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Abstract. Elliptic curves have been extensively studied for many years. Recent 
interest has revolved around their applicability to factoring integers, primality 
testing, and to cryptography. In this paper we explore the feasibility of implement- 
ing in hardware an arithmetic processor for doing elliptic curve computations over 
finite fields. Of special interest, for practical reasons, are the curves over fields of 
characteristic 2. The elliptic curve analogue of the EIGamal cryptosystem is also 
analyzed. 
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1. Introduction 

In 1976 Diffie and Hellman in their seminal paper [9] on public-key cryptography 
described a protocol whereby two parties can share a common piece of secret 
information over an insecure communications channel. The security of this protocol 
is based on the presumed intractability of the problem of computing logarithms in 
the multiplicativc group of a large finite field. Later, in 1985, EIGamal [10] described 
methods for exploiting the intractability of this same problem in order to construct 
a public-key encryption scheme and a signature scheme. All three protocols 
mentioned can be generalized to work in an arbitrary finite cyclic group. 

The K-rational points on an elliptic curve E defined over a field K form an abelian 
group. The addition operation of this abelian group involves a few arithmetic 
operations in the underlying field K, and is easy to implement, both in hardware 
and software. Hence the group E can be used to implement the Diffie-Hcllman 
key-passing scheme, and the EIGamal public-key cryptosystem and signature 
schemes. This use of elliptic curves in designing cryptosystems was first suggested 
by Koblitz [13] and Miller [21]. 

Elliptic curve cryptosystems have the potential to provide security equivalent to 
that of the existing public-key schemes, but with shorter key lengths. Having short 
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key lengths is a factor that can be crucial in some applications, for example, the 
design of smart-card systems. The arithmetic processor on a smart card is restricted 
in size to an area of roughly 20 mm 2. An RSA chip designed to do modular 
multiplication of 155 decimal digit numbers has about 50,000 transistors, while a 
chip designed to perform arithmetic in the field F2,93 has about 100,000 transistors. 
With current technology, these devices are too large to be placed on a smart card. 
By comparison, a chip designed to do arithmetic in F2m, where m ~ 200, would have 
less than 15,000 transistors, and would occupy about 15yo of the 20 mm 2 area 
assigned for the processor. Another advantage to be gained by using elliptic curves 
is that each user may select a different curve E, even though all users use the 
same underlying field K. Consequently, all users require the same hardware for 
performing the field arithmetic. 

Recent advances in the computation of elliptic curve logarithms [18] necessitate 
that the elliptic curve and the underlying field be judiciously chosen. In this report 
we consider various issues that arise in the secure and efficient hardward implemen- 
tation of the elliptic curve analogue of the EIGamal public-key cryptosystem. 

We begin with a brief review of elliptic curves. For an elementary introduction 
to elliptic curves the reader is referred to Chapter 6 of the book by Koblitz [14], 
while for a more thorough treatment of the subject we refer the reader to [30]. 
Section 4 mentions how arithmetic in F2.. can be efficiently implemented. This 
discussion helps in understanding why we choose (supersingular) elliptic curves over 
fields of characteristic 2, and this is done in Section 5. The elliptic curve analogue 
of the E1Gamal cryptosystem is studied in Section 6. In Sections 7 and 8 we present 
two alternate schemes for adding points on an elliptic curve also suitable for the 
implementation of the EIGamal cryptosystem. In Section 9 we predict the perfor- 
mance of the cryptosystem. Section 10 extends the discussion of Sections 5-7 to 
nonsupersingular elliptic curves over F2-. Finally, in Section 11, we explain how 
elliptic curves can be used to implement some digital signature schemes. 

We use the following notation. Fq denotes the finite field on q elements. By 77, we 
denote the cyclic group of order n. The cardinality of a set S is denoted by # S. Tr 
and Te are the functions Tr: F2m ~ Fz, Te: F2,. ~ F 4, defined by Tr(ot) = ~ + ~2 + 
~22 + .. .  + ~2~-,, Te(~) -- ct + ct 2~ + ~t 2" + ... + ~t 2"-2 (Te is only defined when m is 
even). 

2. Review of Elliptic Curves 

Assume first that Fq has characteristic greater than 3. An elliptic curve over Fq (in 
affine coordinates), denoted by E(Fq), or simply by E, is the set of all solutions 
(x, y) e F~ x Fq to the equation 

y2 = x 3 + ax + b, (1) 

where a, b e Fq, and 4a 3 + 27b 2 #- 0, together with a special point (9, called the point 
at infinity. 

It is well known that E(Fq) is an (additively written) abelian group of rank 1 or 
2, with the point d9 serving as its identity element. We have E(F~) ~ Z, ,  ~) Z,2, where 
n 2 divides nl, and nzl q - 1. The rules for the group addition are summarized below. 
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If P = (x l ,y l )  E E, then 
P + Q = (x3, y3), where 

and 

Addition Formula for (1) 

- P  = (x:, -Yl).  If Q = (x2, y2) ~ E, Q # - P ,  then 

X3 ~ )]2 __ XI  __ X2,, 

Y3 = ~ ( X l  - -  X3) - -  Y l ,  

r/y2-y  , if P # Q, 
. ~ x  2 - -  x 1 

2 =  / 3 x ~ + a  if P = Q .  
L 2yl 

If Fq is a field of characteristic 2, then there are two types of elliptic curves over 
Fq. An elliptic curve of zero j-invariant is the set of solutions to the equation 

y2 q_ a 3 y  = x a + a 4 x  + a 6, (2) 

where a 3, a4, a6 e F~, aa # 0, together with the point at infinity 0. 
An elliptic curve of nonzero j-invariant is the set of solutions to the equation 

y2 q. x y  = X a d- a 2 x  2 -I- a 6, (3) 

where a 2, a 6 ~ Fq, a 6 :~ 0, together with the point at infinity (9. 
The addition formulae for the two types of curves over F2,, is given below. 

Addition Formula for (2) 

Le tP  = (Xl, YI) e E; then - P  = (x, Yl + a3). IfQ = (x2, y2) ~ E a n d Q  # - P ,  then 
P + Q = (x3, y3), where 

= ~ \x l  + x2/  

ixt+_a  " 
~. a~ ' 

and 

"~ X I "~- X2, P # Q, 

P=Q, 

[(yx +_  _q2 + - -  
x 3 = ~ \ x t  + x2/ 

l a 6 . . 2  Lx " P =  Q, 

+ (Xl + x3) + Yt + a3, P :~ Q, 

Y3 = L (x2 + a ' ) (x l  + xa) + Yl + P = Q" 

Addition Formula for (3) 

Let P = (x 1,yl) E E; then - P  = (xi, yl + xl). If Q = (x2, y2)e E and Q # - P ,  
then P + Q = (Xa, Y3), where 

Yl + Y2 
+ x l  + x 2 + a 2 ,  P # Q ,  

x t d- x 2 
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and 

I( Y  ZY ](x  + + e t a ,  
\ x l  + x 2 ]  

Y3 = 

The well-known theorem of Hasse states that # E ( F q )  = q + 1 - t, where Itl -< 
2x/~. The curve E(Fq) is said to be supersingular if t 2 = 0, q, 2q, 3q, or 4q. If the 
characteristic of Fq is 2 or 3, then a curve over F~ is supersingular if and only if it 
has j-invariant equal to 0. The curve E can be viewed as an elliptic curve over any 
extension field F~k of F~; E(Fq) is a subgroup of E(Fq~). The Well conjecture (which 
was proved for elliptic curves in 1934 by Hasse) enables # E(Fq~) to be computed 
from # E(Fq) as follows. Let t = q + 1 - # E(Fq). Then # E(F~)  = qk  + 1 - ~k _ 
flk, where at, fl are complex numbers determined from the factorization of 1 - t T  + 
q T  2 = (1 - ~tT)(1 - BIT). 

A random point P in E can be selected by randomly choosing an element xl E Fq, 
and solving (1), (2), or (3) for y. By Hasse's theorem, the probability that x~ is the 
x-coordinate of a point in E is roughly 1/2. The order of P can be computed in 
polynomial time if the factorization of # E is known. 

3. The Elliptic Curve Logarithm Problem 

The discrete logarithm problem for a general group G is the following: given at, 
f le  G, determine an integer x such that fl = ate, provided that such an integer exists. 
The integer x is called the discrete logarithm of fl to the base at, and is uniquely 
determined modulo the order of at. For the elliptic curve discrete logarithm problem, 
we replace G by the group of points of an elliptic curve E, write the group law 
additively rather than multiplicatively, and replace ~ by P, an element of E. The 
security of the elliptic curve cryptosystems, to be discussed later, is based on the 
presumed intractability of this problem. 

The best general-purpose algorithm for computing elliptic curve logarithms is 
the combination of Shanks' exponential baby-step giant-step method (for example, 
see [24]) and the Pohlig-Hellman method [26], and has a running time that is 
proportional to the square root of the largest prime divisor of # G. The more 
powerful index-calculus attacks that are used to compute logarithms in the multi- 
plicative group of a finite field do not appear to extend to elliptic curve groups, as 
argued by Miller in [21]. 

Recently, a method was discovered for reducing the logarithm problem in E(F~) 
to the logarithm problem in the finite field Fqk for some integer k (MOV) [18], for 
the case god(# E(Fq), q) = 1. The MOV reduction uses the Weil pairing and yields 
a subexponential algorithm for computing logarithms in E(Fq), provided that k is 
small. 

In [181 it is shown that if E is a supersingular curve, then k < 6. More precisely, 
if # E(F~) = q + 1 - t, then k = 2, 3, 4, 6, 1 when t 2 = 0, q, 2q, 3q, 4q, respectively. 
In this case, to preclude the MOV attack, it is necessary to select an underlying field 
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Table 1. Orders of supersingular elliptic curves over F2-, where m is odd. 
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Group 
Curve m Order type k 

y2 + y = x 3 Odd q + 1 Cyclic 2 
y 2 + y = x  3 + x  m - - l ,  7 (rood8) q + l + x / ~  Cyclic 4 

m ---- 3, 5 (rood 8) q + 1 - x / ~  Cyclic 4 

y 2 + y = x  3 + x +  1 m =  1,7 (rood8) q + l - x / ~  Cyclic 4 

m = 3, 5 (rood 8) q + 1 + x / ~  Cyclic 4 

Fq of a sufficiently large size in order that the discrete logarithm problem in Fqk be 
intractable using the best algorithms known for the latter problem [7], [8], [11]. 
It appears (see Section 5) that the supersingular curves over F2,, are particularly 
convenient for implementation of elliptic curve cryptosystems, but some care must 
be exercised when selecting such a curve in light of the preceding result. In Tables 
1 and 2, we list, for m odd and even, a representative curve from each of the 
isomorphism classes of supersingular curves over F2,,, together with the order, 
group structure and value of k. We write q for 2% ?, ~t, fl, ~, co are any elements in 
F2- such that y is a noncube, Tr(?-2ct) = 1, Tr(~,-4fl) = 1, Te(6) ~ O, and Tr(~o) = 1. 
For more details, consult [19]. 

If a nonsupersingular curve is desired, then the MOV attack can be avoided by 
simply choosing a curve E(Fq) such that the corresponding k value is sufficiently 
large. (By suff• large we mean that k > c, where the discrete logarithm 
problem in Fqc is considered intractable.) Let E(Fq) be of type (nl, n2). We assume 
that n~ is divisible by a large prime v. We further assume that the base point P has 
order also divisible by v. It can then be ensured that k # I by simply checking that 
either v does not divide qt _ 1 or else v 2 does not divide # E(F~,). To verify that 

Table 2. Orders of supersingular elliptic curves over F2-, where m is even. 

Group 
Curve m Order type k 

y2 + ~,y = x 3 m = 0 (mod 4) q + 1 + x/~ Cyclic 3 

m ~ 2 (mod 4) q + 1 - x/~ Cyclic 3 

y2 + ~y = x 3 + ~t m - 0 (mod 4) q + 1 - x/q Cyclic 3 

m = 2 (mod 4) q + 1 + x /q  Cyclic 3 

y2 + ~,2y = x 3 m -= 0 (rood 4) q + 1 + x/~ Cyclic 3 

m --- 2 (mod 4) q + 1 - x /q  Cyclic 3 

y 2 + ) , 2 y = x  3 + f l  m - 0  (mod4) q +  1 - x / q  Cyclic 3 

m ~ 2 (mod 4) q + 1 + x /q  Cyclic 3 
y2 + y = x 3 + ~x m even q + 1 Cyclic 2 
y Z + y = x 3  m=-O (mod 4) q + 1 - 2x/~ 7 v,~_l 0) Z v,,~_ 1 1 

m - 2 (mod 4) q + 1 + 2x /~  Zv,~+ 1 ~ Z . ~ +  1 1 

y 2 + y = x 3 + m  m = O  (mod 4) q + 1 + 2 x / ~  Z ,~+~)Z ,~+  1 1 

m---2 (mod 4) q +  1 - 2 v / ~  Z/,~_I~)Zv~_ 1 1 
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k > c, check that k ~ l, for each l, 1 < l < c. The quantity #E(Fq,) can be easily 
obtained from # E(F~) by applying the Weil conjecture as described in Section 2. 
For most nonsupersingular curves, the value of k will be too large for the MOV 
reduction to the useful. This statement is made precise in 1,16]. 

4. Field Arithmetic in F~. 

Since we are most interested in elliptic curves over finite fields of characteristic 2, 
we briefly discuss how the arithmetic in F2m can be efficiently accomplished. 

The field F2~, can be viewed as a vector space of dimension m over F2. Once a 
basis of F2m over F2 has been chosen, the elements of F2- can be conveniently 
represented as 0-1 vectors of length m. In hardware, a field element is stored in a 
shift register of length m. Addition of field elements is performed by bitwise XOR-ing 
the vector representations, and takes one clock cycle. A normal basis of F2m over 
F2 is a basis of the form 

. . . . .  

where /} e F2,,. Given any at e F2-, we can write ot = ~-01 ai[32', where ai ~ F2. 
Notice that 

m-I m-! 
Gt2= E aifl 2'+1= ~ ai-lfl 2', 

i=0 i=0 

with indices reduced modulo m. Hence a normal basis representation of F2,, is 
preferred because squaring a field element can then be accomplished by a simple 
rotation of the vector representation, an operation that is easily implemented in 
hardware; squaring an element also takes one clock cycle. 

To minimize the hardware complexity in multiplying field elements (i.e., to 
minimize the number of connections between the cells of the shift registers holding 
the multiplicands), the normal basis chosen has to belong to a special class called 
optimal normal bases. A description of these special normal bases can be found in 
1-23], where constructions are given, together with a list of fields for which these 
bases exist. An associated architecture for a hardware implementation is given in 
1,2]. Using this architecture, a multiplication can be performed in m clock cycles. 
For fields for which optimal normal bases do not exist, the so-called low complexity 
normal bases described in 1,5] may be useful. 

Finally, the most efficient technique, from the point of view of minimizing the 
number of multiplications, to compute an inverse was proposed by Itoh, Teechai, 
and Tsujii, and is described in I-1]. The method requires exactly/log2(m - 1)J + 
co(m - 1) - 1 field multiplications, where co(m - 1) denotes the Hamming weight 
of the binary representation of m - 1. However, it is costly in terms of hardware 
implementation in that it requires the storage of several intermediate results. An 
alternate method for inversion which is slower but which does not require the 
storage of such intermediate results is also described in [1]. 

Recently Newbridge Microsystems Inc., in conjunction with Cryptech Systems 
Inc. (Canada), has manufactured a single chip device that implements various public 
and conventional key cryptosystems based on arithmetic in the field F2~9~. Since the 
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field size is quite large, a slower two-pass multiplication technique was used in order 
to reduce the number of cell interconnections (see I-2] or [27]). Also, to reduce the 
number of registers, the slower method mentioned in the previous paragraph to 
compute inverses was used. Multiplication of two elements takes 1300 clock cycles, 
while an inverse computation takes 50,000 clock cycles. The chip has a clock rating 
of 20 MHz, and so the multiplication and inverse computation take 0.065 ms and 
2.5 ms, respectively. 

More recently, a custom gate array device has been constructed [4] to do field 
operations in Fv~s. This chip was explicitly designed to perform the elliptic curve 
point additions efficiently. The chip is of relatively low complexity having about 
11,000 gates and has a clock rate of 40 MHz. 

5. Selecting a Curve and Field K 

From the addition formulae in Section 2, we see that two distinct points on an 
elliptic curve can be added by means of three multiplications and one inversion of 
field elements in the underlying field K, while a point can be doubled in one inversion 
and four multiplications in K. This is true regardless of whether the curve has 
equation (1), (2), or (3). Additions and subtractions are not considered in this 
count, since these operations are relatively inexpensive. Our intention is to select 
a curve and field K so as to minimize the number of field operations involved in 
adding two points. Curves over K = F2,, are very attractive for the following 
reasons: 

(i) The arithmetic in F2,, is easier to implement in computer hardware than the 
arithmetic in finite fields of characteristic greater that 2. 

(ii) When using a normal basis representation for the elements of Fv,, squaring 
a field element becomes a simple cyclic shift of the vector representation, and 
thus reduces the multiplication count in adding two points. 

(iii) A third reason applies to supersingular curves. For supersingular curves over 
Fv~, the inverse operation in doubling a point can be eliminated by choosing 
a3 = 1, further reducing the operation count. 

For these reasons we first consider curves over F2~ of the form y 2 +  y = 
x 3 + a4x + a 6. A further advantage of using these curves is that it is then easy to 
recover the y-coordinate of a point given its x-coordinate plus a single bit of the 
y-coordinate. This is useful in message embedding, and in reducing message expan- 
sion in the EIGamal scheme, as is explained in Section 8. The implementation of 
nonsupersingular curves over F2m is considered in Section 10. 

From Table 1, we see that there are precisely three isomorphism classes of 
supersingular elliptic curves over F2m, m odd. A representative curve from each 
class is 

E~: y2 + y = X 3, 

E2: y2 + y = x 3  +x ,  

Ea: y2 + y = X a + X + 1. 
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The addition formula for E~ simplifies to 

+ x l + x 2  ' P C Q ,  
X 3 = --[- X2, ] 

x'~, P = Q, 
and 

flY1 + Y2 . 
Y3 = q ~Xll +~2: [xl "1- x3)  "1- "]11 + 1, P :/: Q, 

Ly' + 1, P = Q .  

The addition formulae for curves E2 and E 3 is similar to that for El,  except that 
the formula for doubling a point becomes 

x 3 = x 4 +  1, 

y3 = y t  + ,,'1. 

If a normal basis representation is chosen for the elements of F2-, we see that 
doubling a point in El, E2, or E3 is "free," while adding two distinct points can be 
accomplished in two multiplications and one inversion. The multiple k P  of the point 
P is computed by the repeated doubling and add method. If ~o(k) = t + 1, then the 
exponentiation takes 2t multiplications and t inversions. 

6. Project ive  Coord inates  

Even though there are special techniques for computing inverses in F2,, , a field 
inversion is still far more expensive than a field multiplication (see Section 4). The 
inverse operation needed when adding two points can be eliminated by resorting 
to projective coordinates. 

Let E be either El, E2, or E 3. The curve E can be equivalently viewed as the set 
of all points in p2(K) which satisfy the homogeneous cubic equation y2z  + yz  2 = x 3 
( o r  y2z + y z  2 = X 3 -t- 367, 2, or y2z  + yz  2 = x 3 + x z  2 + za). Here [ p 2 ( K )  denotes the 
projective plane over K. The points of p2(K) are all of the equivalence classes of 
nonzero triples in K a under the equivalence relation ~ ,  where (x, y, z) ~ (x', y', z') 
if and only if there exists at ~ K* such that x' = ctx, y'  = cry, and z'  = ~z. The 
representative of an equivalence class containing (x, y, z) is denoted by (x : y : z). 
Note that the only projective point in E with z-coordinate equal to 0 is the 
point (0 : l : 0); this point is the point at infinity 0 of E. If (9 ~ (x : y : z) ~ E, then 
(x : y : z) = (x /z  : y / z  : l), and so the projective point (x : y : z) corresponds uniquely 
to the affine point (x/z,  y/z). 

Let P = (Xl : Yl : 1) e E, Q = (x2 : y2 : 7,2) e E, and suppose that P, Q ~ r P :/: Q, 
and P r - Q. Since Q = (X2/.~ 2 : y2/z2 : 1) we can use the addition formula for E in 
affine coordinates to find P + Q = (x~ : y~ : 1). We obtain 

./12 X 2 
x~ = ~ + x l  + - - ,  

Z2 

y ; =  1 +Yl  + ~ . - ~ -  + , D \ / ~ -  Z2,/  

where A = (Y17,2 d- Y2) and B = ( x l z  2 + X2). 
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To eliminate the denominators of the expressions for x~ and y~, we set z3 = B3z2, 
x3 = x'3z3, and Y3 = y'3z3, to obtain P + Q = (x3 : y3 : z3), where 

x 3 = A2Bz2 + B 4, 

Y3 = (1 + yl)z3 + A3z2 + AB2x2, 

Z 3 = n 3 z 2  . 

This addition formula can be done in nine multiplications of field elements, which 
is more that the two multiplications required when using affine coordinates. We 
save by not having to peform a costly inversion. The gain occurs at the expense of 
space, however, as we now need extra registers to store P and Q, and also to store 
intermediate results when doing the addition. 

The multiple kP, where P is the affine point (x,, Yl, 1), can now be computed by 
repeatedly doubling P, and adding the result into an accumulator. The result 
kP = (x3, Y3, z3) can be converted back into affine coordinates by multiplying each 
coordinate by z3 ~. If co(k) = t + 1, then the total operation count to compute kP is 
9t + 2 field multiplications and one inversion. 

7. Montgomery's Method 

To reduce the number of registers needed to add points on an elliptic curve, a 
method for addition that is similar to that used by Montgomery in Section 10.3.1 
of 1-22-1 may be used. 

Let P = (xl, yl) and Q = (x2, y2) be two distinct and nonzero points on E, with 
P ~ - Q .  Then P + Q = (x3, .1"3) satisfies 

__ (Yl -I- y2)  2 
X 3 (X 1 "~- X2)2 "~- X 1 "~- X 2 �9 (4) 

Similarly, since - Q  = (x2, y2 + 1), P - Q = (x4, Y4) satisfies 

(Yl + Y2) 2 + 1 
X4 = (X 1 + X2)2 -~ X 1 "3 t" X 2. (5) 

Adding (4) and (5), we obtain 

1 
X 3 = X 4 "1- (X 1 + X2)2. (6) 

Notice that to compute the x-coordinate x 3 of P + Q, we only need the x-coordi- 
nates of P, Q, and P - Q, and this can be accomplished with a single inversion. 

We can now compute kP from P using the double and add method. First 
2P is computed, and then we repeatedly compute either (2raP, (2m + 1)P) or 
((2m + 1)P, (2m + 2)P) from (raP, (m + 1)P), depending on whether the corre- 
sponding bit in the binary representation of k is 0 or 1. Notice, however, that we 
have to use the addition formula (6) each time a new pair of points is computed, 
and this is done log2 k times. In the methods of Sections 4 and 6, the corresponding 
addition formulae were only used t times when computing kP, where co(k) = t + 1. 
Thus the improvement in storage requirements when using the Montgomery meth- 
od is at a considerable expense of speed. 
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8. EIGamal Cryptosystem 

Let E be the curve E~, g2, or E 3 over F2,, m odd, and let P be a publicly known 
point on E, preferably a generator of E. The elements of F2m are represented with 
respect to a normal basis. User A randomly chooses an integer a and makes public 
the point aP, while keeping a itself secret. We assume that messages are ordered 
pairs of elements in F2~. To transmit the message (M~, M2) to user A, sender B 
chooses a random integer k and computes the poins kP and akP -- (2, ~). Assuming 
x, y :/: 0 (the event ~ = 0 or ~ = 0 occurs with very small probability for random 
k), B then sends A the point kP, and the field elements M12 and M2y. (We multiply 
by M~ and M 2 rather than add because if M~ + ~ were sent, then it is more likely 
that a third party can change some bits of the message without being detected.) To 
read the message, A multiplies the point kP by her secret key a to obtain (2, y), from 
which she can recover M 1 and M 2 in two divisions. 

In the above scheme, four field elements are transmitted in order to convey a 
message consisting of two field elements. We say that there is message expansion by 
a factor of 2. The message expansion factor can be reduced to 2 a- by only sending the 
x-coordinate x~ of kP and a single bit of the y-coordinate y~ of kP. Yl can easily be 
recovered from this information as follows. First ~ = x 3, x 3 + x 1 or x 3 + xl + 1 
is computed, depending on whether E = E~, E2, or E a, respectively, by a 
single multiplication of x 1 and x 2. Since the trace of ~ must be 0, we have that 
either 

or else 

Yl = oc + o~ 22 + oc 24 + -.. + ot 2m-' 

Yl = ~ + ~22 + ~2, + ...  + a2,--, + 1. 

The identity 1 is represented by the vector of all l's, and so the single bit of Yl that 
was sent enables the correct choice for YI to be made. Notice that the computat ion 
of y~ is inexpensive, since the terms in the formula for y~ may be obtained by 
successively squaring a. 

A drawback of the method described above is that if an intruder happens to know 
M~ (or M2), he can then easily obtain M2 (or M~). This attack can be prevented by 
only sending (kP, M1 2), or by embedding M~ on the curve. If the user wishes to 
embed messages on the elliptic curve, the following deterministic scheme may be 
used for the curve E = El. We assume that messages are (m - l)-bit strings M = 
(Mo, M~, . . . ,  Mm-2)- We can consider M as an element of F2,, (where Mm-~ = 0). 
To embed M on the curve, M a is first computed and then the trace of M s is evaluated. 
If Tr(M a) = 0, then we set x u  = M, otherwise we set xu  = M + 1. In either case, 
we have that Tr(x~) = 0. As in the preceding paragraph, Yu such that Pu = (xu, Yu) 
is a point on E can be easily found. Sender B can now transmit to A the pair of 
points (kP, akP + Pu). With this scheme the message expansion is by a factor of 4. 
The message expansion factor can be reduced to 2 by sending only the x-coordinate 
and a single bit of the y-coordinate of each point. Note that after user A recovers 
xu,  she can decide whether the message sent is xu  or xu  + 1, by simply checking 
whether the last bit of xu  is 0 or 1, respectively. 
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9. Implementation 

We estimate the throughput rate of encryption using the elliptic curve analogue of 
the EIGamal public-key cryptosystem. We choose the curves E2 and E 3 over F2m, 
where m is odd. The elements of/72,, are represented with respect to an optimal 
normal basis. We assume that a multiplication in F2m takes m clock cycles, while an 
inversion takes l(m) = [log2(m - 1)J + ~o(m - 1) - 1 multiplications. For simplic- 
ity, we ignore the cost of field additions and squarings. 

It was noted in Section 3 that computing logarithms in E 2 or E 3 is believed to 
be as hard as computing logarithms in F2,,~. We can thus achieve a high level of 
security using the elliptic curve EIGamal cryptosystem, but by using a significantly 
smaller field than is necessary for a secure implementation of the EIGamal crypto- 
system over a finite field. Since the field size is small, we can assume that the number 
of registers used is not a crucial factor in an efficient implelementation. We thus 
represent points using projective coordiates. 

In the E1Gamal system the computation of kPand kaP requires m additions of 
points on average, for a randomly chosen k. To increase the speed of the system, 
and to place an upper bound on the time for encryption, we limit the Hamming 
weight of k to some integer d, where d < m. A similar technique is used in RSA (see (~ [12]) and in [2]. The integer d should be selected so that d/2 is large in order to 

prevent the (close to) square-root methods [25]. For the present discussion, we 
choose d = 30. 

The computation of kP and kaP takes 58 additions of points, 2 field inversions, 
and 4 field multiplications. Computing m ~  and m2~, where kaP = (~, ~), takes 
another two multiplications. Thus two field elements can be encrypted in 528 + 
2I(m) field multiplications. For concreteness we select the curve E3 over F22~9. This 
choice is appropriate because an optimal normal basis exists in F2239. Also since 
# E3(F22~,) is a 72-digit prime, the square root attacks for computing elliptic curve 
logarithms do not apply. Finally, noting that I(239) = 12, and assuming a clock 
rate of 40 MHz, we get an encryption rate of 145K bits/s. 

Table 3 lists some fields F2m for which an optimal norma basis exists, and where 
either # E2(F2m ) or # E3(F2,~) contains a large prime factor, precluding a square- 
root attack. The factorizations of the order of curves was obtained from [6]. The 
approximate running time for an index calculus attack in F2,m is also included, using 
the asymptotic running time estimate of 

e (1.35)nl/3(1 n n)2~3 

operations for computing discrete logarithms in F2. [24]. 

10. Using Nonsupersingular Curves 

This discussion in this section is restricted to elliptic curves over fields of charac- 
teristic 2. However, it should be pointed out that nonsupersingular curves over 
fields of odd characteristic, and in particular prime fields, are also attractive for 
implementation. 
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Table 3. Some suitable supersingular curves of F2-, m odd. 

m Curve Order of curve over F2- 

Rough estimate of the 
operation count for 

index-calculus attack in F2,m 

173 E 2 5'13625405957' P42 1.4 x 10 Is 
173 E 3 7152893721041-P40 1.4 x 10 la 
179 E a 1301260549"P45 2.5 x 10 Is 
191 E 2 5"3821"89618875387061" P40 8.6 x 10 is 
191 E a 25212001'5972216269'P41 8.6 x I0 is 
233 E2 5'3108221"P63 4.3 x 102o 
239 E 2 5'77852679293-P61 7.2 x 102o 
239 E 3 P72 7.2 x 102o 
281 E a 91568909"PRP77 2.3 x 1022 
323 E 3 137"953-525313"P87 5.3 x 1023 

There  are  2(q - 1) i somorph i sm classes of  nonsupers ingu la r  el l ipt ic curves over  
Fq, where q = 2 m (and m is ei ther  even or  odd). A set of  representa t ive  curves, one 
from each class, is 

y2 -I- Xy ----- X 3 -I- a2 x3 -I- a6, (7) 

where a6 e Fq\{0}, a2 ~ {0, ~}, and  ~ is an  e lement  in Fq of  t race 1. If  E is the curve 
y2 + xy  = x 3 + a6, then its twist is the curve E: y2 -F x y  ---- X a + a2 x2 -I- a 6. No te  
tha t  # E(Fq) + # E(F~) = 2q + 2, and  tha t  # E(Fq) = 0 (mod 4). 

As ment ioned  in Sect ion 3, the best  a lgor i thms  k n o w n  for the logar i thm p rob l e m 
in nonsupers ingu la r  ell iptic curves is the baby-s tep  g iant -s tep  a lgor i thm.  A non-  
supers ingular  curve that  is sui table  for c ryp tograph ic  app l ica t ions  is one whose 
order  is divisible by  a large pr ime factor,  say a p r ime  factor  of  a t  least 40 decimal  
digits. Consequent ly ,  the under ly ing  field should  be of  size at  least  213~ . The  
under ly ing  field should  also have an op t ima l  n o r m a l  basis,  in o rde r  to achieve 
efficient field ar i thmetic .  In  addi t ion ,  we prefer a curve whose g roup  is cyclic; this 
will be the case if # E(F~) has no repea ted  pr ime factors. F r o m  the add i t i on  formulae  
in Sect ion 2, we see tha t  add ing  two dis t inct  po in ts  takes  two field mul t ip l ica t ions  
and  one inversion,  while doub l ing  a po in t  takes  three mul t ip l ica t ions  and  one 
inversion.  (Recall  that  doub l ing  a po in t  in a supers ingular  curve was for "free.") The  
need for compu t ing  inverses m a y  be e l iminated  by resor t ing  to project ive coordi -  
nates. We  include the add i t i on  formulae  for project ive coord ina tes  below: 

Let  P = (x~ : Yl : z l) ,  Q = (X2 : Y2 : 1), with P,  Q # tP, P ~- - Q ,  and  let P + Q = 

(x3 : y3 : z3). 
If  P r Q, then 

x3 = AD, 

Y3 = CD + A2(BxI + Ayl),  

7. 3 = a 3 z l ,  

where A = x2zl  + x l , B  = Y2Zl + y l , C  = A + B, and  D = A2(A + a2zl) + zIBC. 
C o m p u t i n g  P + Q can  be done  in 13 mult ipl icat ions .  



Elliptic Curve Cryptosysterns and Their Implementation 221 

If 2P = (X 3 : Y3 : Z3), then 

X 3 ~ -  AB, 

Y3 = x~A + B(x~ + y l z  1 + A), 

Z 3 ---- A 3, 

where A = x t z t and B = arz~ + x 4. Computing 2P can be done in seven multiplica- 
tions. 

Of course, the nonsupersingular curves may also be used to implement the 
EIGamal cryptosystem as in Section 8. The advantage of using a nonsupersingular 
curve is that the same security level can be attained as with a supersingular curve, 
but with a much smaller underlying field. This results in smaller key lengths, faster 
field arithmetic, and a smaller processor for performing the arithmetic. Another 
advantage of using nonsupersingular curves is that each user of the system may 
select a different curve E, even though all users use the same underlying field Fq. 
Thus, all users require the same hardware for performing the field arithmetic. 

If a random elliptic curve E is required, then # E(Fq) can be computed in 
polynomial time by Schoof's algorithm [,29], as suitably adapted by Koblitz to 
curves over fields of characteristic 2 [,15]. The algorithm has a running time of 
O((log q)8) bit operations, however, it is practical for computing the order of curves 
over/72,, for m up to 155 [-20]. Using heuristic arguments, Koblitz [,15] showed that 
the probability of a random nonsupersingular curve E(Fq) having the property that 
N = # E(Fq) is divisible by a prime factor > N/B is about (I/m) log2(B/2 ). Thus, for 
example, the probability that # E(F2,s,) is divisible by a 40-digit prime is approxi- 
mately 

[ 2'5s ~ 
1 log 2 ,~ 0.136, 

155 \ ~ ]  

and so one can expect to try seven curves before a suitable one is found. 
An alternative method for selecting curves is to choose a curve E defined over Fq, 

where q is small enough so that # E(F~) can be computed directly, and then using 
the group E(F,.) for suitable n. Note that # E(Fq.) can easily be computed from 
# E(Fq). Observe also that if I divides n, then # E(Fa,) divides # E(Fq,), and so we 
should select n such that it is prime, or else a product of a small factor and a large 
prime. 

In [-17] Koblitz observed that if exponents k of a small Hamming weight are used, 
then doubling of points "almost �88 for free" are obtained for the nonsupersingular 
curves y2 + xy = x a + 1 and y2 + xy = x 3 + x 2 + 1 when computing kP. Also in 
[,17] is a list of curves defined over F 2 (respectively F4, Fs, and FI6 ) such that # E(F~.) 
has a prime factor of at least 30 digits, there exists an optimal normal basis in F,,, 
and any string of < 4 zeros (respectively exactly 2, 3, 4 zeros) can be handled with 
a single addition of points. 

When using the curve (7), message expansion can be reduced by sending xl and 
a single bit o f y l / x  (if x,  ~ 0), instead of sending the point P = (x,,  y~). y, can then 
be recovered by using the following method. First, if x~ = 0, then y, = x/~6- If 
x~ 4 0, then the change of variables (x, y) ~ (x, xz) transforms (7) to z 2 + z = 
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x + a 2 + a6 X-2. C o m p u t e  ~ = x l  + a2 + a6x~ 2. To solve the quadrat ic  equat ion  
z 2 + z = ~, let z = (Zo, zl . . . . .  z,,_x) and ~ = (ct o, ~tx . . . . .  ot,,_~) be the vector  repre- 
sentat ions of  z and at, respectively. Then z 2 + z = (z 0 + zm-t, Zo + zl . . . . .  Zm-2 + 
zm-t). Each choice z 0 = 0 or  Zo = 1 uniquely determines a solution ~, to z 2 + z = ct, 
by compar ing  the componen t s  of  z 2 + z and ~. The correct  solution ~, is selected by 
compar i son  with the corresponding bit o f y x / X l  that  was transmitted.  Finally, yt  is 
recovered as YI = xlz'- 

11. Digital Signatures 

One of the true advantages  of  public-key c ryp tog raphy  is the digital signature. 
In 1985 E IGama l  [10] established the existence of such signatures in discrete 
exponent ia t ion  systems based on the multiplicative cyclic g roup  of a finite field. 
It is a s t ra ightforward mat te r  to see that  the concept  carries over  to a discrete 
exponent ia t ion  system based on any cyclic group.  Fo r  completeness,  we briefly 
describe how this is done. 

Let G be a cyclic group  of order  n, and let ~t be a generat ing element. Let J g  denote  
the message space, where we suppose that  # ~r = n. Let f and g be bijections f rom 
Jr '  and G, respectively, to the set of  integers {0, 1, 2 . . . . .  n - 1 }. Suppose  person A 
has private key a and public key ~a and that  A wants  to sign a message M e ~t'. 

Creating Signatures. A does the following: 

�9 Genera te  a r a n d o m  integer k such that  gcd(k, n) = 1. 
�9 C o m p u t e  the g roup  element r = ct k. 
�9 Solve the congruence 

f ( M )  - ag(r) + sk (mod n) 
for s. 

The  signature for M is the pair  (r, s). 

(8) 

Checking Signatures. Given  M and the signature (r, s), we verify as follows: 

�9 C o m p u t e  r s = ~ks and  (~ta) gtr}. 
�9 C o m p u t e  (Cdg~r))(ctk~) and  ctltu) and verify that  they are the same group  element. 

No te  that  in comput ing  the E I G a m a l  signature k -1 (mod n) must  be computed.  
An easy modif icat ion avoids this situation. Instead of solving (8), solve 

f ( M )  = kg(r) + sa (mod n). 

This has the advantage  that  a is fixed and a -1 can be compu ted  once and for all. 
The security of  this modif icat ion relies part ial ly on the intractabil i ty of  finding a 
solut ion to the equat ion  

u ( x )  = x ~ 

in the g roup  G. For  more  details, the interested reader  is referred to [3]. 
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Another  modification of  the EIGamal  scheme is one given by Schnorr  in [28]. 
This method  requires a hash function h: . ~  x G ~ 7]. 

Creating Signatures. To  sign message M, person A does the following: 

�9 Compute  group element r = at k for some r andom integer k. 
�9 Compute  the hash value of  M and r, i.e., e = h(M, r). 
�9 Compute  s = ae + k (rood n). 

The signature for message M is (s, e). 

Checking Signatures. Given M and the signature (s, e) we verify as follows: 

�9 Compute  ct s, (~t~) e, and thus ~tset -ae = b. 
�9 Verify that  h(M, b) equals e. 

This method,  a l though it requires a hash function, has the advantage that signatures 
can be smaller. 

Fo r  clarity, we describe one method  of  applying the EIGamal  signature scheme 
to elliptic curves over  F2,,. 

Let P = (Xo, Yo) be a genera tor  for a cyclic subgroup G of the group of 
points of an elliptic curve over F2,., and let n = # G. We take messages to be 
elements of F2,.. Define a mapping f :  F2., ~ {0, 1 . . . . .  2 m - 1 } as follows: if M = 
(Mo, MI . . . . .  Mm-l) E F2~, then f ( M ) =  ~7'=~ 1Mi2'. In general, f will not  be a 
bijection from .At' to {0, 1 . . . .  , n - 1} because n ~ 2 m, but, in practice, this causes 
no problem as we can choose a curve E with # E(F2,.) > 2 m. Finally, we take g to 
be the map g((x, y)) = y for all (x, y) ~ G. Note  that g is not  a bijection, however, 
this is not  a problem in practice. 
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