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Abstract: Empirical distribution-based framework (EDBF), as a general framework utilized in lots of muti-parent 

crossover algorithms (MCAs), makes MCAs much more efficient at each iteration. However, EDBF cannot work 

with the numerous parent chromosomes especially exceeding fifty. To address this problem, an enhanced EDBF 

framework, namely constraint-law-method (CLM), is proposed by adaptively changing the boundary of weight 

assigned to each parent chromosome according to the constraint law. Furthermore, CLM is compared with EDBF, 

ABPSO and RCBBFA algorithms on 20 benchmark functions in terms of convergence, efficiency and accuracy. 

Experimental results demonstrate that CLM outperforms comparative algorithms on most of benchmark functions. 

As a general framework rather than a specific algorithm, CLM is easy to implement and can easily be 

accommodated to any existing MCAs. Finally, the C++ source code is available at 

https://github.com/ZhengkangZUO-2020/CLM-Framework-Codes. 

Keywords: CLM. Enhanced EDBF. Multi-parent crossover algorithms. Optimization. 

 

1. Introduction 

Muti-parent crossover algorithms (MCAs) are widely used in solving optimization problems in many fields relying on 

encoding, crossover, variation and choice operators to produce iterative offspring chromosome. At each crossover 

stage, a linear combination of weights at the same scale hybridizes a fixed number of parent chromosomes. If parent 

chromosomes are iteratively selected, the weights will indicate these papent chromosomes how to propagate. 

Essentially, all MCAs differentiate one algorithm from others through weight boundary. For example, each weight of 

the genetic algorithm (GA) [1] ranges from -0.5 to 1.5 with sum of 1. Moreover, adjusting the boundaries of weights 

shifts GA to unified multi-parent combination algorithm (UMCA) [2], particle swarm optimization (PSO) [3] and 

differential evolution (DE) [4], respectively. Specifically, each weight of UMCA varies from -1 to 1.5 and with sum 

shifts from -1 to 2, whereas in PSO, each weight varies from 0 to 2 and with sum shifts from 0 to 4. Besides, each 

weight of DE varies from 0 to 1 with sum shifts from 0 to 1.  

However, existing MCAs have no capacity to efficiently spawn weights that satisfy the above boundaries, which 

further curbed their extensive use for general applications. To address this problem, empirical distribution-based 

framework (EDBF) was proposed [5, 6] and utilized in elite-subspace multi-parent crossover algorithms (EMCA) [7], 

global-local mixed evolutionary algorithm (GLME) [8] and GLME based on domain decomposition (GLME-DD) [9]. 

Besides, EDBF is also applied in certain applications, such as Epidemiology [10], Climatology [11, 12] and 

Photogrammetry [13]. Even if EDBF demenstrates a good performance, it cannot work with the numerous parent 

chromosomes especially exceeding fifty.  

Therefore, this study proposed an enhanced EDBF framework, namely constraint-law-method (CLM), by adaptively 

changing the weight boundary of each parent chromosome according to the constraint law. Furthermore, CLM was 

compared with EDBF [5], ABPSO [14] and RCBBFA [15] algorithms on 20 benchmark functions [16] in terms of 

accuracy, convergence and efficiency. As a general framework rather than a specific algorithm, CLM is easy to 

implement and can easily be accommodated to any existing MCAs. 

The rest of this paper is organized as follows: Section 2 describes the MCAs algorithm. Section 3 introduces the 

EDBF framework in MCAs. In Section 4, we proposed a CLM framework. Experimental studies are presented in 

Section 5. Finally, the paper is concluded in Section 6.  

2. MCAs 

MCAs contain four operators, such as encode, crossover, mutation and selection jointly to spawn offspring-solutions, 

and its flowchart is generalized in Figure 1. Consider the optimization problem: 

mailto:zuozhengkang@gmail.com
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demenstrates that 1X  outperforms 2X . 

The program of MCAs is described as follows: 

First step: Randomly generate an initial population ( ) { }1 20 , ,..., NP X X X=  in the search space S  (they are 

usually required to be evenly distributed in S ), 0t = . 

Second step: Sort the population ( )P t  according to the logistic function ( )1 2better ,X X  from good to bad. After 

sorting, it is still noted as ( ) { }1 2, ,..., NP t X X X= , 1X  and NX  are the best and the worst individual, 

respectively. 

Third step: Go to step 5 if ( )worst bestbetter ,X X . 

Forth step: Select ( )K K M≤  best individuals 
' ' '

1 2, ,..., KX X X  from ( )P t , where M  represents the number of 

parent chromosomes involved in the hybridization. M K−  individuals 
' ' '

1 2, ,...,K K MX X X+ +  are randomly selected 

from the remaining N K−  individuals. These ( )M M N≤  individuals form a subspace 
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Randomly select L  points in the subspace V  to obtain L  new individuals, and select the best individual X  among 

L  individuals. If ( )worstbetter ,X X , replace worstX  with X  and form a new population ( )1P t + , otherwise 

( ) ( )1P t P t+ = . Let 1t t= +  and go to step 2. 

Fifth step: Output the best solution bestX  and end the program of MCAs. 
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Figure 1. The flowchart of MCAs. 

3. EDBF Framework in MCAs 

EDBF [5] is a general framework rather than a specific algorithm, which is easy to implement and accommodate any 

existing MCAs, and it plays a vital role at each crossover step to accelerate the production of weights that are used for 

combination with parent chromosomes. The pseudocode of EDBF framework is shown in Table 1, where 𝑃𝑃(∙) is the 

empirical probability of the weight spawning in the range of [∙]. In EDBF, all weights spawn into three ranges ([-0.5, 

0], [0, 1], [1, 1.5]) with the empirical probability. On the contrary, existing MCAs spawn weights following a uniform 

distribution (𝑃𝑃(𝛼𝛼 ∈ [−0.5,0])=25%, 𝑃𝑃(𝛼𝛼 ∈ [0,1])=50%, 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1])=75%), and the challenge is that the 

number of parent chromosomes (note as M) cannot exceed 13; otherwise, the program will collapse with a slight 

increase of M. Figure 2 shows that EDBF framework improved MCAs a lot in efficiency at each iteration, especially 

with much more parent chromosomes joining the optimization process. 

Table 1. The pseudocode of EDBF framework 
Input: 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]) = −0.8586 × M−0.9424 + 0.6115, 𝑃𝑃(𝛼𝛼 ∈ [0,1]) = 0.5802 × M−0.8598 + 0.3442, 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1]) = 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]) + 𝑃𝑃(𝛼𝛼 ∈ [0,1]). 

Output: The qualified weight vector 𝛂𝛂 = {α1, … ,αM} 

Algorithm: EDBF 

stop:=(αM ∈ [−0.5,1.5]) 

while (not stop) 

        s ← 0 

         i ← 1 

         stop: = (i > M − 1)  

         while (not stop) 

       randomly generate r in the range of [0,1] 

       randomly generate αi in the range of [-0.5,0], [0,1] and [1,1.5] in the case of r ≤ 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]), 

                   𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]) < r ≤ 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1]) and r > 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1]), respectively 

       let s←s+αi 
         end while 

         let αM = 1− s 

end while 
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Figure 2. Efficiency comparison in weights production before and after using EDBF framework in MCAs. 

4. CLM Framework in MCAs 

The constraint law method (CLM) is an enhanced EDBF framework for improving MCAs by adaptively changing the 

boundary of weight assigned to each parent chromosome according to the constraint law, and its pseudocode is shown 

in Table 2. Compared with EDBF that spawn weights in different ranges bounded by the empirical probability of 𝑃𝑃(∙), 

CLM spawn weights in the adaptive range of [tlow, tup]. After the implementation of CLM, just once loop could spawn 

the weights that satisfy the boundrary, as shown in Figure 3. It could be observed that CLM outperforms EDBF a lot. 

For example, MCAs collapses when the number of parent chromosomes exceeds 13, and EDBF could delay the 

collapse time but also collapses with the number of parent chromosomes in excess of 50, but CLM avoids the collapse 

even with numerous parent chromosomes. In this regard, CLM supports the infinite recombination of the parent 

chromosomes to inherit more excellent genes to the offspring chromosome. In addition, more parent chromosomes are 

propitious to form the more satisfied search space to find the global optima. 

 

Table 2. The pseudocode of CLM framework 
Input: A randomly generated weight α1 in the range of [-0.5,1.5] 

Output: The qualified weight vector 𝛂𝛂 = {α1, … ,αM} 

Algorithm: CLM 

s ← 0 

i ← 2 

stop: = (i > M − 1)  

while (not stop) 
s+=αi−1 

         tlow ← −0.5− s 

         tup ← 1.5− s 

         tlow ← max {tlow,−0.5} 

         tup ← min {tup, 1.5} 

randomly generate αi in the range [tlow, tup] 
end while 

let S←s+αM−1 αM = 1 − S 
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Figure 3. Efficiency comparison in weights production after using EDBF and CLM framework in MCAs. 

5. Numerical Experiments 

In this section, CLM framework was compared with EMCA, EDBF, ABPSO and RCBBFA algorithms on 20 

benchmark functions in terms of accuracy, efficiency and convergence. To make the comparison fairer, all 

experimental results are averaged after 100 independent runs. Besides, all comparative algorithms have the same 

termination condition, that is the difference of the best-solution and the worst-solution not in excess of 1E-14. To 

guarantee that all comparative algorithms achieve satisfactory performance for most benchmark functions, we take 

the suggestions of their corresponding literature to set the values of the related parameters, except for the 

termination condition. Finally, the parameters of CLM are set as 100 pool chromosomes, 15 parent chromosomes, 

and 5 elitist chromosomes. Moreover, all experimental results are available at https://github.com/ZhengkangZUO-

2020/Experiment-Results-of-CLM-Framework-. 

5.1. Benchmark Function 

Benchmark functions are shown in Table 3, where f1 to f5 are unimodal, f6 is the discontinuous step function with 

one minimum, f7 is a noisy quartic function in which random [0, 1) is a uniformly distributed random variable in [0, 

1). Function f8 to f13 are multimodal functions where the number of local minima increases exponentially with the 

problem dimension. Function f14 to f20 are low-dimensional functions which have only a few local minima. More 

details about this suite of benchmark functions could be found in references [16].  

5.2. PC Configuration 

The configure of all experiments is the operation system (OS) of Windows 64 bit, the RAM of 15.91 GB, and the 

CPU of Inter (R) Core (TM) i7-4790 CPU @ 3.60 GHz. Onward, C++ implements all versions of algorithm with the 

Microsoft Visual Studio 2015 complier. 

5.3. Results and Discussion 

5.3.1. Accuracy Comparison 

In Table 4, it could be observed on experimental results of f1—f4, f7, f10, f12 and f13 that CLM outperforms EDBF, 

EMCA and RCBBFA, but slightly inferior to ABPSO. Nevertheless, the accuracies of CLM are both in excess of 

1E-15, which is quite close to the global optima ‘0’. Besides, CLM converges to 2.84E-15 when solving f5, which 

outperforms the other four comparative algorithms. Moreover, CLM exhibits the same accuracy as EMCA and 

ABPSO on f11, which both outperform EDBF and RCBBFA. Also, CLM shows the same accuracy as EMCA, EDBF 

and ABPSO on f9 and f14—f20, which both outperform RCBBFA. When solving f6, CLM exhibits the same accuracy 

as the other four comparative algorithms, all converging to the global optima ‘0’. It is worthy to mention that CLM 

outperforms EDBF or exhibits the same accuracy as EDBF on all benchmark functions. 
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Table 3. Benchmark functions 

Expression n S Optimum 

𝑓𝑓1(𝑥𝑥) = � 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1  10 -100, 100 0 

𝑓𝑓2(𝑥𝑥) = � |𝑥𝑥𝑖𝑖|𝑛𝑛𝑖𝑖=1 + � |𝑥𝑥𝑖𝑖|𝑛𝑛𝑖𝑖=1  10 -10, 10 0 

𝑓𝑓3(𝑥𝑥) = � �� 𝑥𝑥𝑗𝑗𝑖𝑖𝑗𝑗=1 �2𝑛𝑛𝑖𝑖=1  10 -100, 100 0 

𝑓𝑓4(𝑥𝑥) = max𝑖𝑖 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} 30 -100, 100 0 

𝑓𝑓5(𝑥𝑥) = � [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2]
𝑛𝑛−1𝑖𝑖=1  10 -30, 30 0 

𝑓𝑓6(𝑥𝑥) = � (⌊𝑥𝑥𝑖𝑖 + 0.5⌋)2𝑛𝑛𝑖𝑖=1  10 -100, 100 0 

𝑓𝑓7(𝑥𝑥) = � 𝑖𝑖𝑥𝑥𝑖𝑖4𝑛𝑛𝑖𝑖=1 + 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟[0,1) 10 -1.28, 1.28 0 

𝑓𝑓8(𝑥𝑥) = � −𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖=1 sin ��|𝑥𝑥𝑖𝑖|� 2 -500, 500 -837.966 

𝑓𝑓9(𝑥𝑥) = � [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]
𝑛𝑛𝑖𝑖=1  2 -5.12, 5.12 0 

𝑓𝑓10(𝑥𝑥) = −20exp�−0.2�1𝑛𝑛� 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 � − exp �1𝑛𝑛� cos 2𝜋𝜋𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖=1 � + 20 + 𝑒𝑒 10 -32, 32 0 

𝑓𝑓11(𝑥𝑥) =
1

4000
� 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 −� cos �𝑥𝑥𝑖𝑖√𝑖𝑖� + 1

𝑛𝑛𝑖𝑖=1  2 -600, 600 0 

𝑓𝑓12(𝑥𝑥) =
𝜋𝜋𝑛𝑛 �10 sin2(𝜋𝜋𝑦𝑦1) + � (𝑦𝑦𝑖𝑖 − 1)2[1 + 10 sin2(𝜋𝜋𝑦𝑦𝑖𝑖+1)] + (𝑦𝑦𝑛𝑛 − 1)2𝑛𝑛−1𝑖𝑖=1 �

+ � 𝑢𝑢(𝑥𝑥𝑖𝑖 , 10,100,4)
𝑛𝑛𝑖𝑖=1  

10 -50, 50 0 

𝑓𝑓13(𝑥𝑥) = 0.1 �sin2(3𝜋𝜋𝑥𝑥1) + � (𝑥𝑥𝑖𝑖 − 1)2[1 + sin2(3𝜋𝜋𝑥𝑥𝑖𝑖+1)]
𝑛𝑛−1𝑖𝑖=1 + (𝑥𝑥𝑛𝑛 − 1)2[1 + sin2(2𝜋𝜋𝑥𝑥𝑛𝑛)]�

+ � 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5,100,4)
𝑛𝑛𝑖𝑖=1  

10 -50, 50 0 

𝑓𝑓14(𝑥𝑥) = � 1

500
+ � 1𝑗𝑗 + ∑ �𝑥𝑥𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑗𝑗�62𝑖𝑖=1

25𝑗𝑗=1 �−1 2 -65.536, 65.536 1 

𝑓𝑓15(𝑥𝑥) = � �𝑟𝑟𝑖𝑖 − 𝑥𝑥1(𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥2)𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥3 + 𝑥𝑥4�211𝑖𝑖=1  4 -5, 5 0.0003075 

𝑓𝑓16(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥14 +
1

3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24 2 -5, 5 -1.0316285 

𝑓𝑓17(𝑥𝑥) = �𝑥𝑥2 − 5.1

4𝜋𝜋2 𝑥𝑥12 +
5𝜋𝜋 𝑥𝑥1 − 6�2 + 10 �1 − 1

8𝜋𝜋� cos 𝑥𝑥1 + 10 2 [-5,10]×[0,15] 0.398 

𝑓𝑓18(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 + 6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)]

× [30 + (2𝑥𝑥1 − 3𝑥𝑥2)2(18 − 32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)] 
2 -2, 2 3 

𝑓𝑓19(𝑥𝑥) = � [(ln(𝑥𝑥𝑖𝑖 − 2))2 + (ln(10 − 𝑥𝑥𝑖𝑖))2]
𝑛𝑛𝑖𝑖=1 − �� 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖=1 �0.2

 10 2, 10 
-

45.778469 

𝑓𝑓20(𝑥𝑥) = −exp �−0.5� 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 � 10 -1, 1 -1 
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Table 4. Average accuracy of CLM, EMCA, EDBF, RCBBFA and ABPSO for 20 benchmark functions. 
Benchmark 

Functions 

Average minimum after 100 independent runs 
Minimum 

EMCA+CLM EMCA EMCA+EDBF RCBBFA ABPSO 

f1 3.02E-15 3.1560E-15 4.29E-15 0.181517 4.28E-26 0.00E+00 

f2 7.11E-15 7.3430E-15 1.22E-14 1.63109 2.83E-15 0.00E+00 

f3 2.11E-15 6.4290E-15 4.00E-15 37.1221 4.35E-25 0.00E+00 

f4 8.57E-15 1.2849E-14 1.27E-14 0.363689 1.54E-26 0.00E+00 

f5 2.84E-15 6.0610E-15 3.55E-15 43.436 4.81417 0.00E+00 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 6.09E-16 7.84E-16 1.25E-15 0.254314 1.08E-179 0.00E+00 

f8 -837.966 -837.966 -837.966 -798.438 -837.966 -837.966 

f9 0.00E+00 0.00E+00 0.00E+00 0.050112 0.00E+00 0.00E+00 

f10 7.55E-15 7.55E-15 1.47E-14 6.01E-01 4.00E-15 0.00E+00 

f11 0.00E+00 0.00E+00 1.11E-16 0.04027 0.00E+00 0.00E+00 

f12 3.68E-15 5.841E-15 1.92E-15 1.97659 4.71E-32 0.00E+00 

f13 3.38E-15 5.093E-15 2.48E-15 0.150806 1.35E-32 0.00E+00 

f14 0.999998 0.999998 0.999998 1.00631 0.999998 1 

f15 0.004361 0.004361 0.004361 0.076985 0.004361 0.0003075 

f16 -1.03163 -1.03163 -1.03163 -1.03103 -1.03163 -1.0316285 

f17 0.397887 0.397887 0.397887 0.435426 0.397887 0.398 

f18 3 3 3 4.35196 3 3 

f19 -45.7785 -45.7785 -45.7785 -25.2299 -45.7785 -45.778469 

f20 -1 -1 -1 -0.93477 -1 -1 

5.3.2. Convergence Comparison 

In Figure 4, it could be found that CLM outperforms EDBF and EMCA on all benchmark functions, but inferior to 

ABPSO and RCBBFA. However, except for f6, RCBBFA stunk into the local optima on all the other functions. In 

this regard, CLM outperforms RCBBFA in terms of convergence on the other 19 benchmark functions except for f6. 

Besides, CLM outperforms all the comparative algorithms on f5 because ABPSO also stuck into the local optimum 

‘4.81417’. Although ABPSO outperforms CLM on most of functions in terms of convergence iterations, CLM 

outperforms ABPSO on all the benchmark functions in terms of runtime, which will be discussed in Section 5.3.3. 

When solving f17, the iterations of CLM reduced by almost 50 times than EDBF. CLM converged at 3585 iterations, 

whereas EDBF converged at 177731 iterations. Besides, CLM converged at 5219 iterations on f16, decreased by 

almost 12 times than EDBF (63781 iterations). On f7, the number of iterations of CLM dropped by 5.5 times than 

EDBF, followed by f1 (5.3 times), f12 (5.2 times), f13 (5.1 times), f10 (5.1 times) and f2 (5 times). In addition, CLM 

outperforms EDBF by 4.2 times and 4.1 times on f5 and f6 in terms of convergence iterations, respectively. On f20, 

CLM converged prior to EDBF by 3.4 time, followed by f9 (2.6 times), f15 (2.5 times) and f4 (2.5 times). Slight 

superiority of CLM also could be observed on f8, f14 and f19. Finally, on f3 and f18, the superiority of CLM is not 

obvious. As a summary, CLM outperforms EDBF on all benchmark functions in terms of convergence. 
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Figure 4. The comparison of convergence among EMCA, EDBF, CLM, RCBBFA and ABPSO on f1 to f20. 

5.3.3. Efficiency Comparison 

In Table 5, it could be observed that CLM outperforms all comparative algorithms on all benchmark functions. 

Specifically, CLM accelerated EMCA and EDBF the most when solving f17, by 104.87 times and 69.93 times, 

respectively. When solving f14, the efficiency of CLM outperformed RCBBFA and ABPSO by the most extent, 

reaching 300.47 times and 101.84 times, respectively. Compared with EMCA, CLM performed the worst on f14, but 

also outperformed EMCA by 11.22 times. On the contrary, compared with EDBF, RCBBFA and ABPSO, CLM 

performed the worst on f18 and only outperformed EDBF by 1.65 times, RCBBFA by 2.54 times and ABPSO by 

1.59 times, respectively. It is worthy to mention that CLM outperformed RCBBFA by the average of 39.05 times on 

all benchmark functions, followed by EMCA (37.48 times), ABPSO (23.60 times) and EDBF (8.30 times). In brief, 

CLM outperforms EMCA, EDBF, RCBBFA and ABPSO on all benchmark functions in terms of efficiency. 

6. Conclusion 

In this paper, we proposed an enhanced EDBF framework, namely CLM, by adaptively changing the boundary of 

weight assigned to each parent chromosome according to the constraint law. Compared with EDBF that spawn weights 

in different ranges bounded by the empirical probability, CLM spawn weights in the adaptive range, and just once loop 

the weights satisfying the boundrary could be spawned. Furthermore, CLM is compared with EDBF, ABPSO and 

RCBBFA algorithms on 20 benchmark functions in terms of convergence, efficiency and accuracy. Experimental 

results demonstrate that CLM outperforms comparative algorithms on most of benchmark functions. As a general 

framework rather than a specific algorithm, CLM is easy to implement and can easily be accommodated to any existing 

MCAs. Finally, the C++ source code is available at https://github.com/ZhengkangZUO-2020/CLM-Framework-Codes. 
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Table 5. Average efficiency of CLM, EMCA, EDBF, RCBBFA and ABPSO for 20 benchmark functions. 
Benchmark 

functions 

Average run time after 100 independent runs (seconds) 

EMCA+CLM EMCA EMCA+EDBF RCBBFA ABPSO 

f1 0.688 27.517 4.043 5.009 1.695 

f2 1.247 53.347 7.467 9.382 2.259 

f3 0.697 29.371 4.260 7.619 8.319 

f4 1.185 60.097 8.324 13.698 11.360 

f5 0.889 31.117 4.351 6.645 7.471 

f6 0.226 7.800 1.121 6.112 7.374 

f7 0.254 11.603 1.710 16.795 13.842 

f8 0.322 7.689 0.790 4.276 2.788 

f9 0.302 5.813 0.572 3.303 2.096 

f10 0.950 40.600 5.620 10.840 11.504 

f11 1.128 26.138 3.469 4.030 2.751 

f12 0.606 25.663 3.645 18.722 15.037 

f13 0.607 25.751 3.733 17.335 14.185 

f14 0.110 1.234 0.233 33.052 11.202 

f15 0.323 7.434 0.921 5.409 4.297 

f16 0.138 3.600 1.284 5.858 3.394 

f17 0.160 16.779 11.188 3.544 2.342 

f18 1.871 29.710 3.096 4.752 2.978 

f19 0.701 26.451 4.435 100.387 67.962 

f20 0.402 18.558 2.742 6.754 7.842 
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