
An Enhanced EDBF Framework: Constraint-Law-
Method (CLM) for Improving Multi-parent Crossover
Algorithms
Zhengkang ZUO (1801110646@pku.edu.cn)

Peking University https://orcid.org/0000-0003-1255-6332

Research Article

Keywords: CLM. Enhanced EDBF. Multi-parent crossover algorithms. Optimization.

Posted Date: July 6th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1795740/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1795740/v1
mailto:1801110646@pku.edu.cn
https://orcid.org/0000-0003-1255-6332
https://doi.org/10.21203/rs.3.rs-1795740/v1
https://creativecommons.org/licenses/by/4.0/

1

An Enhanced EDBF Framework: Constraint-Law-Method

(CLM) for Improving Multi-parent Crossover Algorithms
Zhengkang Zuo1, *

1 School of Earth and Space Science, Peking University, Beijing, 100871 China.

Corresponding author: Zhengkang Zuo (e-mail: zuozhengkang@gmail.com)

Abstract: Empirical distribution-based framework (EDBF), as a general framework utilized in lots of muti-parent

crossover algorithms (MCAs), makes MCAs much more efficient at each iteration. However, EDBF cannot work

with the numerous parent chromosomes especially exceeding fifty. To address this problem, an enhanced EDBF

framework, namely constraint-law-method (CLM), is proposed by adaptively changing the boundary of weight

assigned to each parent chromosome according to the constraint law. Furthermore, CLM is compared with EDBF,

ABPSO and RCBBFA algorithms on 20 benchmark functions in terms of convergence, efficiency and accuracy.

Experimental results demonstrate that CLM outperforms comparative algorithms on most of benchmark functions.

As a general framework rather than a specific algorithm, CLM is easy to implement and can easily be

accommodated to any existing MCAs. Finally, the C++ source code is available at

https://github.com/ZhengkangZUO-2020/CLM-Framework-Codes.

Keywords: CLM. Enhanced EDBF. Multi-parent crossover algorithms. Optimization.

1. Introduction

Muti-parent crossover algorithms (MCAs) are widely used in solving optimization problems in many fields relying on

encoding, crossover, variation and choice operators to produce iterative offspring chromosome. At each crossover

stage, a linear combination of weights at the same scale hybridizes a fixed number of parent chromosomes. If parent

chromosomes are iteratively selected, the weights will indicate these papent chromosomes how to propagate.

Essentially, all MCAs differentiate one algorithm from others through weight boundary. For example, each weight of

the genetic algorithm (GA) [1] ranges from -0.5 to 1.5 with sum of 1. Moreover, adjusting the boundaries of weights

shifts GA to unified multi-parent combination algorithm (UMCA) [2], particle swarm optimization (PSO) [3] and

differential evolution (DE) [4], respectively. Specifically, each weight of UMCA varies from -1 to 1.5 and with sum

shifts from -1 to 2, whereas in PSO, each weight varies from 0 to 2 and with sum shifts from 0 to 4. Besides, each

weight of DE varies from 0 to 1 with sum shifts from 0 to 1.

However, existing MCAs have no capacity to efficiently spawn weights that satisfy the above boundaries, which

further curbed their extensive use for general applications. To address this problem, empirical distribution-based

framework (EDBF) was proposed [5, 6] and utilized in elite-subspace multi-parent crossover algorithms (EMCA) [7],

global-local mixed evolutionary algorithm (GLME) [8] and GLME based on domain decomposition (GLME-DD) [9].

Besides, EDBF is also applied in certain applications, such as Epidemiology [10], Climatology [11, 12] and

Photogrammetry [13]. Even if EDBF demenstrates a good performance, it cannot work with the numerous parent

chromosomes especially exceeding fifty.

Therefore, this study proposed an enhanced EDBF framework, namely constraint-law-method (CLM), by adaptively

changing the weight boundary of each parent chromosome according to the constraint law. Furthermore, CLM was

compared with EDBF [5], ABPSO [14] and RCBBFA [15] algorithms on 20 benchmark functions [16] in terms of

accuracy, convergence and efficiency. As a general framework rather than a specific algorithm, CLM is easy to

implement and can easily be accommodated to any existing MCAs.

The rest of this paper is organized as follows: Section 2 describes the MCAs algorithm. Section 3 introduces the

EDBF framework in MCAs. In Section 4, we proposed a CLM framework. Experimental studies are presented in

Section 5. Finally, the paper is concluded in Section 6.

2. MCAs

MCAs contain four operators, such as encode, crossover, mutation and selection jointly to spawn offspring-solutions,

and its flowchart is generalized in Figure 1. Consider the optimization problem:

mailto:zuozhengkang@gmail.com
https://github.com/ZhengkangZUO-2020/CLM-Framework-Codes

Soft Computing

2

()Min
x D

Z f X
∈

= ,

where the variable ()1 2, ,...,
T n

nX x x x R= ∈ , { }, 1, 2,...,i i iD X I x U i n= ≤ ≤ = satisfies the inequality

() 0, 1,2,...,ig X i q≤ = , and ()f X is the objective function. Let the m points in D be
' , 1, 2,...,jX j m= ,

note that the subspace they span is:

'

1

m

i i

i

V X D X Xα
=

= ∈ =

∑ ,

where the weight iα satisfies the condition 1

1

1, 0.5 1.5
m

i

i

α α
=

= − ≤ ≤∑ .

Note:

()
()

()
0, 0

,otherwise

i

i

i

g X
h X

g X

≤=

,

() ()
1

q

i

i

H X h X
=

=∑

Define the logistic funtion:

()

() ()
() ()
() ()() () ()()
() ()() () ()()

1 2

1 2

1 2

1 2 1 2

1 2 1 2

,True

,False
better ,

,True

,False

H X H X

H X H X
X X

H X H X f X f X

H X H X f X f X

≤

>
= = ∧ ≤
 = ∧ >

,

demenstrates that 1X outperforms 2X .

The program of MCAs is described as follows:

First step: Randomly generate an initial population () { }1 20 , ,..., NP X X X= in the search space S (they are

usually required to be evenly distributed in S), 0t = .

Second step: Sort the population ()P t according to the logistic function ()1 2better ,X X from good to bad. After

sorting, it is still noted as () { }1 2, ,..., NP t X X X= , 1X and NX are the best and the worst individual,

respectively.

Third step: Go to step 5 if ()worst bestbetter ,X X .

Forth step: Select ()K K M≤ best individuals
' ' '

1 2, ,..., KX X X from ()P t , where M represents the number of

parent chromosomes involved in the hybridization. M K− individuals
' ' '

1 2, ,...,K K MX X X+ + are randomly selected

from the remaining N K− individuals. These ()M M N≤ individuals form a subspace

Soft Computing

3

'

1

,
M

i i

i

V X X S X Xα
=

= ∈ =

∑ , where the weight iα satisfies the condition
1

1, 0.5 1.5
M

i i

i

α α
=

= − ≤ ≤∑ .

Randomly select L points in the subspace V to obtain L new individuals, and select the best individual X among

L individuals. If ()worstbetter ,X X , replace worstX with X and form a new population ()1P t + , otherwise

() ()1P t P t+ = . Let 1t t= + and go to step 2.

Fifth step: Output the best solution bestX and end the program of MCAs.

Encode

EDBF Crossover

Begin

CLM

Mutation

Chromosomes-

pool

Parent-

chromosomes

Weights

End

Selection
Offspring-

chromosome

Figure 1. The flowchart of MCAs.

3. EDBF Framework in MCAs

EDBF [5] is a general framework rather than a specific algorithm, which is easy to implement and accommodate any

existing MCAs, and it plays a vital role at each crossover step to accelerate the production of weights that are used for

combination with parent chromosomes. The pseudocode of EDBF framework is shown in Table 1, where 𝑃𝑃(∙) is the

empirical probability of the weight spawning in the range of [∙]. In EDBF, all weights spawn into three ranges ([-0.5,

0], [0, 1], [1, 1.5]) with the empirical probability. On the contrary, existing MCAs spawn weights following a uniform

distribution (𝑃𝑃(𝛼𝛼 ∈ [−0.5,0])=25%, 𝑃𝑃(𝛼𝛼 ∈ [0,1])=50%, 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1])=75%), and the challenge is that the

number of parent chromosomes (note as M) cannot exceed 13; otherwise, the program will collapse with a slight

increase of M. Figure 2 shows that EDBF framework improved MCAs a lot in efficiency at each iteration, especially

with much more parent chromosomes joining the optimization process.

Table 1. The pseudocode of EDBF framework
Input: 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]) = −0.8586 × M−0.9424 + 0.6115, 𝑃𝑃(𝛼𝛼 ∈ [0,1]) = 0.5802 × M−0.8598 + 0.3442, 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1]) = 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]) + 𝑃𝑃(𝛼𝛼 ∈ [0,1]).

Output: The qualified weight vector 𝛂𝛂 = {α1, … ,αM}

Algorithm: EDBF

stop:=(αM ∈ [−0.5,1.5])

while (not stop)

 s ← 0

 i ← 1

 stop: = (i > M − 1)

 while (not stop)

 randomly generate r in the range of [0,1]

 randomly generate αi in the range of [-0.5,0], [0,1] and [1,1.5] in the case of r ≤ 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]),

 𝑃𝑃(𝛼𝛼 ∈ [−0.5,0]) < r ≤ 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1]) and r > 𝑃𝑃(𝛼𝛼 ∈ [−0.5,1]), respectively

 let s←s+αi
 end while

 let αM = 1− s

end while

Soft Computing

4

Figure 2. Efficiency comparison in weights production before and after using EDBF framework in MCAs.

4. CLM Framework in MCAs

The constraint law method (CLM) is an enhanced EDBF framework for improving MCAs by adaptively changing the

boundary of weight assigned to each parent chromosome according to the constraint law, and its pseudocode is shown

in Table 2. Compared with EDBF that spawn weights in different ranges bounded by the empirical probability of 𝑃𝑃(∙),

CLM spawn weights in the adaptive range of [tlow, tup]. After the implementation of CLM, just once loop could spawn

the weights that satisfy the boundrary, as shown in Figure 3. It could be observed that CLM outperforms EDBF a lot.

For example, MCAs collapses when the number of parent chromosomes exceeds 13, and EDBF could delay the

collapse time but also collapses with the number of parent chromosomes in excess of 50, but CLM avoids the collapse

even with numerous parent chromosomes. In this regard, CLM supports the infinite recombination of the parent

chromosomes to inherit more excellent genes to the offspring chromosome. In addition, more parent chromosomes are

propitious to form the more satisfied search space to find the global optima.

Table 2. The pseudocode of CLM framework
Input: A randomly generated weight α1 in the range of [-0.5,1.5]

Output: The qualified weight vector 𝛂𝛂 = {α1, … ,αM}

Algorithm: CLM

s ← 0

i ← 2

stop: = (i > M − 1)

while (not stop)
s+=αi−1

 tlow ← −0.5− s

 tup ← 1.5− s

 tlow ← max {tlow,−0.5}

 tup ← min {tup, 1.5}

randomly generate αi in the range [tlow, tup]
end while

let S←s+αM−1 αM = 1 − S

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

MCAs+EDBF

MCAs

Soft Computing

5

Figure 3. Efficiency comparison in weights production after using EDBF and CLM framework in MCAs.

5. Numerical Experiments

In this section, CLM framework was compared with EMCA, EDBF, ABPSO and RCBBFA algorithms on 20

benchmark functions in terms of accuracy, efficiency and convergence. To make the comparison fairer, all

experimental results are averaged after 100 independent runs. Besides, all comparative algorithms have the same

termination condition, that is the difference of the best-solution and the worst-solution not in excess of 1E-14. To

guarantee that all comparative algorithms achieve satisfactory performance for most benchmark functions, we take

the suggestions of their corresponding literature to set the values of the related parameters, except for the

termination condition. Finally, the parameters of CLM are set as 100 pool chromosomes, 15 parent chromosomes,

and 5 elitist chromosomes. Moreover, all experimental results are available at https://github.com/ZhengkangZUO-

2020/Experiment-Results-of-CLM-Framework-.

5.1. Benchmark Function

Benchmark functions are shown in Table 3, where f1 to f5 are unimodal, f6 is the discontinuous step function with

one minimum, f7 is a noisy quartic function in which random [0, 1) is a uniformly distributed random variable in [0,

1). Function f8 to f13 are multimodal functions where the number of local minima increases exponentially with the

problem dimension. Function f14 to f20 are low-dimensional functions which have only a few local minima. More

details about this suite of benchmark functions could be found in references [16].

5.2. PC Configuration

The configure of all experiments is the operation system (OS) of Windows 64 bit, the RAM of 15.91 GB, and the

CPU of Inter (R) Core (TM) i7-4790 CPU @ 3.60 GHz. Onward, C++ implements all versions of algorithm with the

Microsoft Visual Studio 2015 complier.

5.3. Results and Discussion

5.3.1. Accuracy Comparison

In Table 4, it could be observed on experimental results of f1—f4, f7, f10, f12 and f13 that CLM outperforms EDBF,

EMCA and RCBBFA, but slightly inferior to ABPSO. Nevertheless, the accuracies of CLM are both in excess of

1E-15, which is quite close to the global optima ‘0’. Besides, CLM converges to 2.84E-15 when solving f5, which

outperforms the other four comparative algorithms. Moreover, CLM exhibits the same accuracy as EMCA and

ABPSO on f11, which both outperform EDBF and RCBBFA. Also, CLM shows the same accuracy as EMCA, EDBF

and ABPSO on f9 and f14—f20, which both outperform RCBBFA. When solving f6, CLM exhibits the same accuracy

as the other four comparative algorithms, all converging to the global optima ‘0’. It is worthy to mention that CLM

outperforms EDBF or exhibits the same accuracy as EDBF on all benchmark functions.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
MCAs+CLM

MCAs+EDBF

https://github.com/ZhengkangZUO-2020/Experiment-Results-of-CLM-Framework-
https://github.com/ZhengkangZUO-2020/Experiment-Results-of-CLM-Framework-

Soft Computing

6

Table 3. Benchmark functions

Expression n S Optimum

𝑓𝑓1(𝑥𝑥) = � 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 10 -100, 100 0

𝑓𝑓2(𝑥𝑥) = � |𝑥𝑥𝑖𝑖|𝑛𝑛𝑖𝑖=1 + � |𝑥𝑥𝑖𝑖|𝑛𝑛𝑖𝑖=1 10 -10, 10 0

𝑓𝑓3(𝑥𝑥) = � �� 𝑥𝑥𝑗𝑗𝑖𝑖𝑗𝑗=1 �2𝑛𝑛𝑖𝑖=1 10 -100, 100 0

𝑓𝑓4(𝑥𝑥) = max𝑖𝑖 {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} 30 -100, 100 0

𝑓𝑓5(𝑥𝑥) = � [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2]
𝑛𝑛−1𝑖𝑖=1 10 -30, 30 0

𝑓𝑓6(𝑥𝑥) = � (⌊𝑥𝑥𝑖𝑖 + 0.5⌋)2𝑛𝑛𝑖𝑖=1 10 -100, 100 0

𝑓𝑓7(𝑥𝑥) = � 𝑖𝑖𝑥𝑥𝑖𝑖4𝑛𝑛𝑖𝑖=1 + 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟[0,1) 10 -1.28, 1.28 0

𝑓𝑓8(𝑥𝑥) = � −𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖=1 sin ��|𝑥𝑥𝑖𝑖|� 2 -500, 500 -837.966

𝑓𝑓9(𝑥𝑥) = � [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]
𝑛𝑛𝑖𝑖=1 2 -5.12, 5.12 0

𝑓𝑓10(𝑥𝑥) = −20exp�−0.2�1𝑛𝑛� 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 � − exp �1𝑛𝑛� cos 2𝜋𝜋𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖=1 � + 20 + 𝑒𝑒 10 -32, 32 0

𝑓𝑓11(𝑥𝑥) =
1

4000
� 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 −� cos �𝑥𝑥𝑖𝑖√𝑖𝑖� + 1

𝑛𝑛𝑖𝑖=1 2 -600, 600 0

𝑓𝑓12(𝑥𝑥) =
𝜋𝜋𝑛𝑛 �10 sin2(𝜋𝜋𝑦𝑦1) + � (𝑦𝑦𝑖𝑖 − 1)2[1 + 10 sin2(𝜋𝜋𝑦𝑦𝑖𝑖+1)] + (𝑦𝑦𝑛𝑛 − 1)2𝑛𝑛−1𝑖𝑖=1 �

+ � 𝑢𝑢(𝑥𝑥𝑖𝑖 , 10,100,4)
𝑛𝑛𝑖𝑖=1

10 -50, 50 0

𝑓𝑓13(𝑥𝑥) = 0.1 �sin2(3𝜋𝜋𝑥𝑥1) + � (𝑥𝑥𝑖𝑖 − 1)2[1 + sin2(3𝜋𝜋𝑥𝑥𝑖𝑖+1)]
𝑛𝑛−1𝑖𝑖=1 + (𝑥𝑥𝑛𝑛 − 1)2[1 + sin2(2𝜋𝜋𝑥𝑥𝑛𝑛)]�

+ � 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5,100,4)
𝑛𝑛𝑖𝑖=1

10 -50, 50 0

𝑓𝑓14(𝑥𝑥) = � 1

500
+ � 1𝑗𝑗 + ∑ �𝑥𝑥𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑗𝑗�62𝑖𝑖=1

25𝑗𝑗=1 �−1 2 -65.536, 65.536 1

𝑓𝑓15(𝑥𝑥) = � �𝑟𝑟𝑖𝑖 − 𝑥𝑥1(𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥2)𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥3 + 𝑥𝑥4�211𝑖𝑖=1 4 -5, 5 0.0003075

𝑓𝑓16(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥14 +
1

3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24 2 -5, 5 -1.0316285

𝑓𝑓17(𝑥𝑥) = �𝑥𝑥2 − 5.1

4𝜋𝜋2 𝑥𝑥12 +
5𝜋𝜋 𝑥𝑥1 − 6�2 + 10 �1 − 1

8𝜋𝜋� cos 𝑥𝑥1 + 10 2 [-5,10]×[0,15] 0.398

𝑓𝑓18(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 + 6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)]

× [30 + (2𝑥𝑥1 − 3𝑥𝑥2)2(18 − 32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)]
2 -2, 2 3

𝑓𝑓19(𝑥𝑥) = � [(ln(𝑥𝑥𝑖𝑖 − 2))2 + (ln(10 − 𝑥𝑥𝑖𝑖))2]
𝑛𝑛𝑖𝑖=1 − �� 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖=1 �0.2

 10 2, 10
-

45.778469

𝑓𝑓20(𝑥𝑥) = −exp �−0.5� 𝑥𝑥𝑖𝑖2𝑛𝑛𝑖𝑖=1 � 10 -1, 1 -1

Soft Computing

7

Table 4. Average accuracy of CLM, EMCA, EDBF, RCBBFA and ABPSO for 20 benchmark functions.
Benchmark

Functions

Average minimum after 100 independent runs
Minimum

EMCA+CLM EMCA EMCA+EDBF RCBBFA ABPSO

f1 3.02E-15 3.1560E-15 4.29E-15 0.181517 4.28E-26 0.00E+00

f2 7.11E-15 7.3430E-15 1.22E-14 1.63109 2.83E-15 0.00E+00

f3 2.11E-15 6.4290E-15 4.00E-15 37.1221 4.35E-25 0.00E+00

f4 8.57E-15 1.2849E-14 1.27E-14 0.363689 1.54E-26 0.00E+00

f5 2.84E-15 6.0610E-15 3.55E-15 43.436 4.81417 0.00E+00

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 6.09E-16 7.84E-16 1.25E-15 0.254314 1.08E-179 0.00E+00

f8 -837.966 -837.966 -837.966 -798.438 -837.966 -837.966

f9 0.00E+00 0.00E+00 0.00E+00 0.050112 0.00E+00 0.00E+00

f10 7.55E-15 7.55E-15 1.47E-14 6.01E-01 4.00E-15 0.00E+00

f11 0.00E+00 0.00E+00 1.11E-16 0.04027 0.00E+00 0.00E+00

f12 3.68E-15 5.841E-15 1.92E-15 1.97659 4.71E-32 0.00E+00

f13 3.38E-15 5.093E-15 2.48E-15 0.150806 1.35E-32 0.00E+00

f14 0.999998 0.999998 0.999998 1.00631 0.999998 1

f15 0.004361 0.004361 0.004361 0.076985 0.004361 0.0003075

f16 -1.03163 -1.03163 -1.03163 -1.03103 -1.03163 -1.0316285

f17 0.397887 0.397887 0.397887 0.435426 0.397887 0.398

f18 3 3 3 4.35196 3 3

f19 -45.7785 -45.7785 -45.7785 -25.2299 -45.7785 -45.778469

f20 -1 -1 -1 -0.93477 -1 -1

5.3.2. Convergence Comparison

In Figure 4, it could be found that CLM outperforms EDBF and EMCA on all benchmark functions, but inferior to

ABPSO and RCBBFA. However, except for f6, RCBBFA stunk into the local optima on all the other functions. In

this regard, CLM outperforms RCBBFA in terms of convergence on the other 19 benchmark functions except for f6.

Besides, CLM outperforms all the comparative algorithms on f5 because ABPSO also stuck into the local optimum

‘4.81417’. Although ABPSO outperforms CLM on most of functions in terms of convergence iterations, CLM

outperforms ABPSO on all the benchmark functions in terms of runtime, which will be discussed in Section 5.3.3.

When solving f17, the iterations of CLM reduced by almost 50 times than EDBF. CLM converged at 3585 iterations,

whereas EDBF converged at 177731 iterations. Besides, CLM converged at 5219 iterations on f16, decreased by

almost 12 times than EDBF (63781 iterations). On f7, the number of iterations of CLM dropped by 5.5 times than

EDBF, followed by f1 (5.3 times), f12 (5.2 times), f13 (5.1 times), f10 (5.1 times) and f2 (5 times). In addition, CLM

outperforms EDBF by 4.2 times and 4.1 times on f5 and f6 in terms of convergence iterations, respectively. On f20,

CLM converged prior to EDBF by 3.4 time, followed by f9 (2.6 times), f15 (2.5 times) and f4 (2.5 times). Slight

superiority of CLM also could be observed on f8, f14 and f19. Finally, on f3 and f18, the superiority of CLM is not

obvious. As a summary, CLM outperforms EDBF on all benchmark functions in terms of convergence.

Soft Computing

8

Figure 4. The comparison of convergence among EMCA, EDBF, CLM, RCBBFA and ABPSO on f1 to f20.

5.3.3. Efficiency Comparison

In Table 5, it could be observed that CLM outperforms all comparative algorithms on all benchmark functions.

Specifically, CLM accelerated EMCA and EDBF the most when solving f17, by 104.87 times and 69.93 times,

respectively. When solving f14, the efficiency of CLM outperformed RCBBFA and ABPSO by the most extent,

reaching 300.47 times and 101.84 times, respectively. Compared with EMCA, CLM performed the worst on f14, but

also outperformed EMCA by 11.22 times. On the contrary, compared with EDBF, RCBBFA and ABPSO, CLM

performed the worst on f18 and only outperformed EDBF by 1.65 times, RCBBFA by 2.54 times and ABPSO by

1.59 times, respectively. It is worthy to mention that CLM outperformed RCBBFA by the average of 39.05 times on

all benchmark functions, followed by EMCA (37.48 times), ABPSO (23.60 times) and EDBF (8.30 times). In brief,

CLM outperforms EMCA, EDBF, RCBBFA and ABPSO on all benchmark functions in terms of efficiency.

6. Conclusion

In this paper, we proposed an enhanced EDBF framework, namely CLM, by adaptively changing the boundary of

weight assigned to each parent chromosome according to the constraint law. Compared with EDBF that spawn weights

in different ranges bounded by the empirical probability, CLM spawn weights in the adaptive range, and just once loop

the weights satisfying the boundrary could be spawned. Furthermore, CLM is compared with EDBF, ABPSO and

RCBBFA algorithms on 20 benchmark functions in terms of convergence, efficiency and accuracy. Experimental

results demonstrate that CLM outperforms comparative algorithms on most of benchmark functions. As a general

framework rather than a specific algorithm, CLM is easy to implement and can easily be accommodated to any existing

MCAs. Finally, the C++ source code is available at https://github.com/ZhengkangZUO-2020/CLM-Framework-Codes.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of article.

https://github.com/ZhengkangZUO-2020/CLM-Framework-Codes

Soft Computing

9

Table 5. Average efficiency of CLM, EMCA, EDBF, RCBBFA and ABPSO for 20 benchmark functions.
Benchmark

functions

Average run time after 100 independent runs (seconds)

EMCA+CLM EMCA EMCA+EDBF RCBBFA ABPSO

f1 0.688 27.517 4.043 5.009 1.695

f2 1.247 53.347 7.467 9.382 2.259

f3 0.697 29.371 4.260 7.619 8.319

f4 1.185 60.097 8.324 13.698 11.360

f5 0.889 31.117 4.351 6.645 7.471

f6 0.226 7.800 1.121 6.112 7.374

f7 0.254 11.603 1.710 16.795 13.842

f8 0.322 7.689 0.790 4.276 2.788

f9 0.302 5.813 0.572 3.303 2.096

f10 0.950 40.600 5.620 10.840 11.504

f11 1.128 26.138 3.469 4.030 2.751

f12 0.606 25.663 3.645 18.722 15.037

f13 0.607 25.751 3.733 17.335 14.185

f14 0.110 1.234 0.233 33.052 11.202

f15 0.323 7.434 0.921 5.409 4.297

f16 0.138 3.600 1.284 5.858 3.394

f17 0.160 16.779 11.188 3.544 2.342

f18 1.871 29.710 3.096 4.752 2.978

f19 0.701 26.451 4.435 100.387 67.962

f20 0.402 18.558 2.742 6.754 7.842

Acknowledgments

I am appreciated for useful comments from professor Zhijian Wu.

References

[1] Harik, G. R., Lobo, F. G., and Goldberg, D. E. (1999). The compact genetic algorithm. IEEE transactions on

evolutionary computation, 3(4), 287-297. https://doi.org/10.1109/4235.797971.

[2] Jiang, D., and Lin, J. (2010). A unified multi-parent combination algorithm. Journal of Huazhong University of

Science and Technology (Natural Science Edition), 12. (In Chinese)

[3] Wang, F., et al. A hybrid particle swarm optimization algorithm using adaptive learning strategy. Information

Sciences, 2018, 436: 162-177. https://doi.org/10.1016/j.ins.2018.01.027.

[4] Tan, Z., Li, K., and Wang, Y. Differential evolution with adaptive mutation strategy based on fitness landscape

analysis. Information Sciences, 2021, 549: 142-163. https://doi.org/10.1016/j.ins.2020.11.023.

[5] Zuo, Z., Yan, L., Ullah, S., Sun, Y., Zhang, R., and Zhao, H. (2021). Empirical distribution-based framework for

improving multi-parent crossover algorithms. Soft Computing, 25(6), 4799-4822. https://doi.org/10.1007/s00500-

020-05488-1.

[6] Zuo, Z., Sun, Y., Sun, J., Zhang, R., and Yan, L. (2020). Accelerating the generation of coefficient vectors in

elite multi-parent crossover algorithm by using empirical probability density curve. Engineering Journal of Wuhan

University, 53(08):728-733. https://doi.org/10.14188/j.1671-8844.2020-08-011. (In Chinese)

[7] Wu Z, Kang L, and Zou X. (2003). An elite subspace evolutionary algorithm for solving function optimization

problems. Journal of Computer Applications, 23(2): 13-15. (In Chinese)

[8] Wu, Z., Kang, L., and Zou, X. (2002). A parallel global-local mixed evolutionary algorithm for multimodal

function optimization. In: Fifth International Conference on Algorithms and Architectures for Parallel Processing,

2002. Proceedings, 247-250. https://doi.org/10.1109/ICAPP.2002.1173582.

https://doi.org/10.1109/4235.797971
https://doi.org/10.1016/j.ins.2018.01.027
https://doi.org/10.1016/j.ins.2020.11.023
https://doi.org/10.1007/s00500-020-05488-1
https://doi.org/10.1007/s00500-020-05488-1
https://doi.org/10.14188/j.1671-8844.2020-08-011
https://doi.org/10.1109/ICAPP.2002.1173582

Soft Computing

10

[9] Wu, Z., Tang, Z., and Kang, L. (2003). A parallel global-local mixed evolutionary algorithm for multimodal

function optimization based on domain decomposition. Wuhan University Journal of Natural Sciences, 8(1), 253-

258. https://doi.org/10.1007/BF02899489.

[10] Zuo, Z., et al., (2021). Trajectory Simulation and Prediction of COVID‐19 via Compound Natural Factor (CNF)
Model in EDBF Algorithm. Earth's Future, e2020EF001936. https://doi.org/10.1029/2020EF001936.

[11] Ullah, S., et al., (2020). GPM-Based Multitemporal Weighted Precipitation Analysis Using GPM_IMERGDF

Product and ASTER DEM in EDBF Algorithm. Remote Sensing, 12(19), 3162. https://doi.org/10.3390/rs12193162.

[12] Zuo, Z., et al. (2020). CMIP5 climate multi-model ensemble optimization based on tempo-spatially distributed.

Acta Scientiarum Naturalium Universitatis Pekinensis, 56(05):805-814. https://doi.org/10.13209/j.0479-

8023.2020.057. (In Chinese)

[13] Zuo., Z., et al. (2020). Improved Genetic Algorithm for Bundle Adjustment in Photogrammetry. IGARSS 2020

- 2020 IEEE International Geoscience and Remote Sensing Symposium, 6957-6960.

https://doi.org/10.1109/IGARSS39084.2020.9323649.

[14] Zhang, Y., Gong, D. W., Sun, X. Y., and Geng, N. (2014). Adaptive bare-bones particle swarm optimization

algorithm and its convergence analysis. Soft Computing, 18(7), 1337-1352. https://doi.org/10.1007/s00500-013-

1147-y.

[15] Zhang, Y., Song, X. F., and Gong, D. W. (2017). A return-cost-based binary firefly algorithm for feature

selection. Information Sciences, 418, 561-574. https://doi.org/10.1016/j.ins.2017.08.047.

[16] Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on

Evolutionary computation, 3(2), 82-102. https://doi.org/10.1109/4235.771163.

https://doi.org/10.1007/BF02899489
https://doi.org/10.1029/2020EF001936
https://doi.org/10.3390/rs12193162
https://doi.org/10.13209/j.0479-8023.2020.057
https://doi.org/10.13209/j.0479-8023.2020.057
https://doi.org/10.1109/IGARSS39084.2020.9323649
https://doi.org/10.1007/s00500-013-1147-y
https://doi.org/10.1007/s00500-013-1147-y
https://doi.org/10.1016/j.ins.2017.08.047
https://doi.org/10.1109/4235.771163

	1. Introduction
	2. MCAs
	3. EDBF Framework in MCAs
	4. CLM Framework in MCAs
	5. Numerical Experiments
	5.1. Benchmark Function
	5.2. PC Configuration
	5.3. Results and Discussion
	5.3.1. Accuracy Comparison
	5.3.2. Convergence Comparison
	5.3.3. Efficiency Comparison

	6. Conclusion
	Conflict of Interest
	Acknowledgments
	References

