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A b s t r a c t .  The one-dimensional image analysis method know as the 
sieve[l] is extended to any finite dimensional image. It preserves all the 
usual scale-space properties but has some additional features that, we 
believe, make it more attractive than the diffusion-based methods. We 
present some simple examples of how it might be used. 

1 Introduction 

The use of scale-space for the analysis of images is well established and there is 
an interest in incorporating scale-space processors as part  of high-level computer 
vision tasks. 

Scale-space vision is usually associated with diffusion based systems [2, 3, 4] 
in which the image forms the initial conditions for a discretization of the diffusion 
equation V. (DVI)  = It. In linear scale-space processors the diffusion parameter,  
D, is a constant and, although the system has the desirable property that  it does 
not introduce new extrema as scale increases (preserves scale-space causality), it 
blurs the edges of objects in the scene. Since edges are thought to be important  
for most high-level vision operations, a variant, in which D is made to vary as a 
function of IIVIII, is sometimes used. 

It is said that  scale-space should be "semantically meaningful," for which 
three properties have been enunciated [5], causality (above), immediate locali- 
sation and piecewise smoothing. The second is a requirement that  the "region 
boundaries should be sharp and coincide with semantically meaningful bound- 
aries at that resolution" and the third property is that  "intra-region smoothing 
should occur preferentially over inter-region smoothing." 

To these properties one might add some practical requirements: (i) The sys- 
tem should be scale-calibrated. At a particular scale one should see features of 
only that  scale. This allows shapes to be measured accurately. (ii) The scale- 
space should be manipulable. One should be able to process the image in the 
scale-space domain and reconstruct it to produce an enhanced image. 

This paper presents a system that  has all the desirable properties of scale- 
space and also some additional, extremely powerful, features. The system has 
similarities with morphological image processing systems. 

Mathematical morphology [6, 7] is based on the analysis of shape and has 
developed separately. However, a recent welcome development has been the ef- 
fort to achieve some unification of scale-space and morphology [8, 9, 1, 10, 11]. 
We continue this trend with an analytical and experimental study of a type of 
decomposition called a sieve operating in two or more dimensions. 
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2 P r o p e r t i e s  o f  s i e v e s  

2.1 D e f i n i t i o n s  

An arbitrary array of pixels, or voxels, can be described by a connected graph [12] 
G -- (V, E)  where V is the set of vertices and E is the set of pairs that  describe 
the edges. 

D e f i n i t i o n  1. When G is a graph and r > 1, w~ let C~(G) denote the set of 
connected subsets of G with r elements. When x E V, we let gr (G,x)  = { ~ E 
C~(C) lx  e ~}. 

All subsequent operations take place over such sets. The structure of an element 
of g~ is determined by the adjacency of image pixels. In three dimensions the 
connected subsets of G would normally be six-connected. 

Definition 1 allows a compact definition of an opening, Cr, and closing, V~, 
of size r. 

D e f i n i t i o n  2. For each integer, r > 1, the operators, r V~, /~r , j~r :  Z v __+ Z V 

are defined by 

Cr f (x )  = max m i n f ( u ) , 7 ~ f ( x )  = min m a x f ( u ) ,  
~C~(a,z) ue~ ~c.(a,x)  ue~ 

and M r  = 7rr Afr = r (r and % are well defined since, for each x C V, 
g~(G, x) is nonempty [13].) 

Thus 3,t ~ is an opening followed by a closing, both of size r and in any finite 
dimensional space. 

We can now define the M- and N-sieves of a function, f E Z y. 

D e f i n i t i o n  3. Suppose that f E Z V. 
(a) The M-sieve of f is the sequence, (fr)~=l, given by 

f l  = J~41f = f ,  f r+l  = Adr+lfr ,  for integers, r > 1. 

(b) The N-sieve of f is the sequence, (fr)r~__l, given by 

f l  = j ~ l  f -~ f ,  fr-}-I = Hr+l fr,  for integers, r > 1. 

M- and N-sieves are one type of alternating sequential filter [7]. We use the 
term sieve, partly for brevity, and partly because the properties we concentrate 
on are not unique to alternating sequential filters but are also to be found with, 
for example, a sequence of recursive median filters [14]. In addition, not all al- 
ternating sequential filters have the properties studied here. 

T h e o r e m 4 .  If  (fr)~__l is the M-  or the N-sieve of an f E Z V, then, for each 
integer, r > 1, fr is r-clean. 
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D e f i n i t i o n  5. For each integer, r > 1, we let M r = A4 ~. .  , / ~ 2 j ~ 1 ,  and N ~ = 
Af ~. .  .AfsA: 1. So the M-sieve (resp. N-sieve) of an f E Z y is (M~f)r~176 (resp. 
(N~f)~=l). 

The te rm r-clean means that  extremal level connected sets have r or more 
pixels [13]. The sieve has the effect of locating intensity ext rema and "slicing off 
peaks and troughs" to produce fiat zones [15] of r or more pixels hence r-clean, 
a function from which the flat zones have been "cleaned." 

Since all the pixels within each extremal connected set have the same inten- 
sity, a simple graph reduction at each stage can lead to a fast algorithm [16]. The 
one-dimensional equivalent has already been reported [17]. It  has order complex- 
ity p, where p is the number of pixels, for a complete decomposition (r = p + 1). 

In one-dimension the flat zones created by the sieve have a length r. This 
means that  the scale parameter  can be used for the precise measurement  of 
features [18]. For a two-dimensional image with regular pixelation the flat zones 
created by the sieve have a defined area and we refer to the sieve as an area 
decomposition c.f. [19]. In three dimensions we have a decomposition by volume. 

2.2 P r o p e r t i e s  

One important  property of the M-  and N-sieves is that ,  for a particular edge, 
{x, y} E E,  as r increases, the change in image intensity, fr(Y) - f r (x) ,  does not 
change sign and its absolute value never increases. In particular, if it vanishes 
for some r, it is then zero for all larger r. Formally, we have the following result. 

T h e o r e m  6. Suppose that (fr)~__l is the M-  or the N-sieve of an f E Z V, that 
{x , y }  E E and put 5r = fr(Y) - fr(x),  for each, r. Then 51 ~ 52 >_ ".. >_ O, or 
51 ~ 52 ~ "'" ~ O. 

In other words n-dimensional sieves preserve scale-space causality. 
At each stage of the M- or N-sieve one can examine either the filtered image 

(usually the case) or the difference between successive stages. These differences 
are called granules and are defined as follows. 

D e f i n i t i o n  7. When f E Z V, the M-granule decomposition of f is the sequence 
of functions, (d~)r~__l, defined by dr = fr  - f~+l, for each r > 1, and {d} is the 
granularity domain. There is an equivalent definition for the N-granule decom- 
position. 

d oN3 T h e o r e m  8 ( I n v e r t i b i l i t y ) .  Suppose that ( r)r=l is the M-granule decomposi- 
tion of an f C Z y with finite support then the original image can be rebuilt from 

j ~ Z v the granularity domain f = ~ r = l  dr. Suppose that ( r)r=l  C_ are such that, 
for each integer, r > 1, dr -- 0 on [dr = 0], (t~ is constant and nonnegative on 
each positive granule of dr and dr is constant and nonpositive on each negative 
granule of dr and let f ~ ^ d = ~ r = l  dr. Then ( ,')r=l is the M-granule decomposition 

4]. 
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This last property is vital if one wishes to manipulate an image in the gran- 
ularity domain. For example, a pattern recognising filter can be produced by: 
decomposition using M r or N r, selectively removing granules (filtering in the 
granularity domain); and rebuilding. Such a filter is idempotent. 

3 R e s u l t s  

Figure 1 (A) shows an image of a doll manually segmented from a larger image. 

Fig. 1. (A) Shows the original image I; (B)(i) shows, in relief, the original image, B(ii) 
shows M4(I) and B(iii) shows M25(I). (C) shows the differences between B(i), B(ii) 
and B(iii) 

It is shown as a topological relief in Figure I(B). The spiky detail, particularly 
evident around the head, represents small scale regional extremes of area that  
are removed by sieving to scale 4, as in Figure l(B)ii. The small extrema that  
are removed are shown in Figure l(C)i (actually M4(I) - I). Likewise the pale 
highlight on the (left side) of the hair, is a feature represented by a larger scale 
extremum that  is removed with a larger, scale 25, area sieve. The differences 
between Figure l(B)ii and (B)iii are shown in Figure l(C)ii. No new features can 
be seen in Figure l(B)iii and what remains is a set of large flat zones with edges 
in the same places as those in the original. This is consistent with Theorem 6 
and Theorem 4. This localisation of features is an important advantage over, 
say, Gaussian scale-space which blurs the edges. 

The process is essentially regional and is not equivalent to redefining the 
intensity map over the whole image. Nor does it alter the corners of objects in 
the way that  a morphological or median filter with a rigid structuring element 
would be expected to. 

However, there is a problem. In Figure I(A) there are over 5,000 pixels and 
so, potentially, 5,000 different area scales. In practice, this is often far too many. 
Figure 2 (bottom right panel) shows an image of four pieces of string. The two 
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Fig. 2. Panel 18 shows the original image and panels 1-17 show an area decomposition 

longer pieces are the same length. The image is decomposed into 17 area c h a n -  

nels .  Each channel is formed as the partial  sum of granules from a range of 
S -'r=ri+l d,.. Most of the activity due to the longer pieces of string scales, ci = ~--~r=~i 

is observed in channel 10, whilst that  for the two smaller pieces can be seen in 
channels 7 and 8. Of course, since the pieces of string are not of uniform inten- 
sity, and there are shadows, activity is not confined to a single channel, ra ther  
it peaks at the appropriate  scale. 

This result would be difficult to achieve using a filter with a structuring 
element (for example, an alternating sequential filter by reconstruction [20] with 
square structuring element) because, a structuring element chosen to encompass 
the small bits of string would remove the more coiled of the long strings. The 
area sieve does not rely on a match between the shape of a structuring element 
and an object. The strings can be arranged in any shape (although, if the string 
forms loops it might be necessary to use a sieve that  takes advantage of the sign 
of the local extremum, cf. [19]). 

Figure 3 shows a more complicated example: a human face. Note the nostrils 
in channel 5, the eyes in channels 6 and 7, the mouth in channels 9 and 10 
and the entire face in channel 15. The larger scale channels can be used for 
segmentation, for example, channel 15 could be used as a mask to pick out 
facial features from the background for, by Theorem 6, it accurately represents 
features in the original image. This image is one of a movie sequence in which 
the activity associated with the mouth moves from a peak in channel 9 to a peak 
in channel 10/11 and back. 

Figure 4 shows a set of transverse scans of a human head generated by X-ray 
tomography. The sections start  at the level of the nose and go up to the top of 
the head. A guide frame, which is opaque to X-rays, is at tached to the head. 
The white, calcified bony tissue of the skull is readily identified and could be 
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Fig. 3. An area decomposition of an image (top) into a number of channels 

segmented out by simple thresholding, however, we have chosen to use a very 
large scale volume sieve. 

Figure 5(A) shows a rendered reconstruction of the volume channel contain- 
ing between 25,600 and 51,200 voxels. The left cheekbone can be seen looping 
out at the bot tom of the image, and the upper part  of the nose is visible at the 
bot tom left. The guide frame fastenings protrude from the skull. 

The third ventricle is a complex shaped void within the brain. It appears 
as a darkened region circled in panel 16 of Figure 4 and runs up through the 
brain, bifurcating to form two "wings" that come together at the top. The pri- 
mary segmentation is made by taking a volume channel encompassing 800 to 
1600 voxels. This first step achieves a near perfect segmentation but some other 
features of the same volume, are also present. Since they do not penetrate to the 
same depth, they occupy a larger area of those slices in which they are present 
and so can be removed by area sieving each slice to remove areas larger than 100 
pixels. This leaves some small regions, which are no longer connected through 
the slices, that  can be removed by re-sieving through the original volume sieve. 
From Theorem 8 this leaves the third ventricle unchanged. 

The final example shows how the sieve might be used to create compact 
feature vectors from an image. An isolated object in an image can be represented 
as a hierarchy of nested connected subsets of G. The pixels that  form the graph 
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Fig. 4. Thirty-fiv~ Computer tomography sc~ul~ through t~ truman head. Tile third ven- 
tricle is circled in the sixteenth slice. Notx~ thin COnlmcting filalnents are not rendored. 

of a large granule may thelnselves be elelnents of smaller graphs that represent 
the finer scale features of that object. This is illustrated in Figure 6 

In Figure 6 the top sketch shows an apparently meaningless collection of ob- 
jects but in tile lower sketch the shaded areas immediately identify two faces. 
The bar charts represent a count of the number granules at a particular scale 
enclosed within a particular object as a proportion of the total number of gran- 
ules within the object. Both the faces in (B) contain the same distribution of 
area-granules, and so this feature vector can be used for rotation-independent 
pat tern recognition; even though, in this case, the shaded regions have different 
shapes. 

Figure 7(B) shows an area-channel obtained from the image in Figure 7(A) 
(a QuickTake image taken at a "freshers" party with a flash). Notice that  the 
regions labelled 4, 8 and 11 are readily visible. This is because they form maxima 
relative to the background in their region. 

Each of the regions in Figure 7(B) are well defined, for the edges correspond 
directly to intensity changes in the original image (a consequence of Theorem 6, 
but  the faces are not necessarily identifiable from the outlines because the illu- 
mination is very uneven and the face yielding region 11 is partly occluded. The 
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Fig. 5. (A) shows a rendered 3D image of the skull. (B) shows the third ventricle on 
the same co-ordinated system as (A) 

Fig. 6. (A) Shows a collection of shapes (black connected sets). In (B) the same shapes 
that have been grouped to make sense. Panel 0 shows granule density (described in the 
text) of A, Panels 1 and 2 show the density for features within sets 1 and 2. 

set of segments do, however, form a starting point for developing a heuristic 
for finding the faces. Here we use the new approach, indicated in Figure 6, for 
obtaining a set of rotation-independent features for each region. 

Each region is taken in turn, Figure 7(C), and examined to find the number 
of smaller area regions it contains at each scale. This is plotted on the ordinate, 
as a fraction of the total number of smaller area segments within each segment, 
as a function of scale, abscissa. Each of the plots is an intensity and rotation- 
independent signature of the regions in Figure 7(B) and, to the extent that  
plots 4, 8 and 11 are similar to each other and differ from the others, they 
represent a way of distinguishing faces from the background. In this experiment 
only regions 1 and 6 might be confused with faces on this criterion alone. A better  
feature vector might include other components (measurements made with lower 
dimensional sieves for example) that  would allow more reliable recognition. Here, 
our purpose is only to illustrate the principle of using area decomposition to aid 
rotation independent recognition. 
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Fig. 7. (A) original image; (B) labelled single channel of original image; (C) granule 
densities for each of the regions in (B) 

4 C o n c l u s i o n  

A nonlinear method of generating scale-space has been presented. It has the 
following features: it preserves scale-space causality; sharp-edged objects in the 
original image remain precisely localised; it operates on images defined in any 
finite dimension; it is scale-calibrated; the image may be processed in the scale- 
space domain; the decomposition appears to offer semantically meaningful fea- 
ture vectors. 

The method presented here is unusual, and may be unique, in having all 
these properties. Although the theory has been presented for M- and N-sieves 
our experimental evidence suggests that  one can form an n-dimensional sieve 
using recursive median filters and it has the above properties. This has been 
proved in the one-dimensional case and such sieves have been shown to have 
good performance in noise [14]. The empirical evidence suggests that  the n- 
dimensional sieve is also robust. 

The one-dimensional version is extremely quick to compute and the n-dimensional 
version may also be efficiently coded although the order complexity has yet to be 
presented. Initial studies show that  the n-dimensional sieve can form a valuable 
part  of computer vision systems. 
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