
ON THE PROPER TREATMENT OR REFERENCING,oDEoREFERENCING AND ASSIGNMENT

T.M.V. Janssen

Mathematical Centre

i~sterdam, The Netherlands.

&

P. van Emde Boas

Institute for Applied Mathematics / I.P.W.

University of Amsterdam, The Netherlands.

ABSTRACT

A Floyd-like semantics is presented for the assignment statement in a fragment

of ALGOL 68. The fragment considered contains array identifiers, referencing, derefe-

rencing and conditionals. The semantics is based upon an interpretation in a model

of intensional logic, without use of addresses or stores. In doing so, several ideas

developed by R. Montague concerning the treatment of semantics for natural languages

are applied for the first time in the area of semantics of programming languages. We

also consider an operational semantics, based on the same model and prove that the

Floyd-like semantics is valid with respect to the operational one and always yields

the strongest pos~condition.

|. INTRODUCTION

The purpose of the mathematical theory of semantics of programming languages is

to describe in a computer-independent way those aspects of the processes taking place

during execution of a program which are considered as mathematically relevant. In

order to do so one needs a mathematical model in which such processes will be des-

cribed. A fundamental question in choosing such a model is the treatment of identi-

fiers, since this has immediate consequences for the treatment of assignments.

In the Scott-Strachey style of denotational semantics one relates identifiers

with locations in an abstract store and assignments are then treated as modifications

of the content of a location in the store (SCOTT & STRACHEY (1971)). The official

description of ALGOL 68 (VAN WIJNGAARDEN (1976)) uses the fundamental relation " to

refer to" which may hold between a name and a value. The meaning of assignments is

expressed by describing the elaboratioh in terms of this relation. In both of these

approaches, as in many others, one has to fall back on some abstract machine. We

consider this to be a disadvantage, since the internal organization of a computer in

stores and addresses is not a mathematically relevant aspectl

In the Floyd-Hoare approach of inductive assertions an identifier is not rela-

ted with a location but only with its value. The semantics of assignments is connect-

ed to the input-output behaviour of the identifiers; one describes the relation which

283

exists between assertions about the values of the identifiers before and after the

execution of the assignments. FLOYD (1967) gives the following rule for the assign-

ment statement (in this [z/x] means: replace all occurences of x in ~ by z).

(F) {x:= t} 3z[[z/x]~ ^ x = Ez/x]t].

The rules of Floyd and Hoare however yield undesirable results if applied to

situations where the destination of an assignment (i.e., the expression modified by

it) is not simple. For example consider the following assignments:

(I) if p then x else y f i:= t

(2) a[a[l]]:= 2

In example (1) rule (F) cannot be used since the destination is too complex to

be substituted for. If we would apply (F) to program (2) odd things could happen.

Suppose we take for ~ the assertion a[l] = l ^ a[2] = I. Then (F) implies that after

execution of the assignment holds that:

3z[z/a[a[l]]] (a[1] = I ^ a[2] = I) ^ a[a[l]] = [z/a[a[|]]]2;

This formula reduces to

all] = 1 ^ a[2] = l ^ a[a[l]] = 2,

which clearly is a contradiction. A solution for this problem is given by DE BAKKER

(1976). He treats, however, only the one-dimensional case, while the same problem may

arise in arrays of any dimension as is demonstrated by the example

(3) q[q[l][2]] [2] := 2.

Another source of problems is the use of higher order references. Consider the

following program in which x is an integer identifier and xx a pointer:

(4) x:= 4; xx:= x; x:= 3

If one would apply (F) to these assignments one would obtain that after the

second assignment x = 4 ^ xx = 4 holds , so that after the third

3y[y = 4 ^ xx = y A x = 3]

holds. This is incorrect: the integer value corresponding to xx (obtained by twice

dereferencing) is modified by the assignment x:= 3 although this is hardly visible

from the program text. In practice this is an easy source for program bugsl

The problems sketched above are related with the fact that the contribution of

an expression to the meaning of an assignment may depend on its textual position:

sometimes this contribution is only its value, and sometimes it is more. Consider

the assignment y:= x+1, and assume that both x and y have value 7. Then the result

of the assignment is insensitive for replacing "x" by "y" or "7", whereas replacing

284

of "y" by "x" leads to another assignment. STRACHEY (1967) has explained this situa-

tion by attributing to each identifier two values (the L-value (~ address) and the

R-value (~ content)). In the formal definition of ALGOL 68 this is explained by

attributing to "x" a "reference to integral" value from which an "integral value"

may be obtained by the action of "dereferencing", which is allowed on the right hand

side of an assignment but forbidden on the left hand side(with some exceptions).

It is striking that the same phenomenon can be observed in natural languages.

We consider an example due to QUINE (1960). Suppose that by recent appointment holds

that

(I) The dean = the chairman of the hospital board

gonsid~r the following sentences:

(2) The commissioner is looking for the chairman of the hospital board.

(3) The commissioner if looking for the dean.

The meaning of (2) and (3) is not essentially changed if we replace "the com-

missioner" by AnOther description of the same person. Such a context is called refer-

entially transp~ent. Changing, however (2) into (3) clearly makes a difference:

it is thinkable that the commissioner affirms (2) and simultaneously denies (3), be-

cause of the fact that he has not yet been informed that (I) recently has become a

truth. A context like "the dean" in (3) is called referentially opaque (QUINE (1960)).

Problems concerning reference constitute an intriguing part of language philo-

sophy. Many linguists, philosophers and logicians (among them D. SCOTT (1970)) work-

ed on attempts to deal with them. The investigations culminated in the work of R. HON-

TAGUE. In The proper treatment of quantification in ordinary English, (1973), he pre-

sents the syntax and semantics of a fragment of English in which such problems are

treated. References Do the earlier works in this direction can be found in the in-

troductory article of PARTEE (1975). We will refer in the sequel to Montague's

article by "PTQ".

The basic idea in Montague's approach is the use of the concepts extension and

i~tension. The extension of an expression is its value in the current world. The in-

tension is the function yielding this value in any possible world. Consider for in-

stance the sentence "John walks". The extension is a truth-value;in order to decide

which one, we have ~o investigate the state of the actual world and find out whether

John is actually walking or not. The intension of the sentence is the boolean func-

tion which tells us for each possible world whether John is walking or not.

The same concepts can be applied in the theory of programming languages. The

extension of x is its integer value in the current computer state, its intension is

the function which attaches to each state the value of x in that state. So as first

orientation we have the following parallelism:

Hontag~e: Semantics of programming languages:

possible worlds states within the computer

extension R-value; dereferenced ref int value
intension L-value; address; ref int value

285

We wish to point out that the concepts in the left column are in several re-

spects more general. In denotational semantics L-values only exist for a restricted ~

class of expressions, whereas we relate with each expression an intension (pointers,

array identifiers as well as conditionals). Possible worlds are abstract sets which

need not be structured with two types of values (such as addresses and integer denota-

tions).

In this paper we will apply Montague's approach to natural languages in the

area of programming languages. Consequently we have the following framework. Programs

are syntactic structures produced in a generative formal system. By application of

some rules on these structures we obtain the readable text of the programs. The

semantics of the programs is obtained by application of translation rules to the syn-

tactic structure; by translation each expression in a program becomes a meaningful

expression in Intensional Logic (IL). IL is the kind of modal logic used by Montague

for expressing meaning. Programs and statements are translated in forward predicate

transformers. The translation rules are recursive operators: the translation of a

compound expression is some combination of the translations of the subparts. This

means that the translation rules are in a I-I correspondence with the syntactic rules.

This paper is organized as follows . In section 2 we describe the programming

language fragment treated. Section 3 and 4 provide the syntax and semantics of the

extension of IL we use. In section 5 we present the rules for the translation of the

programming language in IL. Section 6 contains some illustrative examples. In section

7 we provide a more operationally defined semantics and prove the two semantics are

nicely related: the predicate transformers compute for each predicate the strongest

postcondition. Section 8 makes some comparisions with PTQ.

ACKNOWLEDGEMENTS

We wish to thank A.E. BROUWER, W.P. DE ROEVER, L.G.L.T. MEERTENS and an anony-

mous referee for their comments on an earlier version of this paper.

2. THE ALGOL 68 FRAGMENT

The semantical treatment of the assignments mentioned in section I, will be

given by presenting the semantics of a programming language containing these assign-

ments. This language constitutes a fragment of ALGOL 68; the fragment contains no

loops, jumps or procedures. The program text is understood to be obtained from a

derivation tree. If it is relevant in the context, we will indicate the rule used to

generate an expression by writing indexed brackets around the text, i.e., [P]x de-

notes that program text P is obtained by application of an instance of rule X.

The fragment is described by means of a van Wijngaarden grammar; the same tool

has been used in the official definition (VAN WIJNGAARDEN (1976)). The grammar has

one metanotion. The production rules of the metanotion are

MODE ÷ int] ref MODE] row of MODE;

286

The hyper-rules (rule schemata) are listed below. One obtains a production rule

of the grammar by taking a hyper-rule and substituting for all oceurences of MODE in

it the same string, namely a string produced by the metaproduction rules. Expressions

between #-symbols are comments used to name the rules. The basic (lexical) symbols

of the grammar are the underlined words, the identifiers and the symbols ; , :=, [,

], (,), =, <, ~, >, ~, +, - and *; the symbols ~ and S are auxiliary symbols for

delimiting the hypernotions. They disappear when the basic symbols are introduced by

rules as ~int idS ÷ I]213] We will not explicitely list these rules.

~programS ÷ ~simple programs #P~# I

~programS ; ~simple programs #P2#

~simple programs * ~assignmentS #P3# 1

if ~boolexpS then ~programS else ~programS f i #P4#

~assignment~ ÷ ~ref MODE id~ := ~MODE exp$ #A]#]

if ~boolexpS then ~ref MODE units else ~ref MODE units f i

:= ~MODE expS #A2#]

%ref row of MODE unitS[%int expel:= ~MODE expS #A3#

~MODE expS ÷ ~MODE units #E|#] #ref MODE expS #E2#

~MODE units + ~MODE idS #E3# [

i f~boolexpS then ~MODE units else %MODE units f~i#E4#

%ref MODE units ÷ %ref row of MODE unit~[~int expS] #E5#

~boolexp$ ÷ (~boolexpS) an_dd (~boolexp$) #Bl#]

not ({boolexpS) #B2#] {boolidS #B3# [

~int expS ~ ~int exp$ #B4-Bg#

where ~ stands for =, <, N, > or e.

~int expS ÷ -(~int exp$) #I # [+(~int expS) #12# I

(~int expS) @ (~int exp$) #13-17#

where @ stands for +, -, *, div or mod

The boolid's are true and false for the values TT (truth) and FF(falsehood).

The intid's are the usual denotations for the integer: 1,2,...,. For other modes we

have some privileged identifiers: ref int id: x, y; ref row of int id: a, b; ref ref

int id: xx, yy; ref ref row of int id: aa, bb; ref row of row of int id: q.

The reader might be lured into constructing a grammar with less rules producing

the same programs. The choice of the present rules was a consequence of the priciple

that the syntactic rules have a I-I correspondence with the rules for semantics. One

of the other aspects in which the above rules deviate from the ALGOL 68 definition

is the treatment of the dereferencing of conditionals. We do this "outside", whereas

officially this happens "inside" (combined with "balancing"). Moreover we don't gener-

ate expressions like aa[]]. These deviations are not essential (see section 7).

287

Finally: we have no identifiers for constant modes (i.e., modes not beginning with

reference to; exceptions are 1,2,3,...).

The rule E2 introduces ambiguities in the sense that an expression constituting

a mode expression could result from several other derivations and thus belong to

several other modes. This rule, however, does not introduce ambiguous assignments

since the rule cannot be freely used on the left hand side of an assignment. The

syntactic rules avoid ambiguities by introducing parentheses (and); we will omit them

if no confusion can arise.

Examples of generated programs are

(I) x:= y (4) aa:= b

(2) a[a[l]]:=] (5) q[q[l][2]][2]:= 2

(3) x:= 4; xx:= x; x:= 3 (6) if x > 0 then x else y fi:= 0

3. SYNTAX OF INTENSIONAL LOGIC

Each expression of intensional logic will be an expression of a certain type.

Therefore we first define TYPE, the set of all possible types. Let s, t and e be

fixed distinct objects. Then TYPE is recursively defined by

(I) e, t c TYPE (e ~ "entity"; t ~ '~truth value")

(2) if T|,T 2 ~ TYPE then <TI,T2 > C TYPE

(3) if ~ E TYPE then <s,T> ~ TYPE (s ~ "state").

Since some of the types in IL correspond to MODE's in our programming language

fragment, we introduce the set of achievable types ATYPE by

(1) e ¢ ATYPE

(2) T ~ ATYPE => <S,T> C ATYPE and <e,T> ~ ATYPE.

If we now introduce the correspondence bool ~ t, int ~ e ref int ~ <s,e>, row of int

~ <e,e>,..., it is easily seen that the set ATYPE contains all types corresponding

to metaproductions of MODE.

As logical constants of type r we use the same symbols as the identifiers of

the corresponding mode, however a different type font is used. So beside the ref int

id x we have a constant x in IL of type <s,e>; other constants are N~ ~e and q. As

variables of type T we usually use z . We drop the subscript T if it can be predicted
T

from the context. By CON (VAR) is understood the set of constants (variables) of
T T

type T and CON = U CON (VAR = ~ TeTYPE T Te pEVART). We suppose CON # ~ for all
T

T ~ ATYPE.

The set ME of meaningful expressions of type T is inductively defined as
T

follows.

288

(1) CON cME
T T

(3) If $,~ e MEt then

(4...7) If $,~ e ME then
e

(8...14) If ~,$ • ME then
e

(15...18) If $,$ • ME t then

(19,20) If ~ • MEt' z • VAR

(21) If $ • ME z • VAR
~2 T!

(22) If ~ • ME '~2> , ~ ~ ME then
<~1 T1

(23) If $ • ME then ~$ £ ME
<S~T> T

(24) If $ • ME then ~ • ME
T <S~T>

(25) If

(26)

(2) VAR c ME
T T

t

~ ~ ~ ~ where ~ stands for <, >, ~ and ~.
t

+($), -($), ($)+($), (~)-(~), (~)*($), (~)div ($),

and (~)mod($) • ME .
e

(¢) + (~) , (¢) ^ (~) , (~) v (~) and - - [(¢) • MEt"

then Vz[~] and hz[~] • ME .
t

then hz[@] • ME
<T],T2>

(~) • M
T 2

$,@ • ME T , 6 • ME t then ~ 6 then ~ else ~ f~e ME t

If # • METI, C • CON<s,T2>, z c VART2 then {z~c} ~ e MET1

The clauses 25 and 26 are essential extensions to IL as described in PTQ. The

symbols ~ ("up") and ~ ("down") denote the intension and extension operators. The

brackets [and] are sometimes used instead of (and) in order to keep in mind what

we are modelling. The operator {z/~c} might be interpreted as syntactic substitution

operator which replaces all occurences in $ of the expression Vc by the variable z;

the problem however is that not all the occurences of ~c are yet visible in the

expression on which the operator works. A semamtical interpretation of the operator

and a description of its syntactic behaviour is given in the next section.

The logical connectives are defined only for $, ~ • MEt" It will however be

convenient to have them also for the case that $ or ~ are intensions. If #,@ ¢ ME<s,t >

then ~ ~ @ denotes ~ A v~, if ~ ~ ME<s,t > and @ • MEt then $! ~ denotes ~$ A ~. We

use analogous conventions for v and-].

It will be useful in the sequel to have constants of the achieveable types. We

therefore introduce for each T e ATYPE sets ~T of achieveable value denotations

(note that the elements of A
T

t h e s e t A i n d u c t i v e l y by :
--T

are syntactic objects). We define for each r • ATYPE

(1) V ~ • CON e f c A
-- --e

(2) V c • CON<s c • A
~T> -- "--<S~T >

(3) VieA Vp •A
-- --e --<s,<e~T>>

(4) If for all i • ~: -~i • --TA then

So clause (4) introduces "infinite" symbols.

~Ei] • A
---<S~T>

() A
"$i'ic Z~ • --<e,T>

289

4. INTERPRETATION OF INTENSIONAL LOGIC

The meaningful expressions of intensional logic are interpreted in an intension-

al model. Such a model is triple M = <~ ,S,F> where S is a non-empty set and F a

function which interpretes the constants. The elements of S are called states. As

names for element of S we usually take s and t; the reader should not confuse them

with the s and t occuring in the TYPE definition. The set~ is the set of integers;

on ~ are defined the operators +,-,*, mod, div, the relations <, >, ~, e and themonadic

operators + and -; all with their usual meaning. The function F must be such that if

c is a constant of type r, then F(c) ~ D where the sets D (domains of type T) are
% T

defined as follows:

D = ~ , D = {TT, FF}, where TT and FF are the
e t

false hood respectively

(DT)S {flf: S ÷ D
D<S,T> = = T

}.

truthvalues for truth and

D~t
D = (D) = {fif: D + D }.
<Tl,~2 > T 2 TI T 2

The function F should of course be "natural" in the sense that the integer constants

0,1,2,... are interpreted as the corresponding numbers in ~ , and the constants true

and false as TT and FF respectively.

A fixation g is a function which gives values to variables such that if z c VAR
T

then g(z) E D T The expression h ~ g indicates that h is a fixation with h(z) = g(Z)

[or all variables distinct from u. If u { VAR and d { D then by {u ÷ d}g is under-
T T

stood the fixation h With h u g and h(u) = d.

The interpretation or valuation of a meaningful expression ~ in model M with

respect to fixation g and state s is denoted by ~,[,g(~). This notion is defined by

the following inductive definition; since the model ~ remains unchanged we dropped

the subscript M.

(;) V (c) = F(c) if c e CON.
s,g

(2) V (z) = g(z) if z ~ VAR.
s,g

(3) sVg (~=*)- = I~TT if s,gV (~) = s,gV (9)

FF otherwise

fTT if sVg(+) < ~ (9)
= s,g

(4...14) s~g(~<~) IFF otherwise

and similar for the other relational and arithmetical operators.

fTT if V (~) = TT and V (9) = TT
= s,g s,g

(15...18) sVg(~^~) ~FF otherwise

290

and similar for the cases ~ ÷ ~, ~ v ~,7#.

(19,20) s,gV (Vz[#])= {TT
if there is a fixation h ~ g such that V~ (~) = TT
otherwise, z t,n

and similar for the case Az[~].

(21) We define now the valuation of %z[~]. Suppose z ¢ VAR and ~ e ~ . Then
T] T 2

V (%z[~]) i s t ha t f u n c t i o n f wi th domain D such t h a t whenever d ~ DT1 then f (d)
s,g ~1
equals V (~). We introduce ~ as a meta-abstraction operator and rewrite the

s,{ ~d}g
previous phrase as V (~z[~]) =~d[V (~)].

s,g s,{z+d}g

(22) V (~(~)) = sVg(~)(Vg (~))'.s, s ,g

(23) V ('+) = v (~) (s).
s,g s,g

(24) V (~) = %t[.V (~)]
s,g = ~,g

J ,rsVg(}) if V (B) = TT
(25) V (i__~ B then ~ else ~ fi) = s,g

s,g - Is,~(,) otherwise

(26) This case is defined below since i~ requires more explication.

States may be understood to represent the internal situation of a computer. The

execution of an assignment will modify the situation in a rather specific way: the

value of a single identifier will be changed, keeping intact the values of other

identifiers. So not every possible model for IL would be a reasonable candidate for

the interpretation of programming languages. The model should have enough structure

to allow for such a way of changing a state. On the other hand, the model should not

separate two states in which all constants have "equal" values since on a real com-

puter th~se states should behave equivalently.

In order to express these requirements formally, we define inductively sets A
T

of achievable values of type T as follows:

(1) A = m
e

(2) V T ¢ ATYPE V c ~ CON F(c) E A
T T

(3) if p C A then for each i ¢~ and all s ~ S: ~(~((~P)(i)))~S,T >
<s,<e,T>>

(4) A = A m
<e,T> Tq Note that A # ~ for T ~ ATYPE. By the definitions of A

T --T
and A it is clear that a natural bijection G can be defined. The characteristic

function of A will be denoted as aChT; the quantification 3z will be used as an

abbreviation for VZT[aO_~h (Z) A ~].

The above requirements are now dealt with by stating that we restrict our

291

attention to models for IL which sa[isfy the following postulates:

(i) PROPERNESS POSTULATE

For every s • S and every c • CON holds that F (e)(s) • A
<S~T> T

So the only possible values for constants are achievable values.

(ii) UPDATE POSTULATE

For every s ~ S, every c • CON
<S~T>

fF(o) (t) = a

l F (O ') (t) = F (O ') (s)

and every a • A there is a unique t • S such that
T

for all constants o' ~ o.

So tne value of one identifier can be changed, while all other identifiers remain un-

changed; moreover, this new state is unique. We denote this state by <o ÷ a> ~.

Having formulated and explained our update postulate, we give the remaining

clause for the interpretation of IL:

V { z / ' c b = ,V. (~) (26) s , g < e + g ~ z) > s , g

I n t h i s d e f i n i t i o n we assume t h a t g (z) ~ A f o r some ~ e ATYPE; o t h e r w i s e t h e r e s u l t
T

o f t h e o p e r a t o r i s u n d e f i n e d . We w i l l o n l y u s e t h e o p e r a t o r i n c a s e s t h a t g (z) i s

a c h i e v a b l e . So i n t e r p r e t i n g { z ~ e } ~ means t h a t we have to s h i f t t h e s t a t e and look to

the resulting value of ~.

A model fom IL satisfying the properness postulate and the update postulate is

obtained as follows. We use the sets A of achieveable value denotations and define

the set of states by

H
S = A

• ATYPE CON --r
<8~T>

For c ~ CON we denote the projection on the ~-th coordinate set of state by
<S~T>

Having chosen the set S, the sets D T are determined for each type T. To com-

plete the description of the model we must explain how F(c) is defined for constants.

This function is defined simultaneously with a mapping G: U A ÷ U A .
T ~ ATYPE--r r • ATYPE T

(1) F(i) = G(~) = i for ~ • A
-- -- e

i.e. number denotations are mapped onto the integers denoted by them.

(2) F(c) = G(c) = ~s[G(~ (s)) for c e CON
-- __ C < S ~ T >

(3) G(P[!]) = X___s[G(p)(s)[G(!)]] for p • A
--<s~<epT>>

A (4) G((~{) ie~) = =Xn[G(~n)] for (~i) iE~ • --<e,T>

Clearly the map G: U TeATYPE A_~ ÷ A in this way becomes a bijection. Moreover • eATYPE T

292

the properness postulate and update postulate are satisfied by definition of S.

In the sequel we assume that we interprete the meaningful expressions in some

intensional model M satisfying the properness and update postulate.

We write ~d,s,g, ~ # iff M,sV,g(~) I= TT; we write M,s ~ ~ iff for all g:

M,s,g [= ~ and we write M I= ~ if for all s: M,s 1 = ~. Since we will not change the

model we always omit the M.

Below we will mention some definitions and theorems on our extension of IL,

most of the proofs can be found in JANSSEN (]976). Further information on IL and

related logical subjects can be found in GALLIN (1976).

~)EFINITION: Let [.9/z]~ denote the formula obtained from ~ by replacing each free

occurence of z by t.

THEOREM:IJ i= .9<-+q then I=[9/z]¢++[TI/Z]¢.

REMARK: It is not true that s j= @ <-+ q implies s]m [@/z]¢~-+[q/z]¢

CONVERSION THEORE~: Let Xz[@](a) be a meaningful expression.

Suppose I: No free occurrence of a variable in ~ becomes bound by substitution of

¢ for z in 4.

and II: For all states s and t: V (a) = V (a)
s,g t,g

Then I= hz[¢](e) ++ [~Iz]¢

REMARK: This theorem implies that for constant (i.e., state independent) arguments

h- conversion is allowed

THEOREM: 1 = ~ ~ ~ ~+ @.

REMARK: It is not in general true that I = ~i~ ¢ <-+ ~. A counter example can be found

in JANSSEN (1976).

SUBSTITUTION THEOREM: The syntactic behaviour of the semantical defined substitution

operator is described as follows (z is supposed to be achievable!):

(]) {zFx}E¢ ,', .9] = {z/~x}¢ ^ {z/"x}.9
and also for the other connectives.

(2) {z/*X} VV[#] =VD E{,Z/~X}~]
provided that v ~ z~ (if v - z then we take an alphabetical variant of VVE~]).

Analoguosly for Az, %z.

(3) {ZF X}qb (~) = {zI~x}t({2,1~X}.9)

(4) {~Fx}* ~ = ~¢

(5) { ~ F x } { w F x } ¢ = {wFx}¢

(6) {z/~x}c = c for any constant e, including c - X

(7) {z~x}~× =z; {zF×}~c = ~c for any constant c ~ ×.

Note that Sn other cases {z/~×}~¢ does not reduce any further

293

Proof of case 5):

sVg{~/*X}{wFx}~ = <x+g~z)>s,gY- {w/~x}@ = <x+g(w)>(<~+g(z)>s),g ~ =

= + V = V {wF x}¢
<X g(w)>s,g ~ s ,g

S.

5. MONTAGUE SEMANTICS

As we have remarked in the introduction, Montague semantics consists in defin-

ing a translation which gives for each syntactic structure of the prograrmning langu-

age some meaningful expression of IL. Since we already defined the meaning of IL (by

means of its model theory) we provide by this translation the meaning of the expres-

sion from the programming language. If ~ is such an expression (which may involve

brackets [and IX indicating by which rule it was produced) then its translation will

be denoted as ~'. Assignments and programs are translated into forward (state) pre-

dicate transformers, which map a predicate about the state before the execution of

the assignment into a predicate about the state after the execution. A (state) predi-

cate is a function from states to truth values, so a function of type <s,t>; it will

have the format of an intension of an assertion: ~ E ME . Consequently predicate
<s,t>

transformers are functions of type <<s,t>,<s,t>>; they will have the format %P[~],

where P ~ VAR and ~ E ME
<s,t> <s,t>

Identifiers like "x", "true" "|",... , are translated into constants looking

similar: x, t~e~ 1... (note the different type fond used). So x' = x. Translating

mode expressions is in most cases more or less self evident, only E2 and E5 need to

be mentioned. E2:[~]E2 = ~(~')' so the translation of a dereferenced ref MODE expres-

sion is obtained by taking the extension of the corresponding ref MODE expression.

E5:[p[v]]~5 = ~((~p')[v']), so the translation of q[|][2], in which two instances of

rule E5 are used, is ~(~ (~((~q)[]])[2])); this reduces to ~((~q)[I])[2]), usually

written as ~(~q)[I][2].

The translation rules involving programs and assignments are listed below. It

must be noted that our translation rules are actually defined for a language extend-

ing our ALGOL 68 fragment. We translate also expressions of the format h_J~n[~]; the

translation of such an expression is straightforward , e.g. n is translated by some

ec VAR .
e

PI, P3: [~]PI = ~' [HIp3 = H'

So the translation of a program consisting of a simple program is the translation of

of that simple program and the translation of a simple assignment program is obtain-

ed by translating the assignment.

P2:[HI;~2]~2 = %pEH~(~I(p))]

294

Note the change in order of HI and Z2 as is usual with forward predicate transformers.

P4: [if 8 then E~ else ~2 f i] ' = hP~[~['(B'!P) ! ~2"~B'! P)]

The formulation on the right hand side uses the connectives ~ and i; without them the

expression should be written as:

T !

IP ~["H| ~(~'^~P) v *~2~(8'A~p)]

which involves 4 more occurences of extension symbols.

AI: [X:=8]i| = %P *3zE{zffx'}~P A ~X = {zffx'}8']

Note that by removing the intension and extension operators this rule reduces to a

functional variant of Floyd's assignment rule.

A2: [if B then ~ else 0 fi := ~]' = [if B then ~ := ~ else e := ~ fi]~4

A3: [p[v] := ~]' = [p := hn if n = ~ then ~ else p[n]fi]~

The labelled bracket IX stands for]AI']A2 or]A3 depending on the structure of 0.

The syntax of our fragment does not generate, unlike ALGOL 68, the assignment

aa[l]:= 1. This could be provided for by replacing "MODE unit" by "MODE exp" in syn-

tactic rule A3. Consequently translation rule A3 would reduce this to an assignment

with at the left hand side a dereferenced expression. This could be dealt with by

introducing state operators of the format {zff'aa}. Such operators, however, would

not have such nice syntactic properties as the previously defined one. In order to

avoid unnecessarily complications we left such assignments and balancing out of dis-

cussion. The semanties of aa[l] occurring on the right hand side is straightforward,

but generating it only there would require much more syntactic rules.

6 , EXAMPLES.

(|) x:=y

The translation of this assignment is as follows:

[x:=[Y]E2]i! = %p~(3z[{z/Vx}~p A YX = {zffx}[Y]~2])

= %p~3z[{zffx}~p A ~X = {Z/~X}Yy] = %P~3zE{z/~x}~P A ~X = ~y]

So the predicate ~(~x = 1 A ~y = 2) is by this transformer transformed into

295

*3zE{z/Vx }~*Cx=1 ^ ~=2) ^'x=~y].

We apply ~ *¢ = ¢ and the syntactic properties of substitution ~nd obtain

~3Z[z=I A ~y=2 A ~x=~y]

This reduces to

~(~y=2 ^ ~x=2)

We wish to interprete this transformer as follows: if for the initial state s the

predicate *(~x=1 ^ Vy=2) holds, so if s I = Vx=l ^ ~y=2, then the predicate

*(~x=2 A Vy=2) holds for the state after the execution of the assignment, so

t I=~x=2 ^ ~y=2. This use of transformers will be justified in the next section,

nevertheless we will use already now the corresponding terminology.

(2) x:=l; xx:=x; x:=2

Assume that we execute this program without any information on the initial

state. Then we know that in the resulting state holds that ~ ([x:=l; xx:=x; x:=2]'

(~true)). The computation proceeds in stages

[x :=l]~(%rue) = hp~3z[{zFx }~ P ^ ~x=l] (~true)

which reduces to ~(~x=l).

Exx :=x]' (~(~x=1)) = ~z[{zFxx } Cx=1) ^ ~xx=x]

which reduces to ~(~x=7 ^ ~xx=x). From this we see that after the second assignation

holds that ~xx=7.

[x:=2] ' (~(~x=l A ~XX=X~) = ~3Z[{ZFX}(~X =1 A ~XX=X) A ~X=2] =

= ~3z[z~=1 ^ ~xx=x A ~x=2] = ~CXX=X ^ ~X=2~)

After the execution of the program holds ~xx=x ^ ~x=2, so ~xx=2

(3) a[a[1]]:=2

We first notice that the syntactic structure of the subscript is [a[I]]E5]E2,

so its translation is ~ (~((~a)[/])), which reduces to (~a)[l]. The translation of

the program is

[a[a[1]].'=2]A3' = [a:= ~---n if n=a[1] then 2 else a[n] filet =

296

= ~P~3z[{zFa}~P A ~a= {zFa}[#n/~= "a[1] then 2 else V a[n]f~] =

= ~P~3z[{zFa}'P A ~a = kn i_~n=z[1] then 2 else z[n] ~]

Assume that before the assignment holds that ~a[1] = 1 A ~a[2] = 1. Then after the

assignment holds

3z[z[1]=1A z[2]=1A ~a = hn~n=z[1] then 2 else z[n] ~_]

From this we can derive that afterwards ~a[I]=2 ^ ~ a [2] = t holds, so ~a[~a[1]]=l.

We recall that this was one of the examples for which Floyd's rule gave a wrong re-

sult. We consider our treatment of this case as an improvement of the solution of

DE BAKKER (1976) since it covers all multidimensional oases and is, moreover, less

complex.

(4) q[q[]][2]][2]:= 2

Assume that before the assignment holds ~q[I][2]=2 A ~q[2][2]=3. Then it is

not true that afterwards ~q[~q[1][Y]][2]~2 holds. (notice the parallelism with

example 3). By two applications of rule A3 we obtain

[~[q[I][2]][2]:=2]' = [q[q[1][2]]:=%nifn=2then2elseq[q[!][2]][n]fi]'=

= [q:= %m if m = q[I][2] then [%n if n=2 then 2 else

q[q[l][2]][n] fi] else q[m] fi]'

So we obtain that afterwards:

3z[z[2][2]=7 ^ z[2][2]=3^ ~q[2]E~]=z[2][2]=3 A VqE2]E2]=~q[z[1][2]][2]=2]

and from this we derive that:

~ q [~ q [1] [2]] [2] = 3

(5) if x > 0 then x else y fi := 3.

Assume that this program is executed with no information about the initial

state. Then in the resulting state holds

3s IEz l > 0 A ~ X=~ ^ 3Z2 [g (~X > @) ^ ~ 3]

which reduces to

297

"x=3 v Cx<_O n "y=3)

7. OPERATIONAL SEMANTICS

In this section we will consider a semantics for the programming language

fragment that is based upon a more operational interpretation. With each mode expres-

sion the computer associates some object in our model (this object might depend on

the current state). We denote the object associated with expression ~ in state s by

#s. The operational semantics is related to the Montague semantics by requiring

s = V~. So the object associated with a complex expression has a certain relation
S

with the objects associated with the subexpressions.

With an assignment two objects are associated: if the right hand object (source)

is an object of type T, the left hand object (destination) is of type <s,T>. Execu-

tion of the assignment brings the computer in a state where the extension of the

destination equals the source. So from an operational point of view the semantics of

an assignment is a mapping from states to states, rather than mapping from sets of

states to sets of states as in the Montague semantics.

By the properness postulate we know that for each state s and each identifier ×

holds sV(x)~A = s VA _. Consequently, if ~ is the translation of some mode expression,

then sV(~)~AT" We havealready introduced constants for each element of (A), name-

ly the sets A . These constants can be used to denote in IL the objects ~s Therefore --r

the operational semantics " of an expression ~ is defined as a function from states to

constants in A . With use of these constants we introduce new state operators <~+~> --T

where a~A and ~eME . In this we use an extension of IL in which the constants
--<S ~T> T

from A are also allowed in the expressions. Their interpretation is defined by

sV(a) = G(a) , see section 4 for details concerning G. The new operators constitute

mappings from state to states as follows:

<a ÷ <0>s = <~ ÷ ~>s if ~ is the translation of some identifier.

<pEv] ÷ ~>s = <p ÷ In if n--v then ~ else pEn]>s.

The operational semantics

PI:

P2:

P3:

P4:

A:

Where

then

" of programs is now defined by:

[~]~! = H,,

[~]~3 = ~''

[if 8 then ZI else][2 fi]p4 = =Is[if ~"(s) then Z'l'(S) else Z~(s)].

= ~s<~" + ~">s E~:=~] x =

x stands for At, A2, or A3.

If we execute a program N starting from a state s which satisfies a predicate ~,

it is a reasonable requirement that the Montague semantics yields a correct

298

result with respect to the operational semantics, and gives as much information as

possible about the new state. Below we will formulate these requirements formally.

The translation function ' is called correct with respect to the operational seman-

tics " if for all programs H, all state predicates ¢ and all states s:

if s k Y¢ then H"(s) ~ ~E'(¢)

The translation function ' is called maximal with respect to the operational seman-

tics " if for all state predicates ~,9 and all programs ~ one has the following:

if for all states s: s ~ ~ implies ~"(s) ~ "~

then: ~ ~'(¢) ÷'~

If the translation rule ' is both correct and maximal with respect to " we say that

it produces the strongest postcondition for the operational semantics. We say that

the translation rule ' is recoverable with respect to " if for each state t, for each

state predicate ¢ and for each program ~ one has

So for each state satisfying the transformed description there is another state

which is operationally transformed into it and which satisfies the original descrip-

tion.

THEOREM: If ' is reaoverable then ' is maximal.

PROOF: Assume that sl~¢ implies ~"(s)I~, but that not holds ~v~(¢) ÷ ~¢. Then there

is a state t such that tl~(¢) and tl--7~. Since ~' is recoverable there is a state s

such that sI~# and ~"(s)=t. By assumption we also have ~"(s)~Y@.Contradiction.

THEOREM: The translation rule ~ yields the strongest postcondit~on with respect to

the operational semantics "

PROOF: By induction to the structure of the possible programs. We only consider the

case [X:=~]AI.

CORRECTNESS. Let sl ~ ~ and t=~"(s). Thus t = <~ + 6">s. We have to prove that

tI ~ *3z[{z /~ x'}" + ^ ~ (" x ' = { z F x ' } ~ ')]

Let h be a fixation such that h(z) = V(~ X). Then for each formula 4:
s

tV~({zF X' }~ ~) = >Vt,h(~) = s ,Vh(~)" ,n <x'+h(z)

299

Therefore

t,h F {z/*x'}~

Moreover

tV.({z/*x'}~ ') = ~ ~' = V~6' = tVhX' ,n <x÷h(z)>t,h s,n

and thus ' is correct.

RECOVERABILITY. Let

t~3zE{zFxF~ A ~X={ZFX'}S']

Thus there is a fixation g such that g(z) is an achievable value (by definition of

~z), and with

t,gl={zFx'}~¢ and ~(~X') = V ({z/~×'}6').
t,g

We define s=<x÷g(z)>t, this state exists since we have the update postulate and g(z)

is an achievable value. From the definition of s we may irmmediately conclude that

s~ ~. We prove now that the value of *X' is the same in ~"(s) and in t. Since this is

the only identifier in which they might differ we conclude that the states are the

same (the update postulate guarantees uniqueness~)

~,,~s)CX') = <x+~,,>s cx') = ~(~') = ¢ (s') = VjzFx'}~' = ~(x'). <x÷g(Z)>t t,g L

Notice that this proof also holds in case that 3 is an h-expression. ~.

8. COMPARISON WITH PTQ.

In the preceding sections we have demonstrated that certain problems concerning

the semantics of assignments can be treated by application in this area of Montague's

approach to the syntax and semantics ol natural languages. ~In this approach the

use of intensional logic is an important tool; in order to deal with the problems

under consideration we introduced two new schemes for obtaining meaningful expressions

of IL: the ~L then else fi construct, and the state operators {z~c}. The former is

an inessential extension of IL~ the latter clearly gives new expressive power to IL

and it is not at all clear ~£nether these~operators can be expressed in the

original system. Also the model theory had to have been adapted. Whereas Montague

uses meaning postulates for defining the subclass of the possible intensional models

suitable for the interpretation of English, we use the properness and update

300

postulate to select the models in which certain intuitions about computer behaviour

are respected. Montague used in PTQ a categorial grammar for his fragment of English;

the Wijngaarden grammar we use can be considered as a categorial grammar with infin-

itely many rules. We did however not take over all refinements of the ALGOL 68 assign-

ment rules. A typical difference with PTQ is the second kind of semantics we considered:

operational semantics with state transformers.

REFERENCES

DE BAKKER, J.W. (1976), Correctness proofs for assignment statements, Report IW 55/76

Mathematical Centre, Amsterdam.

FLOYD, R.W. (1967), Assigning meanings to programs, in J.T. SCHWARTZ (ed.) Proc.

Symp. in Appl. Math. 19, Math. aspects of computer sciences, AMS. pp. 19-32.

GALLIN, D. (1975), Intensional and higher-order modal logic, North Holland Publishing

Company, Amsterdam.

JANSSEN, T.M.V. (1976), A computer program for Montague gr~: theoretical aspects

and proofs for the reduction rules, in J. GROENENDIJK & M. STOKHOF (eds.)

Amsterdsm pepers in formal grammar i, Proceedir~s of the Amsterdam collo-

quium on Montague grammar and related topics, pp. 154-176 Centrale Inter-

faeulteit, University of Amsterdam.

MONTAGUE, R. (1973), The proper treatment of quantification in ordinary English, in

J. HINTIKKA, J. MORAVCSIK & P. SUPPES (eds.), Approaches to natural languag~

Reidel, Dordrecht; reprinted in R.H. THOMASON (1974), Formal Philosophy,

Selected papers of Richard Montague, Yale University press, New Haven and

London, pp. 247-270.

PARTEE, B. (1975), Montague gran~nar and transformational grammar, Linguistic Inquiry ~,

pp. 203-300.

QUINE, W.V. (1960), Word and object, the M.I.T. Press, Cambridge, Mass.

SCOTT, D.(1970), Advice and modal logic, in K. LAMBERT (ed.), Philosophical problems

in logic, Reidel, Dordrecht, pp. 143-173.

SCOTT, D. & C. STRACHEY (1971), Towards a mathematical semantics for computer languages,

in J. FOX (ed.), Proc. Symp. on Computers and Automata, Polytechnic

Institute of Brooklyn, pp. 19-46.

STRACHEY, C. (1966), Towards a formal semantics, in T.B. STEEL, jr. (ed.), Formal

language description languages for computer programming, North Holland

Publishing Company, Amsterdam, pp. 198-220.

VAN WIJNGAARDEN, et al. (eds.) (1976), Revised report on the alg¢~t~nic language

ALGOL 68, Tract MCT 50, Mathematical Centre, Amsterdam.

