventually become unstable. Setting an 

appropriate learning rate is crucial as it affects the convergence speed of the network 

parameters and the outcome of the control response. 

Additionally, the HBRNC system with ALR is applied to the reaction wheel pendulum 

again. The controller parameters are selected as 201 =k , 1002 =k , and 2.0=κ . The learning 

rates ( αη , βη , wη  and vη ) are dynamically adjusted during the training process using the 

proposed ALR. The experimental results of the HBRNC system with ALR for the reaction 

wheel pendulum are shown in Fig. 12. They show the HBRNC system with ALR in both test 

scenarios not only successfully stabilizes the pendulum at the upward unstable equilibrium 

point but also effectively mitigates the chattering phenomenon caused by the parameter 

overtraining problem. Utilizing the developed ALR, the HBRNC system can ensure that the 

reaction wheel pendulum system has a fast tracking error convergence speed and can prevent 
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the control signal from oscillating to help maintain the stability of the reaction wheel pendulum 

system. 

 

5  Conclusions 

The main contributions of this study are as follows. (1) A Hermite broad-learning recurrent 

neural network (HBRNN) was designed to facilitate rapid learning and dynamic mapping by 

employing a specific network structure constructed through broad expansion, coupled with an 

internal feedback loop. (2) A Hermite broad-learning recurrent neural control (HBRNC) 

system was developed for controlling an unknown nonlinear system. The parameters of the 

proposed HBRNN can be updated online using the designed parameter learning laws, and the 

stability of the HBRNC system can be ensured through Lyapunov stability analysis. (3) A 

discrete-type Lyapunov function was employed to determine the learning rate ranges that can 

ensure the convergence of tracking error. An adaptive learning rate (ALR) was employed to 

adjust the learning rate within a specified range in order to accelerate the convergence of 

network parameters. (4) Simulation and experimental results showed that the proposed 

HBRNC system with ALR is effective in handling control problems. Finally, a comparison of 

control characteristics, presented in Table 2, showed that the HBRNC system with ALR not 

only has the advantages of simplicity and lightweight implementation but also the ability to 

quickly adapt network parameters and avoid overtraining problems. 

 

Appendix 

Theorem 1: Let αη , βη , wη  and vη  be the learning rates for the parameters learning laws 

of HBRNN. Define maxαP  as )(maxmax NPP
N

αα = , where 
j

ncNP
α
τ

α ∂
∂

=)( ; define maxβP  as 



Submit to Soft Comput 

19 

)(maxmax NPP
N

ββ = , where 
k

ncu
NP

ββ ∂
∂=)( ; define maxwP  as )(maxmax NPP w

N
w = , where 

jk

nc
w w

NP
∂
∂

=
τ

)( ; define maxvP  as )(maxmax NPP v
N

v = , where 
ji

nc
v v

u
NP

∂
∂=)( . Thus, the system 

stability can be guaranteed if αη  and βη  are chosen as 
2

max

*

)(

1

Vm
=αη  and 

n

2* =βη , 

respectively, in which j
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VV maxmax = ; wη  and vη  are chosen as 
2
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*
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2

Vmnw β
η =  and 

2
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*
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2
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= , respectively, in which j
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ww
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∂
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ββ )( , the following result can be 

concluded: 
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k
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1
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From (A3) and (A4), the inequalities can be obtained as: 

 jkw VNP β≤)( jk Vβ≤ maxmaxVmnβ≤  (A5) 

 ∑
=
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n

k
jkkjv wNP

1

)( βα  
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 maxmaxmax wnβα +≤  (A6) 

To ensure the system stability, consider a discrete-type Lyapunov function as follows: 

 )(
2

1
)( 2

2 NeNV =  (A7) 

where N denotes the number of iteration. The change of discrete-type Lyapunov function can be 

expressed as: 
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The error difference can be represented by: 
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  (A9) 

where )(Ne∆  respects a change in system output, and jα∆ , kβ∆ , jkw∆ , and jiv∆  respect a 

parameter change in output layer, enhancement layer and recurrent feature layer, respectively. 



Submit to Soft Comput 

21 

Define 
ncu

e

∂
∂=ξ  as a positive constant designed by the user, (A9) using (33)–(36), (A1), (A2), 

(A5) and (A6) can be obtained as: 

 )1( +Ne ( ))()(1)( 2 NPNPNe T
αααξη−= ( ))()(1)( 2 NPNPNe T

βββξη−+  
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If the learning rates for the parameters learning laws of HBRNN are selected as follows: 
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the term )()(1 2 NPNPT
αααδη− , )()(1 2 NPNPT

βββδη− , )()(1 2 NPNP w
T

wwδη−  and 

)()(1 2 NPNP v
T

vvδη−  are less than 1. According to )()1( NeNe <+ , the Lyapunov stability 

of 0)(2 >NV  and 0)(2 <∆ NV  can be guaranteed. Thus, the discrete-type Lyapunov approach 

can find the learning rate ranges that allows the ALR can efficiently train HBRNN, where the 

learning rates are designed as 
2

* α
α

ηη = , 
2

* β
β

η
η = , 

2

* w
w

ηη =  and 
2

* v
v

ηη =  for the parameters 

learning laws of HBRNN (33)–(36), respectively.  
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Table 1: Parameter symbol definition of reaction wheel pendulum 

 

φ  pendulum angle 

τ  motor torque acting on the reaction wheel 

pm , rm  pendulum mass, reaction wheel mass 

pl  pendulum length 

cpl  distance to the pendulum center of mass 

g  gravity acceleration 

pJ  pendulum moment of inertia 

rJ  reaction wheel moment of inertia 
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Table 2: Characteristic comparison 

 

 
FNC FBNC 

HBRNC with low 

learning rates 

HBRNC with high 

learning rates 
HBRNC with ALR 

robustness 

ability 
nice great nice excellent excellent 

stability proof yes yes yes yes yes 

learning ability yes yes yes yes yes 

learning speed slow middle slow fast fast 

implementation 

complex 
middle hard hard hard hard 

control 

chattering 
no no no yes no 
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Figure 1: Network Structure of HBRNN 
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Figure 2: Block Diagram of the HBRNC system with ALR 
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Figure 3: Behavior of Uncontrolled Chaotic Circuit 

(a) initial point )0,0,1( ; (b) initial point )0,1,1(−  
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Figure 4: Simulation Results of the HBRNC System with Low Learning Rates 

(a)–(d) initial point )0,0,1( ; (e)–(h) initial point )0,1,1(−  
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Figure 5: (Cont.) 
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Figure 5: Simulation Results of the HBRNC System with High Learning Rates 

(a)–(d) initial point )0,0,1( ; (e)–(h) initial point )0,1,1(−  
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Figure 6: Simulation Results of the HBRNC System with ALR 

(a)–(e) initial point )0,0,1( ; (f)–(j) initial point )0,1,1(−  
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Figure 7: Microcontroller-Based Experimental Setup 
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Figure 8: Experimental Results of the AFNC System 

(a),(b) payload scenario; (c),(d) disturbance scenario 
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Figure 9: Experimental Results of the AFBNC System 

(a),(b) payload scenario; (c),(d) disturbance scenario 



Submit to Soft Comput 

42 

 

 

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

 

(d
eg

re
e)

place one 
weight

remove
both weights

1sec 5

place one 
weight

0

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

 

(d
eg

re
e)

place one 
weight

remove
both weights

1sec 5

place one 
weight

0

 
 

time (sec)

(b)

1sec

place one 
weight

remove
both weights

place one 
weight

0

m
o

to
r 

to
rq

u
e

(N
m

)

1.0

time (sec)

(b)

1sec

place one 
weight

remove
both weights

place one 
weight

0

m
o

to
r 

to
rq

u
e

(N
m

)

1.0

 
 

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

 

(d
eg

re
e)

collide with 
one weight

collide with 
one weight

1sec 5

0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

 

(d
eg

re
e)

collide with 
one weight

collide with 
one weight

1sec 5

0

 
 

time (sec)

(d)

1sec

collide with 
one weight

collide with 
one weight

0

m
o

to
r 

to
rq

u
e

(N
m

)

1.0

time (sec)

(d)

1sec

collide with 
one weight

collide with 
one weight

0

m
o

to
r 

to
rq

u
e

(N
m

)

1.0

 
 

Figure 10: Experimental Results of the HBRNC System with Low Learning Rates 

(a),(b) payload scenario; (c),(d) disturbance scenario 
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Figure 11: Experimental Results of the HBRNC System with High Learning Rates 

(a),(b) payload scenario; (c),(d) disturbance scenario 
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Figure 12: Experimental Results of the HBRNC System with ALR 

(a),(b) payload scenario; (c),(d) disturbance scenario 


