
Hermite Broad-Learning Recurrent Neural Control
with Adaptive Learning Rate for Nonlinear Systems
Chun-Fei Hsu ( 140930@o365.tku.edu.tw)

Tamkang University https://orcid.org/0000-0002-1950-8774
Bo-Rui Chen

National Yang Ming Chiao Tung University

Research Article

Keywords: Hermite broad-learning system, online parameter learning, adaptive learning rate, Lyapunov
function, gradient descent approach

Posted Date: August 28th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3133875/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Soft Computing on December 16th, 2023.
See the published version at https://doi.org/10.1007/s00500-023-09481-2.

https://doi.org/10.21203/rs.3.rs-3133875/v1
mailto:140930@o365.tku.edu.tw
https://orcid.org/0000-0002-1950-8774
https://doi.org/10.21203/rs.3.rs-3133875/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-023-09481-2

Submit to Soft Comput

1

Hermite Broad-Learning Recurrent Neural Control with

Adaptive Learning Rate for Nonlinear Systems

Chun-Fei Hsu
1
 and Bo-Rui Chen

2

1
Department of Electrical Engineering, Tamkang University,

New Taipei City 25137, Taiwan

E-mail: fei@ee.tku.edu.tw

2
Department of Electrical and Computer Engineering, Institute of Electrical and Control

Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

E-mail: gogo40101.ee08@nycu.edu.tw

Abstract: Although conventional control systems are simple and widely used, they may not be

effective for complex and uncertain systems. This study proposes a Hermite broad-learning

recurrent neural network (HBRNN) to address such challenges. The HBRNN has a wide

network structure and incorporates an internal feedback loop that enables fast learning and

dynamic mapping. Furthermore, a Hermite broad-learning recurrent neural control (HBRNC)

with the HBRNN as the main controller is proposed. All the network parameters of the

HBRNN are updated online according to parameter learning laws through the gradient descent

approach. To prevent network parameter overtraining of the HBRNN, an adaptive learning rate

(ALR) is established using a discrete-type Lyapunov function to determine the least upper

bound for the learning rate. The ALR can dynamically adjust the learning rates within specified

ranges during the training process, thus achieving an appropriate balance between convergence

speed and system stability. Finally, the HBRNC system with ALR is applied to a chaotic circuit

and a reaction wheel pendulum, and its effectiveness is validated through simulation and

experimentation.

Keywords: Hermite broad-learning system; online parameter learning; adaptive learning rate;

Lyapunov function; gradient descent approach.

Submit to Soft Comput

2

1. Introduction

In linear systems, the output is directly proportional to the input, resulting in linear

characteristics with a simple mathematical equation. Nonlinear systems can be found in various

real-world applications in fields ranging from physics and engineering to biology, economics,

and social sciences. Because of their complex and unpredictable behavior, nonlinear systems

are unable to exhibit a linear relationship between the input and output variables, making their

analysis and control more challenging compared to linear systems. To address these challenges,

researchers have developed several methods for controlling nonlinear systems, including

feedback linearization, sliding-mode control, adaptive control, and backstepping control,

among others. These control systems rely on mathematical models of system dynamics;

however, obtaining accurate models for many real-time control applications can be challenging

or even impossible.

Recently, deep-learning neural networks have emerged as powerful tools for modeling and

approximating complex nonlinear relationships, even in changing or uncertain environments,

making them well-suited for solving control problems that lack explicit knowledge of dynamic

models (Cheng et al., 2019; Fang et al., 2019; Elhaki and Shojaei, 2020; Huynh et al., 2020;

Zhang et al., 2022; Zhang and Wai, 2022). However, deep-learning neural networks have

certain drawbacks, including complex network structures, high computational power

requirements, and the requirement of a substantial amount of training data. These complexities

pose challenges for deploying and running deep-learning neural networks in real-time control

applications, where quick and efficient processing is crucial.

As an alternative learning architecture, a broad learning system (BLS) was proposed to

address some of the limitations of deep-learning neural networks (Chen and Liu, 2018). Unlike

deep-learning neural networks, the BLS is realized through broad expansion in order to reduce

the computational complexity, memory requirements, and processing delays associated with

Submit to Soft Comput

3

deep-learning neural networks (Wang et al., 2021; Tian et al., 2022; Yi et al., 2022). The BLS

achieves good performance without requiring a large number of training parameters, making it

more suitable for real-time control applications. Feng and Chen (2018) proposed a BLS control

system in which network parameters are tuned online using the gradient descent approach;

however, the control strategy has not yet undergone a stability analysis. Sui et al. (2020) and

Huang et al. (2020) utilized a BLS to identify unknown dynamic models while ensuring global

stability and finite-time stability. Xu et al. (2022) employed a BLS to develop a control strategy

for microswimmer trajectory tracking. Additionally, Yuan et al. (2022) applied

approximation-based adaptive optimal control and a BLS to model unknown dynamics and

approximated an optimal cost function and an optimal control law using two BLSs.

Although these BLS controllers outperform deep-learning neural controllers in terms of

robustness and convergence speed, the sparse autoencoder in the BLS requires numerous

iterations to converge to an optimal solution. To mitigate the computational burden, a fuzzy

broad learning system (FBLS) was proposed, where each feature node is replaced by a set of

fuzzy logic systems (Tsai et al., 2020; Han et al., 2022; Bai et al., 2022; Chen et al., 2022).

Although the FBLS demonstrates good effectiveness and low computational cost, a major

drawback is that its inherent feed-forward network structure limits its application to static

problems. To enable dynamic mapping capabilities, Du et al. (2021), Huang et al. (2021) and

Wang et al. (2022) proposed a broad long short-term memory network and Hsu et al. (2022)

proposed a broad-learning recurrent Hermite neural network to enhance the learning process

for modeling complex systems while maintaining the same width design as the BLS and FBLS.

However, determining an appropriate learning rate in parameter learning laws can be a

challenging and time-consuming task. If the learning rate is too law, then convergence may

require an excessively long time, whereas if the learning rate is too high, this can lead to

oscillations during the learning process. In most studies, the learning rate is typically set as a

Submit to Soft Comput

4

constant and determines the step size for each parameter update. However, employing a fixed

learning rate can sometimes result in suboptimal convergence or slow learning (Feng and Chen,

2018; Sui et al., 2020; Huang et al., 2020; Xu et al., 2022; Yuan et al., 2022). Instead of using a

fixed learning rate, researchers have explored the use of adaptive learning rate (ALR)

techniques to optimize learning performance. Fan et al. (2019) proposed a time-based learning

rate schedule, where the learning rates decrease over time and iterations. Zhao and Lin (2019),

Lin et al. (2021), and Tsai et al. (2020) determined the least upper bound of the learning rate

through theoretical analysis using a discrete-type Lyapunov function to ensure system stability.

Le and Ngo (2022) applied the Jaya algorithm to obtain the optimal learning rate for the

designed parameter adaptation laws.

Motivated by the above discussion, this study proposes a Hermite broad-learning recurrent

neural network (HBRNN), which has the advantages of high accuracy, significantly short

training time, and dynamic mapping ability. Additionally, the proposed HBRNN can mimic an

ideal controller and be used to realize a Hermite broad-learning recurrent neural control

(HBRNC) system, which can be operated without explicit knowledge of dynamic models. The

HBRNC system consists of a neural controller using an HBRNN and a supervisory controller to

handle approximator errors introduced by the neural controller. The stability of the HBRNC

system was ensured using a Lyapunov function. To enhance the learning capability of the

HBRNN, a fully tuned parameter learning law was applied to adjust all the parameters of the

HBRNN based on the online gradient descent method. Furthermore, this study proposes a novel

ALR based on a discrete-type Lyapunov function, capable of dynamically adjusting the

learning rate of parameter learning laws during the training process to ensure the convergence

of tracking errors and increase the convergence speed. Finally, the HBRNC system was applied

to a chaotic circuit and a reaction wheel pendulum. The simulation and experimental results

indicated that the HBRNC system with ALR can achieve superior control performance.

Submit to Soft Comput

5

2. Problem Formulation

Consider an nth-order nonlinear system defined as follows:

 ugfx n)()()(xx += (1)

where Tnxxx],,,[)1(−= K&x is the state vector,)(xf and 0)(≠xg represent the system

dynamics, and is the control input. A control rule is designed such that the system state x

closely tracks a desired reference command cx . The tracking error can be defined as:

 xxe c −= . (2)

To simplify the controller design process, the error dynamics can be expressed as follows (Hsu

and Lee, 2017):

 uze n −=)()(x (3)

where:

)(

)(
)

)(

1
1()()()(

x

x

x
x

g

f
x

g
xz nn

c −−−= (4)

is the lumped dynamics term. Therefore, an ideal controller *u can be designed as (Slotine and

Li, 1991):

 ekx
Tzu +=)(

*
 (5)

where
T

nkkk],...,,[21=k ,
Tneee],...,,[

)1(−= &e , and niki ,..,2,1, = are positive constant gains.

Substituting (5) into (3) yields:

 0)(=+ ek
Tne . (6)

The dynamics equation (6) can be expressed as a state vector as follows:

 Λeee =



















−−−

=

nkkk L

MMM

L

L

&

21

1

100

010

 (7)

Submit to Soft Comput

6

where:



















−−−

=

nkkk L

MMM

L

L

21

1

100

010

Λ . (8)

Using appropriate niki ,..,2,1, = , the control performances such as rise time, settling time, and

overshoot can be determined (Slotine and Li, 1991). However, designing accurate models with

the lumped dynamics term)(xz can be challenging or even impossible in many real-time

control applications. On the other hand, sliding-mode control is a robust and effective control

technique with various advantages, such as robustness, fast response, and insensitivity to

modeling errors, making it a valuable approach for various control applications (Slotine and Li,

1991). A sliding surface with a special integral term was proposed by Wai et al. (2014):

 τd
C

CCs
t

Λe
e

e
ee ∫ ∂

∂−−=
0

0

)(
)()((9)

where)(eC is the vector to be designed, and 0e is the initial state of e . From (8) and (9),

0=s at 0=t and:

 Λe
e

e
e

e

e

∂
∂−

∂
∂=)()(CC

s && 0= . (10)

Unlike traditional sliding-mode control, the sliding surface is maintained at at all time instants.

There is also no reaching phase, so the ideal controller provides superior robustness against

system uncertainties and disturbances (Slotine and Li, 1991).

3. Description of HBRNN

Although deep-learning neural networks have achieved remarkable success in various

control applications, they often consist of multiple layers with a large number of interconnected

nodes or neurons. As a result, deep-learning neural networks have high computational and

Submit to Soft Comput

7

memory requirements, making them unsuitable for real-time control applications that

necessitate fast and efficient processing. Figure 1 illustrates the network structure of the

proposed HBRNN, which comprises an input layer, a recurrent feature layer, an enhancement

layer, and an output layer.

Layer 1 (Input Layer):

This is the first layer of HBRNN, where the input data is fed into the network. The input

variable to layer 1 is given by the sliding surface s in (9) to reduce the network complexity and

computational burden.

Layer 2 (Recurrent Feature Layer):

The recurrent feature layer is responsible for capturing temporal dependencies in the input

sequence. There are m feature subsystems in HBRNN, where the i-th Hermite node of the j-th

feature subsystem is given as (Hsu et al., 2022):

)(
!2

1
)(

)
2

(
2

sHe
i

sh i

s

i
ji

−=
π

, for li ,...,2,1= (11)

where:

3),()1(2)(2)(

2)(
1)(

21

2

1

≥−−=

=
=

−− lsHlssHsH

ssH
sH

lll

M
. (12)

The output of j-th feature subsystem can be expressed as:

 ji

l

i
jij hvV ∑

=

=
0

, for mj ,...,2,1= (13)

where jiv are the adjustable parameters of j-th subsystem and the output signal of recurrent

node is given as:

)(00

pre
j

pre
jj hVh ⋅+= κψ (14)

Submit to Soft Comput

8

in which pre
jV denotes the output signal of j-th subsystem in the previous time, pre

jh 0 denotes the

output signal of a recurrent node in the previous time,)(⋅ψ is the sigmoid function, and

10 ≤≤ κ is the fixed feedback gain value. This feedback mechanism facilitates dynamic

mapping by incorporating previous outputs as part of the current input, making HBRNN

suitable for controlling nonlinear dynamic systems.

Layer 3 (Enhancement Layer):

The enhancement layer aims to enhance the representation learned from the recurrent

feature layer by incorporating additional information or modeling higher-level dependencies.

There are n groups of enhancement nodes in HBRNN. The output of k-th enhancement node

can be expressed as:

)(
0

∑
=

=
m

j
jjkk VwW ξ , for nk ,...,2,1= (15)

where jkw are the adjustable parameters of k-th group of enhancement nodes, 10 =V and)(⋅ξ

is the hyperbolic tangent function.

Layer 4 (Output Layer):

The output layer is the final layer of HBRNN, where the network produces the desired

output. By connecting the Hermite feature layer and the enhancement layer, it means that

HBRNN has a flatted structure. The HBRNN output denotes as:

 ∑∑
==

+=
n

k
kk

m

j
jjnc WVu

11

βα (16)

where jα and kβ are the adjustable parameters of output layer. For ease of notation, the

HBRNN output can be re-expressed as:

 WβVα
TT

ncu += (17)

Submit to Soft Comput

9

where T
m],,[1 αα K=α , T

n],,[1 ββ K=β , T
mVV],,[1 K=V and T

nWW],,[1 K=W . Assume

that an optimal HBRNN can approximate the ideal controller *u in (5) such that (Wnag, 1994):

 ε++= WβVα TTu *** (18)

where *
α and *β are the optimal parameter vectors of α and β , respectively, and ε denotes

the approximation error assumed to be bounded as E≤≤ ε0 .

It is worth noting that the HBRNN incorporates an internal feedback loop to capture the

dynamic responses without relying on external feedback through delays, thus improving the

dynamic characteristics and convergence speed. Unlike traditional deep-learning neural

networks that rely on stacking multiple layers to capture complex representations, the proposed

HBRNN extends the network width while maintaining a shallow architecture. Thus, the

HBRNN has fewer hyperparameters compared with deep-learning neural networks, making it

more suitable for controller design applications.

4. Design of the HBRNC System

The proposed HBRNC system for the nth-order nonlinear system, as shown in Fig. 2, can

be defined as:

 sc
TT

scnchc uuuu ++=+= WβVα ˆˆ (19)

The neural controller ncu uses an HBRNN to approximate the ideal controller *u in (5), the

supervisor controller scu is designed to cope with the approximator error introduced by the

neural controller, and α̂ and β̂ are the optimal parameter vectors of α and β , respectively.

4.1. Stability Analysis

Substituting (19) into (3) and using (5) yield:

Submit to Soft Comput

10

)(

1

0

0

1

100

010

*

21

scnc

n

uuu

kkk

−−



















+



















−−−

=
M

L

MMM

L

L

& ee

)(*

scnc uuu −−+= bΛe (20)

where T]1,...,0,0[=b . A sliding surface is choose as (9), then differentiating (9) with respect to

time and using (20) give as:

 Λe
e

e
e

e

e

∂
∂−

∂
∂=)()(CC

s &&

 scnc uuu −−= * (21)

where)(eC is designed to satisfy]1,...,0,0[
)(=

∂
∂

e

eC
. Using the universal approximation

theorem (Wnag, 1994), (21) can be rewritten as:

 s& sc
TTTT u−−−++= WβVαWβVα ˆˆ** ε

 sc
TT u−++= εWβVα

~~ (22)

where ααα ˆ~ * −= and βββ ˆ~ * −= . To analysis the stability of the HBRNC system, a Lyapunov

function is defined by:

 ββαα
~~

2

1~~

2

1

2

1 2

1

TTsV
βα ηη

++= (23)

where αη and βη are the learning rates. Taking the derivative of the Lyapunov function yields:

 ββαα
&&&& ~~1~~1

1

TTssV
βα ηη

++=

 ββααWβVα
&& ˆ~1

ˆ~1
)

~~(TT
sc

TT us
βα ηη

ε −−−++=

)()ˆ1
(

~
)ˆ

1
(~

sc
TT usss −+−+−= ε

ηη βα

βWβαVα
&& (24)

Submit to Soft Comput

11

If the parameter learning laws and supervisor controller are derived as:

 Vα sαη=&̂ (25)

 Wβ sβη=&̂ (26)

)sgn(sEusc = (27)

(24) can be obtained as:

 sEsV −= ε1
&

 sEs −≤ ε

 0)(≤−−= sE ε . (28)

Therefore, the stability of the HBRNC system can be guaranteed using the parameter learning

laws (25) and (26) and supervisor controller (27) in the sense of the Lyapunov function (Slotine

and Li, 1991).

4.2. Full-Tuned Parameter Learning Law

To increase the learning capability of HBRNN, a full-tuned parameter learning law should

be considered to online adjust all the parameters of HBRNN. A cost function is defined as:

 2

2

1
e=Ω . (29)

The parameter learning law of parameters jα in output layer using the gradient descent method

can be represented as (Lin and Lee, 1996):

j

j α
ηα α ∂

Ω∂−=∆

j

nc

nc

u

u α
ηα ∂

∂
∂

Ω∂−=

 j
nc

V
u∂
Ω∂−= αη (30)

Submit to Soft Comput

12

where
ncu∂

Ω∂
 is the Jacobian term of the system. Comparing (25) with (30), the Jacobian term

can be obtained as:

 s
unc

−=
∂

Ω∂
 (31)

and

e

s

u

e

nc

−=
∂
∂

. (32)

Thus, the parameter learning law of parameters jα and kβ can be represented as:

 jj sVαηα =∆ (33)

k

k β
ηβ β ∂

Ω∂−=∆

j

nc

nc

u

u β
η β ∂

∂
∂

Ω∂−=

 ksWβη= (34)

Further, the parameter learning laws of parameters jkw and jiv can be given as:

jk

wjk w
w

∂
Ω∂−=∆ η

jk

k

k

nc

nc
w w

W

W

u

u ∂
∂

∂
∂

∂
Ω∂−= η

 j

m

j
jjkkw VVws 









−= ∑

=
)(1

0

2ξβη

 () jkkw VWs 21−= βη (35)

ji

vji v
v

∂
Ω∂−=∆ η

Submit to Soft Comput

13

ji

j
n

k j

k

k

nc

j

nc

nc
v v

V

V

W

W

u

V

u

u ∂
∂















∂
∂

∂
∂+

∂
∂

∂
Ω∂−= ∑

=1

η

 ji

m

j
jjk

n

k
jkkjv hVwws
























−+= ∑∑

==

)(1
0

2

1

ξβαη

 () jik

n

k
jkkjv hWws 







 −+= ∑
=

2

1

1βαη (36)

where wη and vη are the learning rates.

4.3 Adaptive Learning Rate

The selection of learning rates in the parameter learning laws (33)–(36) has a significant

impact on the network performance of HBRNN. If the learning rates are too high, the network

may undergo oscillations or fail to converge during the learning process. Conversely, if the

leaning rates are too low, then this may result in slow parameter learning. In this study, an ALR

was derived for the designed parameter learning laws to accelerate the convergence of HBRNN

parameters. The ALR assigns four specific learning rates to the designed parameter learning

laws (33)–(36) to ensure accurate tracking control of the HBRNC system. The learning rates

for each layer are specified in the Appendix.

Unlike the previous study conducted by Hsu et al. (2022), this study incorporated two

features. (1) A sliding surface with a special integral term was employed through a

sliding-mode control approach to enhance robustness and the complexity of the network was

further reduced by feeding the sliding surface into an HBRNN. (2) A discrete-type Lyapunov

function was employed to determine the learning rate ranges, ensuring the convergence of the

tracking error. Additionally, the ALR was applied to adjust the learning rates within a given

range to accelerate the convergence of network parameters.

5. Simulation and Experimental Results

Submit to Soft Comput

14

The effectiveness of the proposed HBRNC system with ALR was verified using two

systems: a chaotic circuit and a reaction wheel pendulum.

5.1. Chaotic Circuit

The chaotic circuit is a well-known electronic circuit that exhibits chaotic behavior. It is

designed to produce complex and nonlinear dynamics, including chaos and bifurcations. The

behavior of a chaotic circuit is highly sensitive to initial conditions and system parameters. It

has been utilized in various applications, such as random number generators, secure

communications, and even artistic installations. The dynamic equation of the chaotic circuit, as

proposed by Wang et al. (2002), is expressed as follows:

 ufx +=)()3(x (37)

where Txxx],,[&&&=x is the state vector,

 xxf &
9025

168

1805

14
)(−=x −+ x&&

38

1 3)
95

7

361

28
(

45

2
xxx &&& ++ (38)

is the system dynamics, and u is the control input. The open-loop system behavior is simulated

with two different initial points, as shown in Fig. 3. The uncontrolled chaotic system is

sensitive to the initial points, such that even small changes in the initial points can lead to

significantly different trajectories over time.

To demonstrate the control performance of the HBRNC system in this study, a set of low

learning rates (01.0==== vw ηηηη βα) was applied to control the chaotic circuit. The

controller parameters were set as 11 =k , 32 =k , 33 =k , 5.0=κ , and 01.0=E . The

simulation results of the HBRNC system with low learning rates for the chaotic circuit are

shown in Fig. 4. They show that the HBRNC system with low learning rates can easily achieve

parameter convergence; however, the corresponding learning speed is low. Subsequently, a set

of high learning rates (8.0==== vw ηηηη βα) was employed to accelerate the convergence

Submit to Soft Comput

15

of the tracking error. The simulation results of the HBRNC system with high learning rates for

the chaotic circuit are shown in Fig. 5. They show that the HBRNC system with high learning

rates can achieve better control performance and faster convergence; however, the parameter

overtraining of the HBRNN caused a phenomenon called chattering. Comparing Figs. 4 and 5

reveals that a fixed learning rate may not be optimal for all stages of training.

Finally, the HBRNC system with ALR was employed to control the chaotic circuit again,

where the learning rates (αη , βη , wη and vη) were dynamically adjusted during the training

process using the developed ALR. The simulation results of the HBRNC system with ALR for

the chaotic circuit are shown in Fig. 6. They show that the HBRNC system with ALR can

achieve faster convergence and better performance for both initial points compared to the

HBRNC system with a fixed learning rate.

5.2. Reaction Wheel Pendulum

As shown in Fig. 7, the reaction wheel pendulum offers a challenging and practical

nonlinear system for testing and verifying control schemes. The reaction wheel is a spinning

flywheel that can generate a torque when its angular momentum is changed. The dynamic

equation of the reaction wheel pendulum is given as (Zhang et al., 2020; Jiang and Astolfi,

2021; Chen et al., 2022):

 τφφ
pprcpppprcpp

prcpp

JlmlmJlmlm

glmlm

++
−

++
+

−=
2222

2
sin

)(
&& (39)

where φ is the pendulum angle, τ is the control input torque acting on the reaction wheel, and

definitions of other parameter symbols are given in Table 1. The control objective is to drive

the pendulum at an upward unstable balance point and keep it controlled there. To investigate

the effectiveness of the proposed HBRNC method, a payload scenario and a disturbance

scenario are tested. A comparison among the fuzzy neural control (FNC) (Chang et al., 2018),

Submit to Soft Comput

16

the fuzzy broad-learning neural control (FBNC) (Chen et al., 2022), and the proposed HBRNC

is made.

First, the FNC system (Chang et al., 2018) is applied to the reaction wheel pendulum. The

structure settings of the used fuzzy neural network are as follows: one node in the input layer,

seven Gaussian functions in the membership layer, and one node in the output layer. The

controller parameters are selected as 201 =k , 1002 =k , 2.0=κ , 1.0=ωη , and

01.0== cηησ , where ωη is the learning rate in the output layer, and ση and cη are the

learning rates in the membership layer. The experimental results of the AFNC system for the

reaction wheel pendulum are shown in Fig. 8. They demonstrate that the AFNC system can

stabilize the pendulum at the upward unstable equilibrium point, under the effect of the added

payloads and external disturbances. However, the swing amplitude on the pendulum is large in

both test scenarios.

Next, the FBNC system (Chen et al., 2022) is applied to the reaction wheel pendulum again.

The structure settings of the used FBLS are as follows: five fuzzy subsystems, three fuzzy sets

of each input, two enhancement nodes, and one output node. The controller parameters are

selected as 4.0=wk , 201 =k , 1002 =k , 1.0== βα ηη , 01.0== cηησ , and 001.0== ba ηη ,

where αη and βη are the learning rates in the output layer, ση and cη are the learning rates in

the feature layer, and aη and bη are the learning rates in the enhancement layer. The

experimental results of the AFBNC system for the reaction wheel pendulum are shown in Fig. 9.

It shows that the AFBNC system can stabilize the pendulum at the upward unstable equilibrium

point with a smaller swing amplitude and faster convergence speed, thanks to the stronger

capability of the FBLS, compared to the fuzzy neural network.

Finally, the HBRNC system is applied to the reaction wheel pendulum again. The structure

settings of the used HBRNN are as follows: five feature subsystems, three Hermite nodes for

Submit to Soft Comput

17

each input, and three enhancement nodes. The controller parameters are selected as 201 =k ,

1002 =k , and 2.0=κ . The experimental results of the HBRNC system with low learning rates

(02.0== βα ηη , 01.0== vw ηη) for the reaction wheel pendulum are shown in Fig. 10.

Though the HBRNC system with low learning rates can stabilize the pendulum at the upward

unstable equilibrium point, the corresponding learning speed is low. To increase the

convergence speed, the experimental results of the HBRNC system with high learning rates

(1.0==== vw ηηηη βα) for the reaction wheel pendulum are shown in Fig. 11. It

demonstrates that better control performance and faster convergence can be obtained. However,

in both test scenarios, it is observed that the chattering phenomenon of control input results in

high-frequency and small jitter in the pendulum angle, which is caused by the parameter

overtraining problem of HBRNN. The chattering phenomenon will result in damage to

actuators or plants, and the system may even eventually become unstable. Setting an

appropriate learning rate is crucial as it affects the convergence speed of the network

parameters and the outcome of the control response.

Additionally, the HBRNC system with ALR is applied to the reaction wheel pendulum

again. The controller parameters are selected as 201 =k , 1002 =k , and 2.0=κ . The learning

rates (αη , βη , wη and vη) are dynamically adjusted during the training process using the

proposed ALR. The experimental results of the HBRNC system with ALR for the reaction

wheel pendulum are shown in Fig. 12. They show the HBRNC system with ALR in both test

scenarios not only successfully stabilizes the pendulum at the upward unstable equilibrium

point but also effectively mitigates the chattering phenomenon caused by the parameter

overtraining problem. Utilizing the developed ALR, the HBRNC system can ensure that the

reaction wheel pendulum system has a fast tracking error convergence speed and can prevent

Submit to Soft Comput

18

the control signal from oscillating to help maintain the stability of the reaction wheel pendulum

system.

5 Conclusions

The main contributions of this study are as follows. (1) A Hermite broad-learning recurrent

neural network (HBRNN) was designed to facilitate rapid learning and dynamic mapping by

employing a specific network structure constructed through broad expansion, coupled with an

internal feedback loop. (2) A Hermite broad-learning recurrent neural control (HBRNC)

system was developed for controlling an unknown nonlinear system. The parameters of the

proposed HBRNN can be updated online using the designed parameter learning laws, and the

stability of the HBRNC system can be ensured through Lyapunov stability analysis. (3) A

discrete-type Lyapunov function was employed to determine the learning rate ranges that can

ensure the convergence of tracking error. An adaptive learning rate (ALR) was employed to

adjust the learning rate within a specified range in order to accelerate the convergence of

network parameters. (4) Simulation and experimental results showed that the proposed

HBRNC system with ALR is effective in handling control problems. Finally, a comparison of

control characteristics, presented in Table 2, showed that the HBRNC system with ALR not

only has the advantages of simplicity and lightweight implementation but also the ability to

quickly adapt network parameters and avoid overtraining problems.

Appendix

Theorem 1: Let αη , βη , wη and vη be the learning rates for the parameters learning laws

of HBRNN. Define maxαP as)(maxmax NPP
N

αα = , where
j

ncNP
α
τ

α ∂
∂

=)(; define maxβP as

Submit to Soft Comput

19

)(maxmax NPP
N

ββ = , where
k

ncu
NP

ββ ∂
∂=)(; define maxwP as)(maxmax NPP w

N
w = , where

jk

nc
w w

NP
∂
∂

=
τ

)(; define maxvP as)(maxmax NPP v
N

v = , where
ji

nc
v v

u
NP

∂
∂=)(. Thus, the system

stability can be guaranteed if αη and βη are chosen as
2

max

*

)(

1

Vm
=αη and

n

2* =βη ,

respectively, in which j
j

VV maxmax = ; wη and vη are chosen as
2

maxmax

*

)(

2

Vmnw β
η = and

2

maxmaxmax

*

)(

2

wnv βα
η

+
= , respectively, in which j

j
αα maxmax = , k

k
ββ maxmax = and

jk
kj

ww
,

max max= .

Proof: Since j
j

nc VNP =
∂
∂

=
α
τ

α)(and k
k

nc W
u

NP =
∂
∂=

ββ)(, the following result can be

concluded:

 max)(VmNP <α (A1)

 nNP <)(β (A2)

The upper bounds of)(NPw and)(NPv can be derived as follows:

jk

k

k

nc

jk

nc
w w

W

W

u

w

u
NP

∂
∂

∂
∂=

∂
∂=)(

 () jkk VW 21−= β

 jkVβ≤ (A3)

ji

j
n

k j

k

k

nc

j

nc

ji

nc
v v

V

V

W

W

u

V

u

v

u
NP

∂
∂















∂
∂

∂
∂+

∂
∂=

∂
∂= ∑

=1

)(

 () jik

n

k
jkkj hWw 







 −+= ∑
=

2

1

1βα

Submit to Soft Comput

20

 ()2

1

1 k

n

k
jkkj Ww −+≤ ∑

=

βα

 ∑
=

+≤
n

k
jkkj w

1

βα (A4)

From (A3) and (A4), the inequalities can be obtained as:

 jkw VNP β≤)(jk Vβ≤ maxmaxVmnβ≤ (A5)

 ∑
=

+≤
n

k
jkkjv wNP

1

)(βα

 ∑
=

+≤
n

k
jkkj w

1

βα

 maxmaxmax wnβα +≤ (A6)

To ensure the system stability, consider a discrete-type Lyapunov function as follows:

)(
2

1
)(2

2 NeNV = (A7)

where N denotes the number of iteration. The change of discrete-type Lyapunov function can be

expressed as:

 [])()1(
2

1
)()1()(22

222 NeNeNVNVNV −+=−+=∆ (A8)

The error difference can be represented by:

)()()1(NeNeNe ∆+=+

 ji

T

ji
jk

T

jk
k

T

k
j

T

j

v
v

Ne
w

w

NeNeNe
Ne ∆













∂
∂+∆













∂
∂+∆









∂
∂+∆













∂
∂+=)()()()(

)(β
β

α
α

 (A9)

where)(Ne∆ respects a change in system output, and jα∆ , kβ∆ , jkw∆ , and jiv∆ respect a

parameter change in output layer, enhancement layer and recurrent feature layer, respectively.

Submit to Soft Comput

21

Define
ncu

e

∂
∂=ξ as a positive constant designed by the user, (A9) using (33)–(36), (A1), (A2),

(A5) and (A6) can be obtained as:

)1(+Ne ())()(1)(2 NPNPNe T
αααξη−= ())()(1)(2 NPNPNe T

βββξη−+

 ())()(1)(2 NPNPNe w
T

wwξη−+ ())()(1)(2 NPNPNe v
T

vvξη−+

)()(1)(2 NPNPNe T
αααξη−≤)()(1)(2 NPNPNe T

βββξη−+

)()(1)(2 NPNPNe w
T

wwξη−+)()(1)(2 NPNPNe v
T

vvξη−+ (A10)

If the learning rates for the parameters learning laws of HBRNN are selected as follows:

2

max

2

max)(

1

)(

1

VmP ξξ
η

α
α == (A11)

22

max

1

)(

1

ξξ
η

β
β nP

== (A12)

2

maxmax

2

max)(

1

)(

1

VmnPw
w ξβξ

η == (A13)

2

maxmaxmax

2

max))((

1

)(

1

wnPv
v βαξξ

η
+

== (A14)

the term)()(1 2 NPNPT
αααδη− ,)()(1 2 NPNPT

βββδη− ,)()(1 2 NPNP w
T

wwδη− and

)()(1 2 NPNP v
T

vvδη− are less than 1. According to)()1(NeNe <+ , the Lyapunov stability

of 0)(2 >NV and 0)(2 <∆ NV can be guaranteed. Thus, the discrete-type Lyapunov approach

can find the learning rate ranges that allows the ALR can efficiently train HBRNN, where the

learning rates are designed as
2

* α
α

ηη = ,
2

* β
β

η
η = ,

2

* w
w

ηη = and
2

* v
v

ηη = for the parameters

learning laws of HBRNN (33)–(36), respectively.

Acknowledgment

Submit to Soft Comput

22

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, the

Republic of China, under contract MOST 110-2221-E-032-038-MY2.

Declarations

Funding (The study was funded by the Ministry of Science and Technology of Republic of

China under Grant MOST 110-2221-E-032-038-MY2)

Conflict of interest (We confirm that there are no known conflicts of interest associated with

this publication and there has been no significant financial support for this work that could have

influenced its outcome)

Availability of data and material (Not applicable)

Code availability (Not applicable)

Data availability (Not applicable)

Authors' contributions (We confirm that the manuscript has been read and approved by all

named authors and that there are no other persons who satisfied the criteria for authorship but

are not listed)

Ethics approval (Not applicable)

Consent to participate (Not applicable)

Consent for publication (We confirm that there are no impediments to publication, including

the timing of publication, with respect to intellectual property)

Submit to Soft Comput

23

References

Bai, K., Zhu, X., Wen, S., Zhang, R., Zhang, W., 2022. Broad learning based dynamic fuzzy

inference system with adaptive structure and interpretable fuzzy rules. IEEE Transactions

on Fuzzy Systems 30(8), 3270–3283.

Chang, C.W., Hsu, C.F., Lee, T.T., 2018. Backstepping-based finite-time adaptive fuzzy

control of unknown nonlinear systems. International Journal of Fuzzy Systems 20,

2545–2555.

Chen, B.R., Hsu, C.F., Wu. B.F., 2022. Microcontroller-based intelligent control for reaction

wheel pendulums using a fuzzy broad-learning system. 2022 International Conference on

Fuzzy Theory and Its Applications, 1–5.

Chen, C.L.P., Liu, Z., 2018. Broad learning system: an effective and efficient incremental

learning system without the need for deep architecture. IEEE Transactions on Neural

Networks and Learning Systems 29(1), 10–24.

Cheng, L., Wang, Z., Jiang, F., Zhou, C., 2019. Real-time optimal control for spacecraft orbit

transfer via multiscale deep neural networks. IEEE Transactions on Aerospace and

Electronic Systems 55(5), 2436–2450.

Du, J., Vong, C.M., Chen, C.L.P., 2021. Novel efficient RNN and LSTM-like architectures:

recurrent and gated broad learning systems and their applications for text classification.

IEEE Transactions on Cybernetics 51(3), 1586–1597.

Elhaki, O., Shojaei, K., 2020. A robust neural network approximation-based prescribed

performance output-feedback controller for autonomous underwater vehicles with

actuators saturation. Engineering Applications of Artificial Intelligence 88, 103382.

Fan, L., Zhang, T., Zhao, X., Wang, H., Zheng, M., 2019. Deep topology network: A

framework based on feedback adjustment learning rate for image classification. Advanced

Engineering Informatics 42, Art. no. 100935.

Submit to Soft Comput

24

Fang, W., Chao, F., Yang, L., Lin, C.M., Shang, C., Zhou, C., Shen, Q., 2019. Arecurrent

emotional cmac neural network controller for vision-based mobile robots.

Neurocomputing 334, 227–238.

Feng, S., Chen, C.L.P., 2018. Broad learning system for control of nonlinear dynamic systems.

2018 IEEE International Conference on Systems, Man and Cybernetics, 2230–223.

Han, H.G., Liu, Z., Liu, H., Qiao, J., Chen, C.L.P., 2022. Type-2 fuzzy broad learning system.

IEEE Transactions on Cybernetics 52(10), 10352–10363.

Hsu, C.F., Lee, T.T., 2017. Emotional fuzzy sliding-mode control for unknown nonlinear

systems. International Journal of Fuzzy Systems 19, 942–953.

Hsu, C.F., Chen, B.R., Wu, B.F., 2022. Broad-learning recurrent Hermite neural control for

unknown nonlinear systems. Knowledge-Based Systems 242, Art no. 108263.

Huang, H., Zhang, T., Yang, C., Chen, C.L.P., 2020. Motor learning and generalization using

broad learning adaptive neural control. IEEE Transactions on Industrial Electronics 67(10),

8608–8617.

Huang, S., Rong, L., Chang, X., Wang, Z., Yuan, Z., Wei, C., Santos, O.J., 2021.

BLSTM-based adaptive finite-time output-constrained control for a class of AUSs with

dynamic disturbances and actuator faults. Mathematical Problems in Engineering, Art no.

2221495.

Huynh, T., Lin, C., Le, T., Cho, H., Pham, T.T., Le, N., Chao, F., 2020. A new self-organizing

fuzzy cerebellar model articulation controller for uncertain nonlinear systems using

overlapped Gaussian membership functions. IEEE Transactions on Industrial Electronics

67(11), 9671–9682.

Jiang, J., Astolfi, A., 2021. Stabilization of a class of underactuated nonlinear systems via

underactuated back-stepping. IEEE Transactions on Automatic Control 66(11),

5429–5435.

Submit to Soft Comput

25

Le, T.L., Ngo, V.B., 2022. The synchronization of hyperchaotic systems using a novel interval

type-2 fuzzy neural network controller. IEEE Access 10, 105966–105982.

Lin, C.M., Nguyen, H.B., Huynh, T.T., 2021. A new self-organizing double function-link brain

emotional learning controller for MIMO nonlinear systems using sliding surface. IEEE

Access 9, 73826–73842.

Lin, C.T., Lee, C.S.G., 1996. Neural Fuzzy Systems- a neural-fuzzy synergism to intelligent

systems. Englewood Cliffs, New Jersey, Prentice-Hall.

Slotine, J.J.E., Li, W.P., 1991. Applied nonlinear control. Prentice-Hall, Englewood Cliffs.

Sui, S., Chen, C.L.P., Tong, S., Feng, S., 2020. Finite-time adaptive quantized control of

stochastic nonlinear systems with input quantization: a broad learning system based

identification method. IEEE Transactions on Industrial Electronics 67(10), 8555–8565.

Tian, W., Zhao, F., Min, C., Feng, X., Liu, R., Mei, X., Chen, G., 2022. Broad learning system

based on binary grey wolf optimization for surface roughness prediction in slot milling.

IEEE Transactions on Instrumentation and Measurement 71, 1–10, Art no. 2502310.

Tsai, C.C., Chan, C.C., Li, Y.C., Tai, F.C., 2020. Intelligent adaptive PID control using fuzzy

broad learning system: an application to tool-grinding servo control systems. International

Journal of Fuzzy Systems 22, 2149–2162.

Wai, R.J., Lin, Y.F., Chuang, K.L., 2014. Total sliding-mode-based particle swarm

optimization control for linear induction motor. Journal of the Franklin Institute 351(5),

2755–2780.

Wang, B., Zhao, Y., Chen, C.L.P., 2021. Hybrid transfer learning and broad learning system for

wearing mask detection in the COVID-19 Era. IEEE Transactions on Instrumentation and

Measurement 70, 1–12, Art no. 5009612.

Submit to Soft Comput

26

Wang, C.H., Lin, T.C., Lee, T.T., Liu, H.L., 2002. Adaptive hybrid intelligent control for

uncertain nonlinear dynamical systems. IEEE Transactions on Systems, Man, and

Cybernetics 32(5), 583–597.

Wang, L.X., 1994. Adaptive Fuzzy Systems and Control: Design and Stability Analysis.

Englewood Cliffs, NJ: Prentice-Hall.

Wang, X., Huang, T., Zhu, K., Zhao, X., 2022. LSTM-based broad learning system for

remaining useful life prediction. Mathematics 10(12), Art no. 2066.

Xu, S., Liu, J., Yang, C., Wu, X., Xu, T., 2022. A learning-based stable servo control strategy

using broad learning system applied for microrobotic control. IEEE Transactions on

Cybernetics 52(12), 13727–13737.

Yi, J., Huang, J., Zhou, W., Chen, G., Zhao, M., 2022. Intergroup cascade broad learning

system with optimized parameters for chaotic time series prediction. IEEE Transactions on

Artificial Intelligence 3(5), 709–721.

Yuan, L., Li, T., Tong, S., Xiao, Y., Shan, Q., 2022. Broad learning system

approximation-based adaptive optimal control for unknown discrete-time nonlinear

systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(8),

5028–5038.

Zhang, J., Chao, F., Zeng, H., Lin, C.M., Yang, L., 2022. A recurrent wavelet-based brain

emotional learning network controller for nonlinear systems. Soft Computing 26,

3013–3028.

Zhang, P., Wu, Z., Dong, H., Tan, M., Yu, J., 2020. Reaction-wheel-based roll stabilization for

a robotic fish using neural network sliding mode control. IEEE/ASME Transactions on

Mechatronics 25(4), 1904–1911.

Submit to Soft Comput

27

Zhang, Q.Q., Wai, R.J., 2022. Design of adaptive distributed secondary control using

double-hidden-layer recurrent-neural-network-inherited total-sliding-mode scheme for

islanded micro-grid. IEEE Access 10, 5990–6009.

Zhao, J., Lin, C.M., 2019. Wavelet-TSK-type fuzzy cerebellar model neural network for

uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems 27(3), 549–558.

Submit to Soft Comput

28

Table 1: Parameter symbol definition of reaction wheel pendulum

φ pendulum angle

τ motor torque acting on the reaction wheel

pm , rm pendulum mass, reaction wheel mass

pl pendulum length

cpl distance to the pendulum center of mass

g gravity acceleration

pJ pendulum moment of inertia

rJ reaction wheel moment of inertia

Submit to Soft Comput

29

Table 2: Characteristic comparison

FNC FBNC

HBRNC with low

learning rates

HBRNC with high

learning rates
HBRNC with ALR

robustness

ability
nice great nice excellent excellent

stability proof yes yes yes yes yes

learning ability yes yes yes yes yes

learning speed slow middle slow fast fast

implementation

complex
middle hard hard hard hard

control

chattering
no no no yes no

Submit to Soft Comput

30

s

∑

…

1α
mα

1β nβ

…

…

ncu

in
p

u
t

la
y
er

recu
rren

t

featu
re la

y
er

en
h

an
cem

en
t

la
y
er

o
u

tp
u

t

la
y
er

nW
1W

1V
mV

ξ ξ

11w mnw

11v

…

1−Z

1−Z

∑

12v
lv1

11h 12h
lh1

κ

01w

ψ

1mw
nw1

…

preV1

1mv

…

1−Z

1−Z

∑

2mv
mlv

1mh 2mh
mlh

κ
ψ

pre
mV

10h

preh10

pre
mh 0

0mh

nw0

10v
0mv

s

∑

…

1α
mα

1β nβ

…

…

ncu

in
p

u
t

la
y
er

recu
rren

t

featu
re la

y
er

en
h

an
cem

en
t

la
y
er

o
u

tp
u

t

la
y
er

nW
1W

1V
mV

ξ ξ

11w mnw

11v

…

1−Z

1−Z

∑

12v
lv1

11h 12h
lh1

κ

01w

ψ

1mw
nw1

…

preV1

1mv

…

1−Z

1−Z

∑

2mv
mlv

1mh 2mh
mlh

κ
ψ

pre
mV

10h

preh10

pre
mh 0

0mh

nw0

10v
0mv

Figure 1: Network Structure of HBRNN

Submit to Soft Comput

31

neural

controller

parameter

learning law

ncu unknown
nonlinear
systems

sliding

surface
s xhcu+

+

scusupervisor

controller

adaptive

learning rate

jijk

kj

vw ∆∆
∆∆
,

,, βα

vw ηη
ηη βα

,
,,

Hermite Broad-Learning Recurrent Neural Control

cx + e

−
neural

controller

parameter

learning law

ncu unknown
nonlinear
systems

sliding

surface
s xhcu+

+

scusupervisor

controller

adaptive

learning rate

jijk

kj

vw ∆∆
∆∆
,

,, βα

vw ηη
ηη βα

,
,,

Hermite Broad-Learning Recurrent Neural Control

cx + e

−

Figure 2: Block Diagram of the HBRNC system with ALR

Submit to Soft Comput

32

xx&

x&& ★

initial point ★

)0,0,1(

(a)

xx&

x&& ★

initial point ★

)0,0,1(

(a)

xx&

x&& ★

initial point ★

)0,1,1(−

(b)

xx&

x&& ★

initial point ★

)0,1,1(−

(b)

Figure 3: Behavior of Uncontrolled Chaotic Circuit

(a) initial point)0,0,1(; (b) initial point)0,1,1(−

Submit to Soft Comput

33

time (sec)

(a)

st
at

e,
x

cx

x

time (sec)

(a)

st
at

e,
xx

cx

x

time (sec)

(b)

st
at

e,
x & cx&

x&

time (sec)

(b)

st
at

e,
x &x & cx&

x&

time (sec)

(c)

st
at

e,
x &&

cx&&

x&&

time (sec)

(c)

st
at

e,
x &&x &&

cx&&

x&&

time (sec)

(d)

in
p
u

t,
 u

time (sec)

(d)

in
p
u

t,
 u

Figure 4: (Cont.)

Submit to Soft Comput

34

time (sec)

(e)

st
at

e,
x

cx

x

time (sec)

(e)

st
at

e,
xx

cx

x

time (sec)

(f)

st
at

e,
x&

cx&

x&

time (sec)

(f)

st
at

e,
x&x&

cx&

x&

time (sec)

(g)

st
at

e,
x&&

cx&&

x&&

time (sec)

(g)

st
at

e,
x&&x&&

cx&&

x&&

time (sec)

(h)

in
p

u
t,

 u

time (sec)

(h)

in
p

u
t,

 u

Figure 4: Simulation Results of the HBRNC System with Low Learning Rates

(a)–(d) initial point)0,0,1(; (e)–(h) initial point)0,1,1(−

Submit to Soft Comput

35

time (sec)

(a)

st
at

e,
x

cx

x

time (sec)

(a)

st
at

e,
xx

cx

x

time (sec)

(b)

st
at

e,
x & cx&

x&

time (sec)

(b)

st
at

e,
x &x & cx&

x&

time (sec)

(c)

st
at

e,
x &&

cx&&

x&&

time (sec)

(c)

st
at

e,
x &&x &&

cx&&

x&&

time (sec)

(d)

in
p

u
t,

 u

time (sec)

(d)

in
p

u
t,

 u

Figure 5: (Cont.)

Submit to Soft Comput

36

time (sec)

(e)

st
at

e,
x

cx

x

time (sec)

(e)

st
at

e,
xx

cx

x

time (sec)

(f)

st
at

e,
x&

cx&

x&

time (sec)

(f)

st
at

e,
x&x&

cx&

x&

time (sec)

(g)

st
at

e,
x&&

cx&&

x&&

time (sec)

(g)

st
at

e,
x&&x&&

cx&&

x&&

time (sec)

(h)

in
p

u
t,

 u

time (sec)

(h)

in
p

u
t,

 u

Figure 5: Simulation Results of the HBRNC System with High Learning Rates

(a)–(d) initial point)0,0,1(; (e)–(h) initial point)0,1,1(−

Submit to Soft Comput

37

time (sec)

(a)

st
at

e,
x

cx

x

time (sec)

(a)

st
at

e,
xx

cx

x

time (sec)

(b)

st
at

e,
x & cx&

x&

time (sec)

(b)

st
at

e,
x &x & cx&

x&

time (sec)

(c)

st
at

e,
x &&

cx&&

x&&

time (sec)

(c)

st
at

e,
x &&x &&

cx&&

x&&

time (sec)

(d)

in
p

u
t,

 u

time (sec)

(d)

in
p

u
t,

 u

time (sec)

(e)

le
ar

n
in

g
 r

at
es αη: βη:

wη: vη:

time (sec)

(e)

le
ar

n
in

g
 r

at
es αη: βη:

wη: vη:αη: βη:
wη: vη:

Figure 6: (Cont.)

Submit to Soft Comput

38

time (sec)

(f)

st
at

e,
x

cx

x

time (sec)

(f)

st
at

e,
xx

cx

x

time (sec)

(g)

st
at

e,
x&

cx&

x&

time (sec)

(g)

st
at

e,
x&x&

cx&

x&

time (sec)

(h)

st
at

e,
x&&

cx&&

x&&

time (sec)

(h)

st
at

e,
x&&x&&

cx&&

x&&

time (sec)

(i)

in
p

u
t,

 u

time (sec)

(i)

in
p

u
t,

 u

time (sec)

(j)

le
ar

n
in

g
 r

at
es αη: βη:

wη: vη:

time (sec)

(j)

le
ar

n
in

g
 r

at
es αη: βη:

wη: vη:αη: βη:
wη: vη:

Figure 6: Simulation Results of the HBRNC System with ALR

(a)–(e) initial point)0,0,1(; (f)–(j) initial point)0,1,1(−

Submit to Soft Comput

39

Keil

uVision5

IMU sensor

BLDC

motor

reaction

wheel

BLDC motor

driver

pendulum

STM32F446RE

-NUCLEO

Keil

uVision5

IMU sensor

BLDC

motor

reaction

wheel

BLDC motor

driver

pendulum

STM32F446RE

-NUCLEO

Figure 7: Microcontroller-Based Experimental Setup

Submit to Soft Comput

40

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
e
g
re

e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
e
g
re

e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

Figure 8: Experimental Results of the AFNC System

(a),(b) payload scenario; (c),(d) disturbance scenario

Submit to Soft Comput

41

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o
to

r
to

rq
u

e

(N
m

)

1.0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o
to

r
to

rq
u

e

(N
m

)

1.0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

Figure 9: Experimental Results of the AFBNC System

(a),(b) payload scenario; (c),(d) disturbance scenario

Submit to Soft Comput

42

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

Figure 10: Experimental Results of the HBRNC System with Low Learning Rates

(a),(b) payload scenario; (c),(d) disturbance scenario

Submit to Soft Comput

43

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

Figure 11: Experimental Results of the HBRNC System with High Learning Rates

(a),(b) payload scenario; (c),(d) disturbance scenario

Submit to Soft Comput

44

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(a)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

place one
weight

remove
both weights

1sec 5

place one
weight

0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(b)

1sec

place one
weight

remove
both weights

place one
weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(c)

p
en

d
u

lu
m

an
g
le

(d
eg

re
e)

collide with
one weight

collide with
one weight

1sec 5

0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

time (sec)

(d)

1sec

collide with
one weight

collide with
one weight

0

m
o

to
r

to
rq

u
e

(N
m

)

1.0

Figure 12: Experimental Results of the HBRNC System with ALR

(a),(b) payload scenario; (c),(d) disturbance scenario

