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Abstract

The k-tiling problem for a convex polytope P is the problem of covering Rd with
translates of P using a discrete multiset Λ of translation vectors, such that every point in
Rd is covered exactly k times, except possibly for the boundary of P and its translates.
A classical result in the study of tiling problems is a theorem of McMullen [McM80]
that a convex polytope P that 1-tiles Rd with a discrete multiset Λ can, in fact, 1-tile Rd
with a lattice L. A generalization of McMullen’s theorem for k-tiling was conjectured
by Gravin, Robins, and Shiryaev [GRS12], which states that if P k-tiles Rd with a
discrete multiset Λ, then P m−tiles Rd with a lattice L for some m. In this paper,
we consider the case when P k-tiles Rd with a discrete multiset Λ such that every
element of Λ is contained in a quasi-periodic set Q (i.e. a finite union of translated
lattices). This is motivated by the result of Gravin, Kolountzakis, Robins, and Shiryaev
[Kol00, GKRS13], showing that for d ∈ {2, 3}, if a polytope P k-tiles Rd with a discrete
multiset Λ, then P m-tiles Rd with a quasi-periodic set Q for some m. Here we show
for all values of d that if a polytope P k-tiles Rd with a discrete multiset Λ that is
contained in a quasi-periodic set Q that satisfies a mild hypothesis, then P m-tiles Rd
with a lattice L for some m. This strengthens the results of Gravin, Kolountzakis,
Robins, and Shiryaev, and is a step in the direction of proving the conjecture of Gravin
et al. [GRS12].

Keywords: Multiple tilings; Tilings; Lattices; Lattice enumeration, Quasi-periodicity.
Subclass: 52C22

1 Introduction

The multiple tiling problem can be described as follows: cover every point in Rd exactly
k times by translates of a convex polytope using a discrete multiset Λ (also known as a
tiling set) of translation vectors. However, in the process of trying to cover every point
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in Rd, we may be forced to cover points in the boundary of its translates for more than k
times. To avoid this technicality, we say that P k-tiles Rd with Λ if every point that does
not belong to the boundary of any translate of P is covered exactly k times. We call a
polytope P that satisfies the condition above a k-tiler. In the special case when k is equal
to 1, the multiple tiling problem becomes what is traditionally known as the translational
tiling problem. For more details on the translational tiling problem, the reader is referred to
[Ale05, Gru07, KM10] for a nice overview of the topic.

The translational tiling problem is a classical topic in discrete geometry with several
beautiful structural results. In 1897, Minkowski [Min97] gave a necessary condition for a
polytope to be a 1-tiler. He proved that if a convex polytope P 1-tiles Rd, then P must be
centrally symmetric and all facets of P must be centrally symmetric. It was not until 50
years later that Venkov [Ven54] found a necessary and sufficient condition for a polytope P
to be a 1-tiler. He showed that P 1-tiles Rd if and only if P is centrally symmetric, all facets
of P are centrally symmetric, and each belt of P contains four or six facets. The same result
was later rediscovered independently by McMullen [McM80] in 1980.

In contrast to the situation for 1-tilers, there are still a lot of unsolved problems on the
structure of k-tilers. This is partly because k-tilers have a much richer structure compared
to 1-tilers. For example, in two dimensions there are only two types of convex polytopes that
1-tile R2, namely centrally symmetric parallelograms and centrally symmetric hexagons. In
contrast, all centrally symmetric integer polygons are k-tilers in R2 [GRS12]. With that being
said, there are several important results for multiple tiling that mirror the results for 1-tiling.
In 1994, Bolle [Bol94] gave a necessary and sufficient condition for a polytope to k-tile R2

with a lattice, and in 2012, Gravin, Robins, and Shiryaev [GRS12] proved that a k-tiler in
Rd must be centrally symmetric and all its facets must be centrally symmetric, providing a
multiple tiling analogue for Minkowski’s condition.

The main motivation for this paper comes from a classical result of McMullen [McM80]
that if a convex polytope P 1-tiles Rd with a discrete multiset Λ, then P can, in fact, 1-tile
Rd with a lattice L. A generalization of McMullen’s theorem for k-tiling was conjectured by
Gravin, Robins, and Shiryaev [GRS12], and is stated below:

Conjecture 1.1. [GRS12, Conjecture 7.3] If a convex polytope P k-tiles Rd with a discrete
multiset Λ, then P m-tiles Rd with a lattice L for some m (not necessarily equal to k).

There has been some recent progress on Conjecture 1.1 in lower dimensions. We say that
a set Q is a quasi-periodic set if Q is a finite union of translated lattices, not necessarily
of the same lattice. Kolountzakis [Kol00] showed that if P k-tiles R2 with a discrete multiset
Λ, then P can m-tile R2 with a quasi-periodic set for some m. Kolountzakis’ result was
later extended by Shiryaev [Shi14], who proved Conjecture 1.1 when d is equal to 2. For the
case when d is equal to 3, Gravin, Kolountzakis, Robins, and Shiryaev [GKRS13] showed
that every k-tiler P in R3 can m-tile R3 with a quasi-periodic set for some m. Motivated by
the results of [Kol00] and [GKRS13], we focus here on studying the quasi-periodic tiling
problem for general dimensions, which is the multiple tiling problem with an additional
assumption that every element of the tiling multiset Λ is contained in a quasi-periodic set
(note that the multiset Λ is not necessarily a quasi-periodic set).

We approach the quasi-periodic tiling problem by studying an equivalent lattice-point
enumeration problem, which will be described in Section 3. This approach allows us to em-
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ploy several tools from lattice-point enumeration that are otherwise not available for general
multiple tiling problems. For more details regarding discrete-point enumeration of polytopes,
the reader is referred to the work of Beck and Robins [BR07] and Barvinok [Bar02].

Throughout this paper, we will use two different notions for general positions, one for
vectors and one for lattices. Let P be a a fixed convex polytope and let ∂P denote the
boundary of P . We say that a vector v ∈ Rd is in general position with respect to a
discrete multiset Λ if v is not contained in ∂P + Λ, the union of translates of boundary of
P by Λ. The second notion is defined for lattices in Rd. Let Q be a union of n translated
lattices L1, L2, . . . ,Ln. We say that Li is in general position with respect to Q if the set
Rd \Hi is path-connected, where Hi is defined as:

Hi :=
n⋃

j=1,j 6=i

(∂P + Li) ∩ (∂P + Lj). (1)

We will refer to the hypothesis that Li is in general position with respect to Q as Hypothesis
1.

The first result in this paper is that if Hypothesis 1 holds, then Conjecture 1.1 is true.

Theorem 1.2. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ, and
suppose that every element of Λ is contained in a quasi-periodic set Q. If a lattice L in Q is
in general position with respect to Q and L ∩ Λ is non-empty, then P m-tiles Rd with L for
some m.

If the quasi-periodic set Q in Theorem 1.2 is also a lattice, then the lattice Q is in general
position with respect to Q by definition, and Theorem 1.2 gives us the following corollary.

Corollary 1.3. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ. If
every element of Λ is contained in a lattice L, then P m-tiles Rd with L for some m.

We note that Theorem 1.2 will fail to hold if the hypothesis that L is in general position
with respect to Q is omitted. In Example 1, we present a a polytope P that k-tiles Rd with
a quasi-periodic set Q that contains a lattice L, and yet L is not a tiling set of P .

The fact that Hypothesis 1 cannot be omitted from Theorem 1.2 naturally leads us to
consider the case where every lattice in Q is not in general position with respect to Q. In
Section 5 we address this scenario for the case where Q is a union of two translated copies
of a lattice, and we show that Conjecture 1.1 holds in this case.

Theorem 1.4. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ. If every
element of Λ is contained in a union of two translated copies of one single lattice, then there
is a lattice L in Rd such that P m-tiles Rd with L for some m.

The paper is organized as follows. In Section 2 we introduce definitions and notations
used in this paper. We use Section 3 to establish the connection between the k-tiling problem
and a lattice-point enumeration problem. Section 4 is devoted to the proof of Theorem 1.2,
and Section 5 is devoted to the proof of Theorem 1.4. Finally, in Section 6 we discuss possible
future research that can be done to prove Conjecture 1.1.
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2 Definitions and preliminaries

Throughout this paper, we use P to denote a convex polytope in Rd, Int(P ) to denote the
interior of P , and ∂P to denote the boundary of P (the closure of P minus the interior of P).
We note that there is no loss in generality in assuming that P is a convex polytope, because
every convex body that k-tiles Rd is necessarily a polytope [McM80].

We use Λ to denote a discrete multiset of vectors in Rd, L to denote a lattice in Rd, and Q
to denote a quasi-periodic set, which is a finite union of translated lattices, not necessarily
of the same lattice. We use #(A) to denote the cardinality of a finite multiset A (counted
with multiplicities). The intersection of a multiset A and a set S, denoted by A ∩ S, is the
multiset that contains all elements a in A that are also contained in S. The multiplicity of
an element a in A∩S is equal to the multiplicity of a in A. The complement of a set S with
respect to a multiset A, denoted by A \ S, is the set A ∩ Sc.

A convex polytope P is said to k-tile Rd (k being a positive natural number) with a
discrete multiset Λ of vectors in Rd if∑

λ∈Λ

1P+λ(v) = k, (2)

for all v /∈ ∂P + Λ, where 1X is the indicator function of the set X.
Throughout this paper, we assume that h is a fixed vector in Rd such that every line with

direction vector h meets ∂P at finitely many points. The half-open counterpart P h of a
convex polytope P is the subset of the closure of P that contains all points v ∈ Rd which
satisfies the property that for a sufficiently small εv > 0, the ray rεv := {v + ch | 0 < c < εv}
is contained in Int(P ). Note that P h consists of Int(P ) and a part of ∂P . In the particular
case when P is a cube, the polytope P h is the half-open cube defined in [Sta91].

For a a discrete multiset Λ and a convex polytope P in Rd, the Λ-point enumerator of
P is the integer #(Λ ∩ P ), which is the number of points of Λ (counted with multiplicities)
contained in P . When Λ is a lattice, we refer to #(Λ∩P ) as a lattice-point enumerator. We
define two integer-valued functions, LΛ and Lh

Λ, on every point v in Rd as follows:

LΛ(v) := #(Λ ∩ {−1 · P + v}), Lh
Λ(v) := #(Λ ∩ {−1 · P h + v}),

i.e. LΛ(v) is the number of points of Λ contained in the translate of −1 · P by v, and Lh
Λ(v)

is the number of points of Λ contained in the translate of −1 · P h by v. If the intended
multiset Λ is evident from the context, we will use L and Lh as a shorthand for LΛ and
Lh

Λ, respectively. These two functions play an important role in relating the multiple tiling
problem to the lattice-point enumeration problem, which is discussed in Section 3.

3 Lattice-point enumeration of polytopes

In this section, we present a lattice-point enumeration problem that is equivalent to k-tiling
problem. This equivalence was first shown in [GRS12], where it was employed to show that
all rational k-tilers can m-tile with a lattice for some m. However, we replace the polytope P
by its half-open counterpart P h in the statement of the equivalence. This is done so that we
can drop the technical condition in the equivalence concerning vectors in general position.
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Lemma 3.1. A d-dimensional convex polytope P k-tiles Rd with a discrete multiset Λ if and
only if its half-open counterpart P h k−tiles Rd with Λ. Moreover, if P h k-tiles Rd with Λ,
then ∑

λ∈Λ

1P h+λ(v) = k, (3)

for all v in Rd.

Proof. Note that P and P h have the same interior, which implies that∑
λ∈Λ

1P h+λ(v) =
∑
λ∈Λ

1P+λ(v),

for all v /∈ ∂P + Λ. Therefore, P k-tiles Rd with Λ if and only if P h k-tiles Rd with Λ.
To prove the second part of the claim, let v be an arbitrary point in Rd. By our assumption

on h, the ray rεv = {v + ch | 0 < c < εv} intersects ∂P + Λ at finitely many points. Hence
for a sufficiently small εv > 0, the ray rεv does not intersect ∂P + Λ. Because P h(and hence
P ) k-tiles Rd with Λ, this implies that there are exactly k vectors λ1, . . . , λk in Λ such that
rεv is contained in the interior of P + λi for all i. By the definition of half-open polytopes in
Section 2, this means that v is contained in P h + λi for all i, and hence we have:∑

λ∈Λ

1P h+λ(v) = k,

for all v ∈ Rd.

The lemma below was shown in [GRS12] for the case when v ∈ Rd is in general position
with respect to Λ; our proof is virtually identical, with a minor adjustment for the case when
P is replaced by P h.

Lemma 3.2. (c.f. [GRS12, Lemma 3.1]) A convex polytope P k-tiles Rd with a discrete
multiset Λ if and only LΛ(v) is equal to k for every v ∈ Rd that is in general position with
respect to Λ. Moreover, P h k-tiles Rd with Λ if and only Lh

Λ(v) is equal to k for every v in
Rd.

Proof. For every v in Rd, we can write∑
λ∈Λ

1P h+λ(v) =
∑
λ∈Λ

1−1·P h+v(λ) = #(Λ ∩ {−1 · P h + v}) = LΛ(v).

By Equation 3 in Lemma 3.1, this implies that P h k-tiles Rd if and only if Lh
Λ(v) is equal to

k for every v in Rd. By a similar argument, Equation 2 in the definition of k-tilers implies
that P k-tiles Rd if and only if LΛ(v) is equal to k for every v ∈ Rd that is in general position
with respect to Λ.

Here we list two properties of the function LΛ that will be used throughout this paper:

1. If L is a lattice in Rd, then the function LL is a periodic function of L (i.e. LL(v + λ) =
LL(v) for every v in Rd and every λ in L). This is because a lattice-point enumerator is
invariant under translation by elements contained in the lattice.
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2. The function LΛ is a constant function in a sufficiently small neighborhood Bv of v in Rd

if v is in general position with respect to Λ. This is because if v /∈ ∂P + Λ, then −1 ·P + v
does not contain any points from Λ in its boundary. Hence moving v in any sufficiently
small direction will not change the value of LΛ(v).

It can be easily checked that the two properties above also hold for the function Lh
Λ.

4 Proof of Theorem 1.2

We start this section by proving a functional equation involving the function LΛ. The proof
borrows several ideas from asymptotic analysis of infinite sums in Rd.

Lemma 4.1. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ. Let L be
a lattice and let a1, . . . , an be vectors in Rd. If every element of Λ is contained in the finite
union

⋃n
i=1 ai + L, then there are non-negative real numbers g1, . . . , gn such that

n∑
i=1

gi · Lh
L(v − ai) = k, (4)

for all v ∈ Rd.

Proof. Without loss of generality, we can assume that L = Zd. For a real vector w =
(w1, . . . , wd) in Rd, we use Rd

≥w to denote the set {(w′1, . . . , w′d) : w′i ≥ wi for i ∈ {1, . . . , d}}.
We use Λ≥0 to denote the multiset Λ ∩ Rd

≥0.
Let v ∈ Rd be an arbitrary vector. Because P h k-tiles Rd with Λ, this implies that there is

a vector α(v) ∈ Rd such that every point in Rd
≥α(v) is covered exactly k times by P h+v+Λ≥0.

Also notice that because Λ≥0 is in the positive orthant, there is a vector β(v) in Rd such that
P h + v + Λ≥0 is contained in Rd

≥β(v). Without loss of generality, we can assume that both

α(v) and β(v) are integer vectors.
Let Γ(v) be the multiset (P h +v+ Λ≥0)\Rd

≥α(v). Because P h +v+ Λ≥0 covers every point

in Rd
≥α(v) exactly k times, we have the following equality:∑

x∈P h+v+Λ≥0,

x∈Zd

zx =
∑

x∈Zd≥α(v)

kzx +
∑

x∈Γ(v)∩Zd
zx, (5)

where zx is the multivariable polynomial zx11 . . . zxdd and x is an integer vector (x1, . . . , xd).
We assume |zj| < 1 so that all the sums in Equation 5 converge to a well-defined value.

We define the multisets Λi for i ∈ {1, . . . , n} recursively by Λi := (Λ≥0∩{ai+Zd})\
⋃i−1
j=1 Λj

for i ∈ {1, . . . , n}. Note that 1Λ≥0
=
∑n

i=1 1Λi , and every element of Λi − ai is contained in
Zd. With this notation, Equation 5 now becomes

∑
x∈Zd≥α(v)

kzx +
∑

x∈Γ(v)∩Zd
zx =

n∑
i=1

∑
x∈P h+v+Λi,

x∈Zd

zx =
n∑
i=1

 ∑
x∈P h+v+ai,

x∈Zd

zx ·
∑

y∈Λi−ai

zy

 (6)

=
n∑
i=1

#(Zd ∩ {P h + ai + v}) ·
∑

y∈Λi−ai

zy. (7)
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Let si(z) :=
∑

y∈Λi−ai z
y ·
∏d

j=1(1− zj). By multiplying Equation 7 with
∏d

j=1(1− zj), we
obtain that:

∑
x∈Zd≥α(v)

kzx ·
d∏
j=1

(1− zj) +
∑

x∈Γ(v)∩Zd
zx ·

d∏
j=1

(1− zj) =
n∑
i=1

#(Zd ∩ {P h + ai + v}) · si(z) (8)

We now show that the left side of Equation 8 converges to k as z converges to (1, . . . , 1) from
below.

First note that every element in Γ(v) is contained in Rd
≥β(v) \ Rd

≥α(v), and every element

of Γ(v) has multiplicity at most k. Also note that Rd
≥β(v) \ Rd

≥α(v) is contained in the set⋃d
i=1Ri(v), where Ri(v) is the set

Ri(v) := {(a1, . . . , ad) : β(v)i ≤ ai < α(v)i and β(v)j ≤ aj for all j 6= i, 1 ≤ j ≤ d }.

Because |zi| < 1 for all i, we have the following closed-form expressions:

∑
x∈Zd≥α(v)

zx =
d∏
j=1

z
α(v)j
j

1− zj
;

∑
x∈Ri(v)∩Zd

zx = (1− zα(v)i−β(v)i
i ) ·

d∏
j=1

z
β(v)j
j

1− zj
. (9)

Because Γ(v) is contained in
⋃d
i=1Ri(v) and each element in Γ(v) has multiplicity at most

k, we conclude that:

lim
z→(1,...,1)−

∑
x∈Γ(v)∩Zd

zx ·
d∏
j=1

(1− zj) ≤ lim
z→(1,...,1)−

d∑
i=1

∑
x∈(Ri(v)∩Zd)

kzx ·
d∏
j=1

(1− zj)

= lim
z→(1,...,1)−

d∑
i=1

k(1− zα(v)i−β(v)i
i )zβ(v) = 0. (10)

Combining Equation 9 and Equation 10, we get:

lim
z→(1,...,1)−

∑
x∈Zd≥α(v)

kzx ·
d∏
j=1

(1− zj) +
∑

x∈Γ(v)∩Zd
zx ·

d∏
j=1

(1− zj) = k, (11)

which shows that the left side of Equation 8 converges to k as z converges to (1, . . . , 1) from
below. Note that if limz→(1,...,1)− si(z) exists for all i, then taking the limit of Equation 8
as z converges to (1, . . . , 1) from below will give us Equation 4, and the proof will be done.
However, the limit of si(z) does not always exist, and hence we need a more subtle approach
to derive Equation 4.

Since |zi| < 1 for all i, we have that si(z) is a positive real number for all i. Also note
that the multiplicity of every element in Λi can not exceed k, and every element of Λi− ai is

7



contained in Zd≥−ai . These facts allow us to derive the following inequality

si(z) =
∑

y∈Λi−ai

zy ·
d∏
j=1

(1− zj) ≤
∑

y∈Zd≥−ai

kzy ·
d∏
j=1

(1− zj)

= kz[−ai] ·
d∏
j=1

1

1− zj
·

d∏
j=1

(1− zj)

= kz[−ai], (12)

where [x] is the integer part of the real vector x in Rd. Note that as z converges to (1, . . . , 1)
from below, the right side of Equation 12 is bounded from above by k + 1. Hence as z
converges to (1, . . . , 1) from below, the value of si(z) is bounded between 0 and k + 1. The
Bolzano-Weierstrass theorem [BS92] then implies that there exists a sequence (zu)u∈N that
converges to (1, . . . , 1) from below and with the property that limu→∞ si(zu) exists for all i.

Let gi := limu→∞ si(zu) for all i, note that gi is non-negative because si(zu) is a positive
real number for all u ∈ N. Also note that the definition of si(z) does not involve v, and
hence each gi is a constant that is independent from the choice of v. By substituting zu into
Equation 8 and then taking the limit as u goes to infinity, we get the following equality:

n∑
i=1

#(Zd ∩ {P h + ai + v}) · lim
u→∞

si(zu)

= lim
u→∞

∑
x∈Zd≥α(v)

kzxu ·
d∏
j=1

(1− zuj) +
∑

x∈Γ(v)∩Zd
zxu ·

d∏
j=1

(1− zuj).

Substituting Equation 11 into the right side of the equation above, we get:

n∑
i=1

#(Zd ∩ {P h + ai + v}) · gi =k. (13)

To get Equation 4 from Equation 13, note that

#(Zd ∩ {P h + ai + v}) = #(−1 · Zd ∩ {−1 · P h − ai − v)}) = Lh
Zd(−ai − v). (14)

Substituting Equation 14 into the left side of Equation 13, we get:

n∑
i=1

Lh
Λ(−ai − v) · gi =k. (15)

As the choice of v ∈ Rd is arbitrary, we can replace v in Equation 15 by −v to get Equation
4 and the proof is now complete.

Remark. The proof of Lemma 4.1 can be made much shorter if we use the stronger assump-
tion that Λ is equal to the disjoint union of finitely many translates of one lattice. Indeed, in
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this case, we have:

k = #(Λ ∩ {−1 · P h + v}) =
n∑
i=1

#({ai + L} ∩ {−1 · P h + v})

=
n∑
i=1

#(L ∩ {−1 · P h + v − ai}) =
n∑
i=1

Lh
L(v − ai),

for all v in Rd.

Remark. The proof of Lemma 4.1 no longer works if we use the weaker assumption that
every element of Λ is contained in a quasi-periodic set, because the original assumption is
essential for deriving Equation 6 from Equation 5.

Now we show that the value g1, . . . , gn in Lemma 4.1 can, in fact, be chosen to be rational
numbers with some value m on the right side of Equation 4, which gives us the following
theorem.

Theorem 4.2. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ. Let
L be a lattice and let a1, . . . , an be vectors in Rd. If every element of Λ is contained in the
finite union

⋃n
i=1 ai + L, then P m-tiles in Rd for some m with a finite union of copies of

the lattices a1 + L, , . . . , an + L.

Proof. By Lemma 4.1, there are non-negative real numbers g1, . . . , gn such that

n∑
i=1

gi · Lh
L(v − ai) = k, (16)

for all vectors v in Rd. For an arbitrary v and w in Rd, let li(v, w) be the integer

li(v, w) := LhL(v − ai)− LhL(w − ai),

and let V be the vector space in Rn spanned by the following set of vectors:

{(l1(v, w), l2(v, w), . . . , ln(v, w)) : v, w ∈ Rd}.

Note that by Equation 16, the vector (g1, . . . , gn) is contained in the orthogonal comple-
ment V ⊥ of V , and hence V ⊥ contains a non-zero non-negative vector. Also note that V are
generated by integer vectors, and hence V and V ⊥ have a basis of integer vectors. These two
facts imply that there is a non-negative non-zero integer vector (g′1, . . . g

′
n) that is contained

in V ⊥. By the construction of the vector space V , the statement that (g′1, . . . g
′
n) is orthogonal

to V is equivalent to the following equation:

m =
n∑
i=1

g′i ·#(L ∩ {−1 · P h + v − a1}) =
n∑
i=1

g′i ·#(ai + L ∩ {−1 · P h + v}), (17)

for some positive integer m and for all v in Rd. By Lemma 3.2 this implies that P m-tiles Rd

with the union of the translated lattices a1 + L, , . . . , an + L, where each element of ai + L
has multiplicity g′i.
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In the case when all elements of Λ are contained in a lattice, Theorem 4.2 gives us the
following corollary:

Corollary 1.3. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ. If
every element of Λ is contained in a lattice L, then P m-tiles Rd with L for some m.

We now present a technical lemma that allows us to reduce Theorem 1.2 to the situation
where all elements of Λ are contained in a lattice, so that we can apply Corollary 1.3 to prove
Theorem 1.2.

Lemma 4.3. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ, and
suppose that Λ is the disjoint union of two discrete multisets Λ1 and Λ2. If the set Rd \ (∂P +
Λ1)∩ (∂P + Λ2) is path-connected and Λ1 is non-empty, then P m-tiles Rd with Λ1 for some
m.

Proof. By Lemma 3.2, the fact that P k-tiles Rd with Λ = Λ1 t Λ2 implies that

Lh
Λ1

(v) + Lh
Λ2

(v) = Lh
Λ(v) = k, (18)

for all v in Rd.
Let v1 and v2 be two points in Rd\(∂P+Λ1)∩(∂P+Λ2). Because Rd\(∂P+Λ1)∩(∂P+Λ2)

is path-connected, there is a path P : [0, 1]→ Rd starting at v1 and ending at v2 such that P
does not contain points from (∂P + Λ1)∩ (∂P + Λ2). We claim that the function Lh

Λ1
(P(x))

remains constant x goes from 0 to 1.
Suppose to the contrary that Lh

Λ1
(P(x)) is not a constant function. This means that there

is α ∈ [0, 1] such that the function Lh
Λ1

(P(x)) is not constant in every open neighborhood
of α. Because P(α) is not contained in (∂P + Λ1) ∩ (∂P + Λ2), either one of the following
scenarios will hold:

• P(α) is not contained in ∂P + Λ1. This means that P(α) is in general position with
respect to Λ1. By Property 2 in Section 3, the function Lh

Λ1
is constant in a sufficiently

small neighborhood of P(α), contradicting the assumption on α.

• P(α) is not contained in ∂P + Λ2. This means that P(α) is in general position with
respect to Λ2. By Property 2 in Section 3, the function Lh

Λ2
is constant in a sufficiently

small neighborhood of P(α). By Equation 18 we have Lh
Λ1

= k − Lh
Λ2

, and hence Lh
Λ1

is
also a constant function in a sufficiently small neighborhood of P(α), contradicting to the
assumption on α.

Hence Lh
Λ1

(v) has a constant value m for all v in Rd \ (∂P + Λ1) ∩ (∂P + Λ2).

We now show that m is a positive integer. Because Λ1 is non-empty, we have Lh
Λ(v1) =

#(Λ ∩ {−1 · P h + v1}) is positive for some v1 in an open set B of Rd. Because the set
Rd \ (∂P + Λ1) ∩ (∂P + Λ2) is dense in Rd, there exists v2 ∈ Rd \ (∂P + Λ1) ∩ (∂P + Λ2)
that is also contained in B. This implies that m = Lh

Λ1
(v2) = Lh

Λ1
(v1) > 0, and hence m is a

positive integer.
Now let v ∈ Rd be a vector in general position with respect to Λ1. By Property 2 in Section

3, the function Lh
Λ1

(v) is a constant function in an open neighborhood Bv of v in Rd. Because
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the set Rd \ (∂P +Λ1)∩ (∂P +Λ2) is dense in Rd, there exists w in Rd \ (∂P +Λ1)∩ (∂P +Λ2)
that is contained in Bv. By the argument above, this implies that Lh

Λ1
(v) = Lh

Λ1
(w) = m.

Because the choice of v is arbitrary, this implies that Lh
Λ1

(v) = m for every v ∈ Rd that is
in general position with respect to Λ1. By Lemma 3.2, we conclude that P m-tiles Rd with
Λ1.

We now proceed to prove Theorem 1.2.

Theorem 1.2. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ, and
suppose that every element of Λ is contained in a quasi-periodic set Q. If a lattice L in Q is
in general position with respect to Q and L ∩ Λ is non-empty, then P m-tiles Rd with L for
some m.

Proof. Without loss of generality, we can assume that Li is a lattice instead of a translate of
a lattice. Let Λ1 = Λ∩Li and Λ2 = Λ \Λ1. We have that Λ is a disjoint union of Λ1 and Λ2,
and by the distributive law the set H = (∂P + Λ1)∩ ∂(P + Λ2) is contained in Hi (where Hi

is as defined in Equation 1). Because Rd \Hi is path-connected by the assumption that L is
in general position with respect to Q, this implies that Rd \H is path-connected. Also note
that by assumption Λ1 is a non-empty multiset. Hence by Lemma 4.3 P m′-tiles Rd with Λ1

for some m′. Because every element of Λ1 is contained in Li, we conclude that P m-tiles Rd

with Li for some m by Corollary 1.3 .

Note that the assumption that the lattice in Theorem 1.2 is in general position can not
be omitted from the statement of the theorem, as seen in Example 1 below.

Example 1. Let P be a rectangle in R2 with (0, 0), (0, 1
2
), (1, 0), (1, 1

2
) as vertices. Let L1

be the lattice Z2, let L2 be the translated lattice (
√

2
2
, 1

2
) + Z2, and let Q = L1 ∪ L2. It

can be seen from Figure 4 that P 1-tiles R2 with Q, but P does not m-tile R2 with L1 or
L2 for any m. Also notice that L1 and L2 are not in general position to Q, as the sets
R2 \H1 = R2 \H2 = R2 \ {(x, y) ∈ R2 : x ∈ Z} are not path-connected.

5 Quasi-periodic tiling without Hypothesis 1

In this section, we discuss quasi-periodic tiling in the situation when Hypothesis 1 is omitted.
As we observed from Example 1, the condition that a lattice L is in general position with
respect to the quasi-periodic set Q can not be dropped. However, this does not preclude the
possibility that P m-tiles Rd for some m with some lattice L that is not contained in Q. For
example, the rectangle P in Example 1 can 2-tile R2 with the lattice 1

2
Z× 1

2
Z, even though

1
2
Z × 1

2
Z is not contained in Q. In the next theorem we present an approach to construct

such a lattice L for the case when Q is a union of two translated copies of a lattice.

Theorem 1.4. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ. Let L1

and L2 be translates of one single lattice in Rd. If every element in Λ is contained in L1∪L2,
then P m-tiles Rd with some lattice L for some m.

11



Figure 1: A rectangle P that 1-tiles R2 with Q = L1 ∪ L2, but does not m-tile with L1 or
L2.

Proof. Without loss of generality, we can assume that L1 = Zd and L2 = a + Zd for some
a in Rd. Suppose that a is a rational vector, let N be the least common multiple of the
denominator of entries of a. Note that both Zd and a+Zd are now contained ( 1

N
Z)d, and by

Corollary 1.3 we have P m-tiles Rd with ( 1
N
Z)d for some m. Hence we can assume that a is

not a rational vector.
By permuting the coordinates, we can assume that a = (α1, α2, . . . , αk, βk+1, . . . , βd),

where α1, . . . , αk are irrational numbers linearly independent over Q, and βk+1, . . . , βd are
contained in 〈α1, . . . , αk, 1〉Q. Because a is not a rational vector, we have k ≥ 1. Because βi is
contained in 〈α1, . . . , αk, 1〉Q for all i ∈ {k+ 1, . . . , d}, there exists ci,j ∈ Q for j ∈ {1, . . . , k}
such that βi = ci,1α1 + . . . + ci,kαk + ci,k+1. Let N be the least common multiple of the
denominators of ci,j, where i ∈ {k + 1, . . . , d} and j ∈ {1, . . . , k}. Note that βi is contained
in 〈α1, . . . , αk, 1〉( 1

N
Z)d for all i ∈ {k + 1, . . . , d}.

In the rest of this proof, we will use Lh as a shorthand for Lh

( 1
N
Z)d

. By Lemma 4.1, we

have the following equation:

g1 · Lh(v) + g2 · Lh(v − a) = k, (19)

for some non-negative real numbers g1 and g2 and for all v in Rd. If g1 = 0, then Lh(v−a) = k
g2

for all v ∈ Rd. By Lemma 3.2, this implies that P m-tiles Rd with ( 1
N
Z)d for m = k

g2
and the

claim is proved. By symmetry we get the same conclusion for when g2 = 0. Hence we can
assume that both g1 and g2 are non-zero.

Let Lj = Lh(v − a · j)− k
g1+g2

for all j ∈ Z. Substituting v in Equation 19 with v − a · j,
we get the following relation for all j ∈ Z:

Ljg1 + Lj+1g2 = 0, (20)

and we can without loss of generality assume that g2 ≤ g1.
First, suppose that g2 < g1. Note that by Equation 20 we have L0 = (−g2

g1
)jLj for all

j ∈ Z. On the other hand, the function Lh is a periodic function by Property 1 in Section 3,
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which implies that Lj(v) (which is equal to Lh(v−a)− k
g1+g2

) is a bounded function. Because
Lj is bounded and g2 < g1, we have

L0 = lim
j→∞

(
−g2

g1

)j
Lj = 0.

This implies that Lh(v) = k
g1+g2

for all v in Rd, and by Lemma 3.2 we have that P m-tiles

Rd with ( 1
N
Z)d for m = k

g1+g2
, and the claim is proved.

Now suppose that g1 = g2. We claim that L2j+1 = L0 for some j ∈ Z. Note that if the
claim holds, then we can conclude that L0 = L1 (because L2j+1 = L1 and L2j = L0 for all
j ∈ Z by Equation 20). Because we also have L0 + L1 = 0 by Equation 20, this implies that
Lh(v)− k

g1+g2
= L0 = 0. By Lemma 3.2, we can then conclude that P m-tiles Rd with ( 1

N
Z)d

for m = k
g1+g2

, and the claim is proved.

For any two points w and w′ in Rd and a constant ε > 0, we say that w is ε-close to w′

modulo Zd if |w − w′ + λ| < ε for some λ in Zd. Let a′ ∈ Rk be the vector (α1, . . . , αk),
where α1, . . . , αk are irrational numbers defined in the beginning of the proof. We claim
that for any ε > 0, there exists j ∈ Z such that (2j + 1) · a′ is ε-close to 0 modulo Zk. To
prove this claim, we use a powerful tool from number theory called the Weyl criterion for the
multidimensional case.

We say that a sequence (xn)n∈N of vectors in Rk is dense modulo Zk in Rk if for any point
w in Rk and a constant ε > 0, there exists a natural number j such that w is ε-close to xj
modulo Zk.

Theorem 5.1. (weak form of Weyl criterion, [KN74, Theorem 6.2]) Let (xn)n∈N be a sequence
of vectors in Rk. The sequence (xn)n∈N is dense modulo Zk in Rk if for every lattice point
h ∈ Zk, h 6= 0,

lim
M→∞

1

M

M∑
n=1

e2πi〈h,xn〉 = 0.

Let (xn)n∈N be the sequence defined by xn = 2n · a′ for all n ∈ N. Because α1, . . . , αk are
irrational numbers that are linearly independent over Q, we have that 〈h, a′〉 is not equal to
0 for all h ∈ Zk. Hence the limit of the sum in the Weyl criterion is equal to

lim
M→∞

1

M

M∑
n=1

e2πi〈h,xn〉 = lim
M→∞

1

M

M∑
n=1

e4nπi〈h,a′〉 = lim
M→∞

1

M
· e

4πi〈h,a′〉(1− e4Mπi〈h,a′〉)

1− e4πi〈h,a′〉 = 0.

Hence the Weyl criterion implies that the sequence (2n · a′)n∈N is dense modulo Zk in Rk. In
the particular case when w = −a′, we have that for any ε > 0, there exists j ∈ N such that
−a′ is ε-close to 2j · a′ modulo Zk. Hence we conclude that (2j+ 1) · a′ is ε-close to 0 modulo
Zk.

Because (2j+ 1) · a′ is ε-close to 0 modulo Zk, this implies that (2j+ 1)α1, . . . , (2j+ 1)αk
are all ε-close to an integer. Because βi is contained in 〈α1, . . . , αk, 1〉( 1

N
Z)d , this also implies

that (2j + 1)βi is O(ε)-close to 1
N
Z for i ∈ {k + 1, . . . , d}. Hence we conclude that we can

find an odd number 2j + 1 such that (2j + 1) · a is O(ε)-close to ( 1
N
Z)d.
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We will now show that L2j+1 = L0. Because we assume that v ∈ Rd is in general
position with respect to ( 1

N
Z)d, by Property 2 Section 3 there is a sufficiently small open

neighborhood Bv of v such that Lh is a constant function in Bv. By our previous argument,
for any ε > 0, there is an odd number 2j+ 1 such that (2j+ 1) · a is O(ε)-close to ( 1

N
Z)d. By

choosing a sufficiently small ε, we conclude that v − (2j + 1) · a is contained in Bv modulo
( 1
N
Z)d. Because the function Lh has period ( 1

N
Z)d (Property 1 Section 3), this implies that

L2j+1 = Lh(v − (2j + 1) · a) = Lh(v) = L0, and the proof is complete.

Remark. The proof of Theorem 1.4 can not be altered in any way to show that P m-tiles
Rd with Zd instead of ( 1

N
Z)d. This can be seen from Example 1, where the rectangle in the

example does not m-tile R2 with Z2 for any m.

6 Future research

We conclude this paper by discussing possible future research problems that may lead to a
proof of Conjecture 1.1.

Problem 1. Let P be a convex polytope that k-tiles Rd with a discrete multiset Λ, and
suppose that every element of Λ is contained in a quasi-periodic set Q. Prove or disprove
that P m-tiles Rd with a lattice L for some m.

Problem 1 is a generalization of Theorem 1.2 by removing Hypothesis 1. A more specific
question to ask is whether Problem 1 has a positive answer when Q is a finite union of
translates of a single lattice. A positive answer to this specific problem is given by Theorem
1.4 in the case where Q is a union of two translates of a single lattice.

Problem 2. Prove or disprove that if a convex polytope P k-tiles Rd, then P m-tiles Rd with
a discrete multiset Λ that is contained in a quasi-periodic set Q for some m.

For dimension 2 and 3, Problem 2 was positively answered by [Kol00] and [GKRS13]
respectively. This problem is open for dimensions higher than 3.

In particular, a positive answer to both Problem 1 and Problem 2 will imply that Con-
jecture 1.1 is true.
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