
Implementation of Parameterized Observational
Specifications

Rolf Hennicker
Fakult~t fiir Mathematik und Informatik

Universi~t Passau
Postfach 2540
D-8390 Passau

Abstract
An observational approach to the modular construction of algebraic implementations is presented. Based on
the theory of parameterized observational specifications an implementation relation is defined which
formalizes the intuitive idea that an implementation is correct if it produces correct observable output. It is
shown that observational implementations compose vertically and (under appropriate conditions)
horizontally. To be useful in practice proof theoretic criteria for parameterized observational
implementations are given which are based on the notion of observable parameter context.

1. I n t r o d u c t i o n

An implementation concept for parameterized algebraic specifications is presented which is based on an
observational approach to software development. The basic assumption is that from the software user's
point of view a software product is a correct implementation if it satisfies the desired input/output
behaviour, independently of the internal properties of a program which may not satisfy a given
specification. For example the familiar array-pointer realization of stacks does not satisfy the stack equation
pop(push(x, s)) = s or the usual implementation of sets by lists does not satisfy the characteristic set
equations. Nevertheless, these implementations are considered to be correct since they produce correct
observable output.
In the framework of algebraic specifications this means informally that a concrete specification SP1 is a
correct implementation of an abstract specification SP if it preserves the observable properties of SP. To
formalize this principle one needs a formal notion of observability which allows to abstract from the
internal (non observable) details of data structures. In the literature several behavioural approaches were
studied which principally agree in their view of behavioural equivalence of algebras (either with respect to a
set of visible (or primitive) sorts (cf. [Giarratana et al. 76], [Reichel 81], [Goguen, Meseguer 82], [Broy
et al. 84], [Schoett 87], [Nivela, Orejas 87]) or wrt. a set of observable terms (cf. [Wirsing 86], [Sannella,
Tarlecki 87]) or wrt. a set of observable formulas (of. [Sannella, Tarlecki 85], [Pepper 83])). Our approach
is based on observational specifications (cf. [Hennicker, Wirsing 85]) which allow a direct axiomatization
of the observable properties of data structures by means of an observability predicate. Having specified a
behaviour one can abstract from the model class (of an observational specification) by constructing its
behaviour class which is the closure of the model class under observational equivalence. Based on this
abstraction principle a simple formalization of the notion of observational implementation is possible:

An observational specification SP1 is an observational implementation of SP if the behaviour class
of SP1 (after appropriate restriction) is a subclass of the behaviour class of SP.

Obviously, this implementation relation is transitive, i.e. observational implementations compose vertically
(cf. [Goguen, Burstall 80]) which is a basic requirement for the construction of correct programs by
stepwise refinement.
In practice often large specifications have to be implemented. In this case it should be possible to
decompose the (abstract) specification and to implement parts of it independently from each other (e.g. by
different programmers). In order to get a correct implementation of the whole system it is necessary that the
single "implementation pieces" compose horizontally (cf. [Goguen, Burstall 80]). To support the modular
construction of observational implementations we introduce parameterized observational specifications and
their implementation.
As usual parameterized observational specifications have a formal parameter specification and a body which
in our framework are both observational specifications. Semantically, a parameterized specification is
viewed as a function which can be applied to an argument specification and produces a specification as
result. The definitions of admissible actual parameter and instantiation are defined similarly to well-known
constructions (cf. e.g. [Ganzinger 83], [Ehrig, Mahr 85]). Since parameterized observational specifications

291

are treated as (partial) functions the observational implementation relation can be extended pointwise to the
parameterized case:

A parameterized observational specification P1 is called (parameterized) observational
implementation of P (with common formal parameter) if for all admissible parameters SP the
application PI(SP) is an observational implementation of P(SP).

This pointwise implementation definition is different from the (proof theoretic) approach of [Ganzinger 83]
and the concept of [Ehrig, Kreowski 82] which is based on the initial algebra approach and the free functor
semantics. Further implementation concepts for parameterized specifications using a pointwise definition
like ours (but based on different implementation notions for (non parameterized) specifications) are
provided in [Sannella, Wirsing 82], [Wirsing 86] and [Sannella, Tarlecld 87].

The simplicity of our basic implementation concept results from the fact that observational specifications
describe the observable behaviour of data structures and hence determine (on an abstract level) already all
possible implementations. On the contrary, implementation concepts adopting the "forget-restrict-identify"
method (cf. e.g. [Ehrig et al. 82], [Sannella, Wirsing 82], [Broy et al. 86]) require to connect the models
of the implementation with models of the abstract specification e.g. by means of a congruence relation or an
abstraction homomorphism.
Related to our notion of implementation are the implementation concepts of [Goguen, Meseguer 82] and
[Sannella, Tarlecki 85]. While in [Goguen, Meseguer 82] abstract specification and implementation are
persistent extensions of the same specification with all sorts visible, [Sannella, Tarlecki 85] adopt a simple
notion of implementation which is based on abstraction with respect to a set of observable formulas. More
generally, [SanneUa, Tarlecki 87] propose implementations with respect to an arbitrary abstractor. As a
main difference to our approach abstractors are determined semantically by an equivalence relation on
classes of algebras whereas observational implementations are based on an axiomadzation of the observable
behaviour and hence are appropriate for the development of proof theoretic implementation criteria.
Based on the notion of observable context a proof theoretic criterium for observational implementations is
presented which roughly says that a specification SP1 is an observational implementation of SP if all
applications of observable contexts to the axioms of SP yield a sentence which is deducible from the
axioms of SP1 (e.g. an observational implementation of the usual specification of stacks (with observable
top elements) not necessarily has to satisfy the stack equation pop(push(x, s)) = s but has to satisfy all
applications of observable contexts to this equation as e.g. the equation top(pop(push(x, s))) = top(s)). It is
shown that this condition can be extended to a context criterium for (parameterized) observational
implementations by using observable parameter contexts. In particular the context criteria can be applied to
specifications with fixed sets of observable (or visible) sorts (as e.g. in [Goguen, Meseguer 82]).
As already mentioned it is an important issue whether implementations compose horizontally. In our
framework this means: If P1 and P are parameterized observational specifications such that P1 implements
P and if SP1 and SP are actual parameters such that SP1 implements SP, is the application PI(SP1) an
observational implementation of P(SP)?
It is shown that observational implementations compose horizontally if one of the parameterized
specifications involved is monotonic. For the monotonicity of parameterized specifications a sufficient
criterium is provided (using the notions of parameter completeness and parameter tolerancy). The stepwise
and modular construction of observational implementations is demonstrated by an example.
The paper is organized as follows: In section 2 the basic notions of observational specifications (cf.
[Hennicker, Wirsing 85]) are summarized which are necessary for the following sections. In section 3 the
concept of observational implementations is defined and a proof theoretic context criterium is provided.
Section 4 introduces parameterized observational specifications and their instantiation and in section 5 the
observational implementation relation is extended to the parameterized case. In section 6 the horizontal
composition of observational implementations is discussed and illustrated by an example.

2. Basic notions

We assume the reader to be familiar with the basic notions of algebraic specifications (c£ ~g. [l~5g/vhh" 85]),

that are the notions of signature ~ = (S, F), signature morphism t~, total ,T-algebra A = ((As)se s , (fA)feF),

where A s denotes the carder sets of A and fA the total operations of A, term algebra Wz(X) over a S-sorted

family X = (Xs)s~ s of sets of identifiers, ground term algebra W z, term t e W~:(X), ground term t ~ W~,,

substitution a: X ---) W~:(X), instantiation c(t) = t[O(Xl)/X 1 t~(Xn)/Xn] (i.e. replacement of the

292

identifiers x 1 x n ~ X occurring in t by the terms O(Xl) O(Xn))~ valuation cc X-¢ A, interpretation

of a term t wrt. (z, and finitely generated (or term generated) Z-algebra.

Moreover, a total Z-algebra B is called Z-subalgebra of A if B s c_ A s for all s ~ S and fAIB = fB for all

function symbols f e F, where fAIB denotes the restriction of fA to the elements of B. For every Z-algebra

A there exists a smallest finitely generated Z-subalgebm.

A signature Z' = (S', F') is called subsignature of Z if S' c S and F' c F. The restriction of a total

Z-algebra A to Z' is the Z'-algebra A[X, = ((As)se S ' , (fA)f~ F')-

In the following we give a short overview of the theory of observational specifications introduced in
[Hennicker, Wirsing 85]. Observational specifications provide an axiomatic description of the observable
behaviour of data structures. For that purpose conditional equational specifications are extended by an
observability predicate "Obs" for specifying the observable objects of data structures.

2 . 1 D e f i n i t i o n An observational specification SP is a pair SP = (Z, E) consisting of a signature
E and a set E of Horn formulas of the form (*)

(*) 01A. . - A On ~ 0n+l,
where Ol 0n+l are atomic formulas. An atomic formula is either an equation t i = r i or an observation
of the form Obs(t i) (with terms t i , r i ~ Wz(X)). The Horn formulas of E are called axioms of SP. 0

The semantics of an observational specification SP = (Z, E) is defined to be the class af all observational
Z-algebras satisfying the axioms of E:

2 . 2 De f in i t i on Let Z = (S, F) be a signature. An observational Z-algebra is a pair (A, Obs A)
consisting of a total Z-algebra A and a family Obs A = (ObsAs)s~ S of subsets ObsAs ~ A s.
Obs A is called observable part of A. The elements of Obs a are called observable objects,

An observational Z-algebra (A, Obs A) is called finitely generated (or term generated) if the total Z-algebra
A is finitely generated. An observational Z-algebra (B, Obs B) is called observational ,£-subalgebra of
(A, Obs A) if the total Z-algebra B is a Z-subalgebra of A and if for all sorts se S: ObsBs = ObsAs n B s,

Let Z' = (S', F') be a subsignature of Z, (i.e. S'c_ S, F' ___ F). The restriction of (A, Obs A) to Z' is the
observational Z'-algebra (A[x,, ObsAIlc ') where AIx, is the restriction of A to ~' (see above) and
ObsAlx ' = (ObsAs)scS ,. The finitely generated Z'-subalgebra of (AI~,, ObsAI2; ') is denoted by
<(A, ObsA)>~2.
The satisfaction relation is the classical one of first order predicate calculus, whereby all axioms of a
specification are assumed to be universally quantified. In particular, an observation ON(t) (t ~ Wx(X))
is valid in an observational Z-algebra (A, Obs A) (written (A, Obs A) I= Obs(t)) iff for all valuations
c~: X --~ A the interpretation of t wrt. 0c is an observable object of (A, ObsA).

2 . 3 D e f i n i t i o n A finitely generated observational Z-algebra (A, Obs A) is called model of an
observational specification SP if (A, Obs A) satisfies all axioms of SP. The model class of SP is denoted by
Mod(SP). 0

2 . 4 D e f i n i t i o n Let (A, Obs A) and (B, Obs B) be fmitely generated observational Z-algebras.
(A, Obs A) and (B, Obs B) are called observationaIty equivalent (written (A, Obs A) ~obs (B, ObsB)) iff for
all ground terms t, r ~ WI~:

((A, Obs A) I= t = r and (A, Obs A) I= Obs(t)) iff ((B, Obs B) I= t = r and (B, Obs B) I= Obs(t)) 0

Observational equivalence defines an equivalence relation on the class of finitely generated observational
Z-algebras.

293

2.5 Fact
Model classes of observational specifications are in general not closed under observational equivalence.
(For example lists are observational equivalent to sets if (only) the results of the iselement operation "~"
are specified as observable. But lists are not a model of a specification of sets with the usual set equations
as axioms.)

2.6 Definit ion Let SP = (E, E) be an observational specification. The closure of the model class
of SP under behavionral equivalence is called behaviour class of SP and denoted by Beh(SP), i.e.

Beh(SP) = {03, Obs B) I 03, Obs B) is a finitely generated observational E-algebra and there exists a
model (A, Obs A) e Mod(SP) such that: (A, Obs A) ~obs 03, ObsB)} •

Algebras 03, Obs B) ~ Beh(SP) are called behaviours of SP. ~)

The construction of the behaviour class of an observational specification provides a uniform abstraction
principle for observational specifications which is the basis for the definition of observational
implementations.

3 . O b s e r v a t i o n a l i m p l e m e n t a t i o n s

An important application domain for algebraic specifications is in the formal development of programs by
stepwise refinement, a programming discipline which has been proposed already in the beginning of the
seventies by Wirth and Dijkstra. Starting from an abstract problem specification one proceeds by
constructing step by step more concrete specifications, whereby each step refines the step before by making
some design decisions (e.g. choice of data representations, choice of algorithms, etc.) and by elaborating a
more detailed description of the problem. For achieving formally the correctness of the final product of a
development process a formal notion of implementation is necessary.
From the observational point of view one obtains intuitively the following simple principle of correct
implementation:

A specification SP1 is an observational implementation of a specification SP ifSP1 preserves the
"observable behaviour" of SP, i.e. all algebras satisfying the observable properties of SP1 satisfy
the observable properties specified by SP as well.

This informal notion of implementation can be simply formalized by means of the abstraction principle for
observational specifications. For technical simplicity we assume that the signature Z1 of the concrete
specification SP1 comprises the signature Z of the abstract specification SP. (i.e. the construction of the
implementing specification SP1 by an appropriate enrichment of a given specification, say SPI', is
assumed to be already done). Now the implementation principle from above can be formalized as follows:

An observational specification SP1 is an observational implementation of SP if for any behaviour
(B, Obs B) ~ Beh(SP1) some appropriately defined restriction of (B, Obs B) to an observational
~algebra belongs to the behaviour class of SP, i.e.

Beh(SP1)l,appmpriaterestriction. c Beh(SP).

In the simplest case this restriction is just <03, ObsB)>z, that is forgetting the sorts and operation symbols
of Y.1 not belonging to £ and then constructing the finitely generated £-subalgebra (cf. definition 2.2).
These steps are usually cailedforget and restrict.
In order to get enough generality we allow a further restriction of the observable part Obs B to a subset
B o ~ Obs B. Informally, the restriction of the observable part means that the implementing specification
may specify more objects observable than required by the abstract specification. This coincides with our
intuition that implementations fix more and more details whereby the degree of possible abstraction may be
limited.
In summary, we get the following definition of observational implementation:

294

3.1 Definition Let SP1 = (Y.1, El) and SP = (Z, E) be observational specifications with Z ~ El.
Let S 1 be the set of sorts of El.
SP1 is called observational implementation of SP (written SP1 < ~ ~ SP) if for all behaviottrs
(]3, Obs B) ~ Beh(SP1) there exists a family Bo= ((Bo)s)seS1 of subsets (Bo) s ~ ObSBs such that:

<(B, Bo)> z ~ Beh(SP).

(< 03, Bo) >X denotes the finitely generated Z-subalgebra of the restriction of (B, Bo) to Z (of. definition
2.2)) 0

If one wishes to rule out trivial implementations one could simply restrict the class of admissible models
(and behaviours) to those algebras satisfying true ~ false and require consistency of the implementing
specification. Under this requirements the criteria for observational implementations (given below) remain
valid if the abstract specification SP and the concrete specification SP1 are assumed to contain the basic
type BOOL with observable truth values.

The next lemma is an immediate consequence of definition 3.1, definition 2.4 and the transitivity of
observational equivalence:

3 .2 Lemma SP1 is an observational implementation of SP iff
for all models (B, Obs B) ~ Mod(SPI) there exists a model (A, Obs A) ~ Mod(SP) and a family of subsets
B o ~ Obs B such that for all ground terms t, r e Wx:

((B, Bo) I= t = r and (B, Bo) I= Obs(t)) iff ((A, Obs A) I-- t = r and (A, Obs A) I= Obs(t)). 0

To be useful in software development by stepwise refinement it is necessary that the composition of
consecutive implementation steps yields a single correct implementation step (i.e. composes vertically in the
sense of [Goguen, Burstall 80]). It is a direct consequence of the definition that observational
implementations satisfy this basic requirement:

3 .3 Fact The observational implementation relation is transitive.

The notion of observational implementation differs essentially from concepts adopting the "forget-restrict-
identify" approach (cf. e.g. [Ehrig et al. 82], [Sannella, Wirsing 82], [Broy et al. 86]). Although the
forget-restrict steps correspond to the restriction of behaviours to the signature of the abstract specification
the main step in those concepts is the identification of concrete objects which represent the same abstract
objects (e.g. by an abstraction function or a congruence relation). Since observational specifications
provide a more abstract view of (the semantics of) algebraic specifications this identification can be simply
omitted.
Related to our notion of implementation are the implementation concepts of [Goguen, Meseguer 82] and
[Sannella, Tarlecki 85]. While in [Goguen, Meseguer 82] abstract specification and implementation are
persistent extensions of the same specification with all sorts visible, [Sannella, Tarlecld 85] adopt a simple
notion of implementation which is based on abstraction with respect to a set of observable formulas.
Compared with [Sannella, Tarlecki 85] (and more generally with [Sannella, Tarlecki 87]) observational
implementations coz~respond to the implementation of an abstract specification after having applied an
appropriate abstractor. In our framework no manipulation of the original abstract specification is necessary
since observational specifications give already an axiomatization of a behaviour. This axiomatic basis leads
to proof theoretic criteria for implementation relations.

An important issue for the application of formal implementation notions in practice is the question for
appropriate proof methods (for implementation relations), Since it is highly desirable that correctness
proofs are supported by machine we are particularly interested in proof theoretic conditions for
implementation relations.
Observational specifications give an axiomatization of the observable behaviour of data structures and
hence are appropriate for the development of proof theoretic criteria for implementations. As proof system
for observational specifications we generalize the proof system of [Selman 72] to conditional formulas of
the form (*) (see definition 2.1) and then extend it by the rule

¢ lA. . .ACn ~ t = r , ¢ 1 ^ . . . ^ ¢ n =*Obs(t)

~1 ^ ' " ^ qn ~ Obs(r)

295

which asserts the compatibility of the observability predicate with equality. If a Horn formula
01A --. A ~n ~ ~ + I is deducible from a set of axioms E we write E I---- ¢I ^ .-. a ~ ~ 0n+l- As a simple
generalization of theorem 2 in [Selman 72] it can be shown that the proof system "1--" is sound and
complete (wrt. the model class of an observational specification).
For the development of a proof theoretic criterium for observational implementation relations we need the
following definitions:

3 . 4 De f in i t i on Let SP = (~, E) be an observational specification, let S be the set of sorts of E,
and let Z = {z s I s E S} be an S-sorted set of identifiers.

1.) A term c ~ W~:(Z) is called context over Y-, if c contains exactly one identifier z s ~ Z . To indicate
the identifier occurring in c we often write c[z s] instead of c.
The application of a context c[z s] to a term t e W~; of sort s is defined by the substitution of z s by t.
Instead of c[t/Zs] we write briefly c[t].

2.) A sort s e S is called observable sort of SP if there exists an axiom 01A ... A ~n ~ Obs(t) of SP
such that t is of sort s.

3.) A context c ~ WE(Z) is called observable context of SP if the sort of c is an observable sort of SP.
0

Using the notion of observable context one can show that an observational specification SP1
implements an observational specification SP (with observable premises in the axioms) if SP1 preserves
observability of objects and if SPI satisfies all Horn formulas of the form ~I ^ --- ̂ 0n ~ c[t] = c[r] where
01 A ... ^ 0 n ~ t = r is (a ground instance of) an axiom of SP and c is an observable context of SP. In
particular, SP1 not necessarily satisfies all equational axioms t = r of SP but all applications of observable
contexts to (ground instances of) t = r. For example a usual stack specification where the top elements of
stacks are specified as observable may be implemented by a specification SP1 which does not satisfy the
equation pop(push(x, s)) = s but satisfies all applications of observable contexts to this equation as e.g. the
equation top(pop(push(x, s))) --- top(s).
Formally, we obtain the following criterium for observational implementations:

3 . 5 P r o p o s i t i o n Let SP1 = (El, E l) and SP = (~, E) be observational specifications with E ~ E1
and let all premises of the axioms of SP be of observable sort (i.e. if p = q is a premises of an axiom of SP
then p and q are of observable sort of SP).

SP1 is an observational implementation of SP if the following conditions are satisfied:

a) If (01 A"" m 0n =~ Obs(t)) ~ E (n > 0) then E1 I - - o*(0l A. . . A 0n ~ Obs(t))

for all (ground) substitutions ~: X --~ WI;.

b) For all observable contexts c[z s] of SP holds:

If(01 ^ ... A0n ~ t = r) a E (n > 0) a n d i f t i s of sorts

then E1 I - - t3*(01 A. . . A On ~ C[t] = c[r]) for all (ground) substitutions t~: X ~ W~:.

(~* denotes the instantiation of formulas wrt. ~. The proof of proposition 3.5 is given in [Hennicker 88],
pp. 143.) 0

Proposition 3.5 gives a practically applicable criterium for implementation relations. For the verification of
condition b) in examples the proof technique of context induction is appropriate (cf. [Hennicker 88]).

296

4 . P a r a m e t e r i z e d o b s e r v a t i o n a l s p e c i f i c a t i o n s

Parameterized specifications provide a flexible tool for achieving generality and reusability in the process of
software specification and development, Similar to a function declaration in some ordinary programming
language parameterized specifications have formal parameters and a body which defines the effect of the
application to an actual parameter, Actual parameters are just specifications and the result of an application
yields again a specification (the instantiation of the body specification). There are several parameterization
concepts for algebraic specifications in the literature to some of which it will be referred later in comparison
with our approach.
In the following parameterized specifications are studied from the observational point of view. In particular
the notion of observational implementation is extended to parameterized specifications.

4 . 1 De f in i t i on Aparameterized observational specification P is a pair P = (PA, B) consisting of

- - an observational specification PA = (~gpA, EpA) (calledformalparameter) and

- - an observational specification B = (Z B, EB) (called body)

such that]~PA c ~B and EpA ~ E B. t)

4 . 2 Example The parameterized observational specification SET describes properties of finite
sets which are parameterized with respect to their elements. The formal parameter specification ELEM
requires observability of the elements (of sets) and of the boolean values. In particular the results of the
iselem operation which tests the membership of an element in a set are observable. ELEM contains a
subspecification BOOL with the usual laws of the Boolean algebra as axioms (x or x = x, x or y = y or x,
etc.), an equality test eq for elements which is specified by the axioms of an equivalence relation, and a
constant const.

Formal parameter: Body:

spec ELEM = enrich BOOL by
sorts: elem
functs: const: --~ elem

eq: elem x elem --) bool
axioms:

ObS(Xbool), Obs(Xelem),
eq(x, x) = true,
eq(x, y) = eq(y, x),
eq(x, y) = true ̂ eq(y, z) = true ~ eq(x, z) = tree

(%ool and Xelem are identifiers of sort bool, resp. elem)

spec SET (parameter ELEM) = enrich ELEM by
sorts: set
fnncts: empty: --) set

add: elem x set ~ set
iselem: elem x set --~ bool

axioms:
iselem(x, empty) = false,
iselem(x, add(y, s)) = eq(x, y) or iselem(x, s),
add(x, add(x, s)) = add(x, s),
add(x, add(y, s)) = add(y, add(x, s)).

0

Semantically, a parameterized observational specification is considered as a (partial) function which takes
an observational specification as argument and yields an observational specification as result. This view
coincides with [Sannella, Tarlecki 87] and is basically related to the theory procedures in CLEAR (cf.
[Burstall, Goguen 80]) or the ~-calculus like approach of ASL (cf. [Wirsing 86]).
The application of a parameterized observational specification is defined for all actual parameters satisfying
the requirements of the formal parameter. Thereby actual parameters are connected to a formal parameter
via a signature morphism (from the formal parameter signature to the actual parameter signature) and an
actual parameter is called admissible if all its models satisfy the (renamed) axioms of the formal parameter
specification. Since models are assumed to be term generated this means that all instantiations of the axioms
of the formal parameter with ground terms over the signature of the actual parameter are deducible from the
axioms of the actual parameter:

297

4 .3 Definition Let P = (PA, B) be a parameterized observational specification with formal
parameter PA -- (l~pA, EpA) and body B = (I~ B, EB). Let SP = (I~, E) be an observational specification
such that (Ig B \ ~PA) r~ Y, = O (i.e. no name clashes).
SP is called admissible actual parameter of P with respect to a signature morphism p: EpA ~ I~ if for all
axioms (~1 ^ ... ^ ~n =* ~n+l) ~ EPA holds:

E I - - 6*(P*(~I ^ . - . ^ ~n ~ ~n+l)) for all (ground) substitutions (I: X ~ WI~.

(P* denotes the extension of p to formulas (over Y'PA) and 6" denotes the instantiation of formulas wrt.
~.)

As an equivalent definition one could require that all (renamed) axioms of PA are in the inductive theory of
SP, i.e. are deducible (from the axioms of SP) by infinite induction. This definition of admissible
parameter is more liberal than other notions (cf. e.g. [Ehrig, Mahr 85], [Goguen, Meseguer 82]) which
require that all axioms of the formal parameter (not only ground instantiadons) are provable from the actual
ones. Equivalent to our definition is the notion of [Ganzinger 83] (if it is restricted to non parameterized
actual parameters). For the CLEAR procedures the more liberal notion of actual parameter can be achieved
by using "fitting" morphisms between data theories.
The application of a parameterized observational specification to an actual parameter (also called parameter
passing) is defined as follows:

4 .4 Def in i t ion Let P = (PA, B) be a parameterized observational specification with formal
parameter PA = (Y~PA, EpA) and body B = (I~ B, EB). Let SP = (l~, E) be an admissible parameter of SP
wrt. a signature morphism p: Y'PA "~ Ig.

The application of P to SP wrt. p is the observational specification

Pp(SP) = B[SP/PA]p

which is defined by replacing the formal parameter PA by the actual parameter SP while all sorts and
function symbols of ~PA occurring in B \ PA are renamed wrt. to p. (To simplify the notation we often
omit the index p and write simply P(SP) instead of Pp(SP).) 0

This syntactic def'mition of instantiation corresponds to the instantiation concept in [Ehrig, Mahr 85] which
is equivalent to a pushout construction (as e.g. in [Goguen, Meseguer 82]).
The application P(SP) of a parameterized observational specification P is called parameter protecting if the
properties of the actual parameter SP are preserved, i.e. no additional elements of parameter sort are
generated by the body ("no junk") and the application does neither introduce new identities for objects of
parameter sort ("no confusion") nor additional observable objects (of parameter sort). A necessary and
sufficient condition for a parameterized observational specification P to be parameter protecting for all
actual parameters is the parameter completeness and parameter tolerancy of P:

4. $ Def in i t ion Let P = (PA, B) be a parameterized observational specification with formal
parameter PA = (l~pA, EpA) and body B = (I~B, EB). Let XpA be a countably infinite set of identifiers of
parameter sorts (i.e. sorts of PA).

1.) P is called parameter complete if for all terms t ~ WI: B(XPA) of parameter.sort s there exists a term
p ~ WI;pA(XpA) of sort s such that: E B \ EpA I - - t = p.

2.) P is called parameter tolerant if for all observational T-pA-algebras (A, Obs A) satisfying the axioms
EpA there exists an observational Ir, B-algebraB(B, Obs B) such that (A, Obs A) is an observational
IgpA-subalgebra of the restriction of (B, Obs) to ZPA- 0

Parameter completeness together with parameter tolerancy corresponds to the various notions of
persistency which can be found in the literature. It guarantees that for any actual parameter SP = (E, E) of
P and for any model (A, ObSA!AOf SP there exists an extension to a model (B, Obs B) ~ Mod(P(SP))
such that (B, ObsB)lE = (A, Obs), i.e. SP is protected by the application.

298

4 .6 Remark Parameter completeness is a necessary condition for achieving that for all actual
parameters SP the application P(SP) is sufficiently complete (wrt. ground terms of parameter sort) over
SP. Consider for example the specification PA' which is obtained from the formal parameter PA by adding
a constant for each parameter sort and by replacing the axioms of PA by all their ground instantiations.
Then PA' is an admissible parameter of P but P(PA') is not sufficiently complete over PA' if P is not
parameter complete.
The condition of parameter completeness could be weakend to the condition "E B I - - t = p" if either a less
liberal notion of admissible parameter is adopted (see above) or if the instantiation of an actual parameter
would be defined by adding the (renamed) axioms of the formal parameter to the actual application (as in
[Ganzinger 83]).

5 . Implementation of parameterized observational s p e c i f i c a t i o n s

In this section the notion of observational implementation is extended to parameterized observational
specifications. If P1 and P are parameterized observational specifications with common formal parameter
then PI is called (parameterized) observational implementation of P if for all admissible pmameters SP the
application PI(SP) is an observational implementation of P(SP). (For a discussion of different formal
parameters see [Sannella, Wirsing 82].) This pointwise definition corresponds exactly to our view of
pararneterized specifications as functions. Analogous definitions based on different implementation notions
(forget-restrict-identify, model class inclusion, abstractor and constructor implementations) are given in
[Sannella, Wirsing 82], [Wirsing 86], resp. [Sannella, Tarlecki 87]. A purely proof theoretic
implementation concept for parameterized specifications is provided in [Ganzinger 83]. As a major step
towards the applicability of algebraic specifications to the modular construction of software systems in
[Ehrig, Kreowski 82] it is shown that parameterized implementations based on the initial algebra approach
and the free functor semantics are compatible with parameter passing.

5 .1 Def in i t ion Let P = (PA, B) and P1 = (PA, B1) be parameterized observational
specifications. P1 is called (parameterized) observational implementation of P (written P1 <~~~ P) if for all
admissible parameters SP (wrt. a signature morphism p) holds:

Plp(SP) is an observational implementation of Pp(SP). <>

Obviously, the transitivity of the implementation relation for the non parameterized case extends to the
parameterized case:

5 .2 Fac t
The observational implementation relation for parameterized observational specifications is transitive.

As in the non parameterized case for practical applications one is particularly interested in proof theoretic
criteria for (parameterized) implementation relations. Proposition 3.5 implies that a parameterized
specification P1 is an observational implementation of P if the conditions a) and b) of the proposition can
be proved for all applications PI(SP) and P(SP) to actual parameters SP. Hence for the verification all
actual parameters have to be considered.
To get rid of reasoning over aU actual parameters we are interested in context conditions which only depend
on the properties of P and P1 and can be proved independently from actual applications. The basic idea is
that an instantiafion may impose the observability of all parameter sorts and hence we consider (instead of
observable contexts (cf. definition 3.4)) all contexts which are either of observable sort or of parameter
sort. Moreover, since instantiations may introduce arbitrary many ground terms of parameter sort we have
to consider contexts which contain arbitrary identifiers of parameter sort.

5 .3 Definition Let P = (PA, B) be a parameterized observational specification with formal
parameter PA = (Y'PA, EpA) and body B = (Z B, EB) and let S B be the set of sorts of Z B.
Moreover, let Z = {z s I s E SB} be an SB-sorted set of identifiers and let XpA be a set of identifiers of
parameter sort (as in defintion 4.5) such that Z and XpA are disjoint.

A term c ~ WEB(Z u XpA) is called parameter context if c contains exactly one identifier Zs ~ Z (and

arbitrary identifiers of XpA). If the sort of c is either a parameter sort or an observable sort (cf. definition

3.4) of the body B then c is called observable parameter context of P. (Context application is defined

analogously to definition 3.4 and the notation c[z s] is used to indicate the identifier z s of c.) 0

299

Using this definition the conditions of proposition 3.5 can be extended to a criterium for parameterized
implementation relations. As a prerequisite we require that the implementing pammeterized specification is
parameter complete. (This could be omitted if we had chosen the alternative definition of parameter passing
where the (renamed) axioms of the formal parameter are added to the axioms of the actual application.)

5 .4 P ropos i t i on Let P1 = (PA, B1) and P = (PA, B) be parameterized observational specifications
with bodies B1 = (ZB1, EB1) and B = (Z B, EB) such that Z B ~ ZB1 and let all premises of the axioms of B
be of observable sort. Moreover, let P1 be parameter complete.

P1 is a (parameterized) observational implementation of P if the following conditions are satisfied:

a) ff (~b 1 ̂ . . . ^ ~ ~ Obs(t)) a E B (n 2 0) then EB1 ~ - G*(~ 1 ̂ . . . ^ Cn ~ Obs(t))

for all substitutions if: X ---> WzB(XpA).

b) For all observable parameter contexts C[Zs] of P holds:

If (~1 A. .- ^ (~n ~ t = r) e E B (n > 0) and if t is of sort s

then EB1 t----- o*(~ I ^ ... A Ca ~ C[t] = c[r]) for all substitutions t~: X --> WzB(XpA).

(As before cr* denotes the instantiation of formulas wrt. or. The proof of proposition 5.4 is given in
[Hennicker 88], pp. 117.) 0

5 .5 Example In this example (parameterized) sets are implemented by (parameterized) lists
which in turn are implemented by (parameterized) arrays with pointers. Thus, by the vertical composition
property (cf. fact 5.2) this yields an observational implementation of sets by arrays with pointers.
In the first step the parameterized specification SET of example 4.2 is implemented by the following
parameterized specification LIST which specifies lists in a usual way. Since all elements are specified as
observable by the formal parameter ELEM in particular the first elements of lists can be observed by the
operafion first.

spec LIST (parameter ELEM) = enrich ELEM by
sorts: list
functs: empty: --> list

add: elem x list --> list
first: list ---> elem
rest: list ---> list
iselem: elem x list ---> bool

axioms: first(empty) = const,
rest(empty) = empty,
fast(add(x, s)) = x,
rest(add(x, s)) = s,
iselem(x, empty) = false,
iselem(x, add(y, s)) = eq(x, y) or iselem(x, s).

Fact LIST is a (parameterized) observational implementation of SET.

Informally, this fact is clear since lists and sets have the same behaviour wrt. the observable results of the
SET operation iselem. For a formal proof proposition 5.4 can be applied. The validity of condition b) can
be shown by induction on the structure of the parameter contexts. (A detailed proof using the principle of
context induction is given in [Hennieker 88], pp. 155.)
Note that the sort set has to be identified here with the sort list. An explicit renaming could simply be
treated as in [Sannella, Tarlecki 87].

In the next step lists are implemented by arrays with pointers. The following specification
ARRAYPOINTER specifies lists as pairs consisting of an array a (which is parameterized with respect to
its entries) and a natural number p (called pointer). The empty list is implemented by the empty array vac
together with the pointer 0. Adding an element x to a list is implemented by putting x into the (p+l)=th
component of the array (if the pointer has value p) and by incrementing the pointer, The rest operation is
simply implemented by decrementing the pointer (without deleting the last entry) and the first element of a
list is obtained by accessing the p-th component of the array (if the pointer has value p).
For simplicity only those array operations are specified here which are necessary for the implementation
(vac for the empty array, put for putting a new element on the array and get for selecting an element of the
array).

300

spec ARRAYPOINTER (parameter ELEM) =
enrich ELEM, NAT by

sorts: array, list
functs: vac: ~ array

put: array x nat x elem ~ array
get: nat x array -4 elem
pair: array x nat ~ list
empty: ~ list
add: elem x list --~ list
first: list ~ elem
rest: list ~ list
iselem: elem x list ~ bool

axioms:
get(p, vac) = const,
get(p, put(a, p, x) = x,
eq_.nat(p, q) = false ~ get(p, put(a, q, x)) -- get(p,a),
empty = pair(vac, 0),
add(x, pair(a, p)) = pair(pat(a, p+l, x), p+l),
first(pair(a, p)) -- get(p, a),
rest(pair(a, p)) = pair(a, p-l),
iselem(x, pair(a, 0)) -- false,
iselem(x, pair(a, p+l)) =

= eq(x, get(p+l, a)) or iselera(x, pair(a, p)).

Note that A R R A Y P O I N T E R does not satisfy the LiST-axiom rest(add(x, s)) = s since the rest operation
only decrements the pointer and does not delete the element x in the array. But the observable behaviour of
LIST is preserved by ARRAY_POINTER since ARRAY_POINTER satisfies all equations between terms
(containing only identifiers of parameter sort) of the observable sorts elem or bool which are satisfied by
LIST. In particular ARRAY_POINTER satisfies the equations first(rest(add(x, t)))= first(t)and
first(add(x, t)) = x with an identifier x of sort eIem and a term t with identifiers of parameter sort.

Fac t ARRAY_POINTER is a (parametefized) observational implementation of LIST.
(A formal proof by context induction is given in [Hennicker 88], pp. 138.)

By vertical composition of the two implementation steps one obtains

F a c t ARRAY_POINTER is a (parameterized) observational implementation of SET,

6. Horizontal composition of observational implementations

It is one of the main issues for the use of formal implementation notions in practice whether they support
the modular consm~ction of implementations. More precisely this means that local implementations of parts
of a (structured) specification should compose to an implementation of the whole specification. This
property is called horizontal composition (cf. [Goguen, Burstall 80]). In the framework of parameterized
observational specifications the situation can be described as follows:
Given two parameterized observational specifications P1 and P such that P1 <~~~ P and two admissible
parameters SP1 and SP such that SP1 < - ~ - SP, the question is whether the application PI(SP1) is an
observational implementation of P(SP). To study this issue we distinguish two cases for the construction
of the implementation P1 (SP1) which can be illustrated by the following diagram:

P(SP1)

/ - , ,
PI(SP1) P(SP) - . , . j

PI(SP)

Corresponding to the upper part of the diagram at first the actual parameter SP is replaced locally by its
implementation SP1. The resulting specification P(SP1) is an observational implementation of P(SP) if P
preserves implementation relations for arguments, i.e. i f P is monotonic. In a next step P(SP1) is
implemented by PI(SP1) which is obviously a correct implementation since it is assumed that P1
implements P.

301

In the second case corresponding to the lower part of the diagram first P(SP) is implemented by PI(SP)
and then PI(SP) is implemented locally by replacing SP by SP1. In this case the resulting specification
PI(SP1) is an observational implementation of P1 (SP) (and hence of P(SP)) if P1 is monotonic.
This discussion shows that the crucial point for achieving horizontal composition is the monotonicity of
one of the parameterized specifications involved.

6 .1 Def in i t ion Let P = (PA, B) be a parameterized observational specification. P is called
monotonic if for all admissible parameters SP1 and SP which are related by the implementation relation
SP1 < - - ~ SP holds: P(SP1) < - - - P(SP).
(More precisely it is assumed that the signature morphisms connecting the formal parameter PA with the
actual parameters SP and SP1 coincide.) 0

We now obtain the following two conditions for the horizontal composition of observat ional
implementations (corresponding to the upper resp. lower part of the above implementation diagram).

6 .2 P r o p o s i t i o n Let P1 = (PA, B 1) and P = ~ A , B) be parameterized observational specifications
such that P1 <-~~ P. Moreover, let SP and SP1 be admissible parameters such that SP1 < ~ ~ SP.

1.) If P is monotonic then PI(SP1) < - - - P(SP).

2.) If P1 is monotonic then PI(SP1) <~~~ P(SP). 0

Monotonicity is sufficient for the horizontal composition of observational implementations. Compared with
the horizontal composition of abstractor implementations in [Sannella, Tarlecki 87] the requirement of
monotonicity corresponds to the preservation of abstraction equivalences by the parameterized
specifications. Based on a module oriented approach horizontal compositions are studied in [Schoett 87].
The basic requirement there is the stability of the "cells" involved in the program development process.
Since our approach admits proof theoretic properties (like parameter completeness) we can give the
following sufficient condition for m.onotonicity:

6 .3 P ropos i t i on Let P be a parameter complete and parameter tolerant parameterized observational
specification. Moreover, let all observable sorts of P be parameter sorts. Then P is monotonic. 0

(Proposition 6.3 can be proved by a simple generalization of the proof in [Hennicker 88], pp. 153.)

6 .4 Example In the following the implementation of sets by arrays with pointers is horizontally
composed with an implementation of the integers by sequences of bits. The composition yields an
observational implementation of sets of integers by pairs consisting of an array over bit sequences and a
pointer.
We start with the specification INT of the intergers. INT specifies the boolean values and all integers
(which are constructed by zero, succ, andpred) as observable. For the definition of the equality test eq_int
the auxiliary function non_negative is used. Note that eqint is completely specified for all integers since
the equality test can always be reduced to the equality test for non negative integers.

spec INT = enrich BOOL by
sorts: int
funets: zero: -+ int

succ, pred: int ~ int
eq_int: int x int ~ bool
non_negative: int --~ bool

a x i o m s :
Obs(true), Obs(false),
Obs(i) ~ Obs(succ(i)),
Obs(i) :=~ Obs(pred(i)),
pre~(strz(i)) = i,
succeed(i) = i,
eq_int(zero, zero) = true,
eq__int(i, j) = eq int(j, i),

eq_int(succ(i), succ(j)) = eq int(i, j),
nonnegative(i) = lrue ~ eq_int(zero, succ(i)) = false,
non_negative(zero) = true,
non negative(pred(zezo)) = false,
non_negative(i) -- tree ~ non__negative(succ(i)) = true,
non_negative(i) = false ~ non_negative(pred(i)) -- f~se.

302

Next we give an implementation of integers by pairs (x, s> consisting of a sign x ~ { O, L} and a bit
sequence over {O, L} (constructed by the constant e and the operation &). The sign x represents the sign
of an integer and the bit sequence s is the usual binary representation of the absolute value. Sequences with
leading O and the pairs (O, e), (L, e} (representing zero) are identified.
For the implementation of succ and pred the atLxiliary function compl is used which complements the sign
of a bit sequence. That way the computation of the successor (predecessor) of a negative integer can be
reduced to the predecessor (successor) of its complement. The equality test eq_int is implemented by means
of the equality test eq_seqbit for bit sequences (taking into account that sequences with leading O are
identified). We hope that the basic idea of the implementation is sufficiently illustrated and drop a detailed
discussion of the axioms.

spec SEQBIT = enrich BOOL by
sorts: bit, seqbit, int
funets: O, L: --~ bit

eq bit: bit x bit --> bool
e: ---> seqbit
• & .: seqbit x bit --~ seqbit
eq_seqbit: seqbit x seqbit ~ bool
(.,.): bit x seqbit -~ int
zero: ~ int
suet, pred, compl: int ~ int
eq._int: int x int -4 bool
non_negative: int --> bool

axioms:
Obs(true), Obs(false),
Obs0) ~ Obs(succ(i)),
Obs(i) ~ Obs(pred(i)),
eq_bit(x, x) = true,
eq_bit(O, L) = false,
eq bit(L, O) = false,
e&O = e,
eq__seqbit(e, e) = tree,
eq_seqbit(e, s&L) -- false,
eq_seqbit(e, s&O) = eq_seqbit(e, s),
eq_seqbit(s&x, s'&y) =

= eq__bit(x, y) and eq__seqbit(s, s'),
eq_seqbit(s, s 3 = ~t-seqbit(s', s),
(O, e) = (L, E),
compl(L, s) = (0, s),

compl(O, s} = (L, s},
zero = (L, e),
succ(L, e) = (L, e&L),
succ(L, s&O)= (L, s&L},
succ(L, s} = (L, s') ~ succ(L, s&L) = (L, s'&O),
succ(O, s&x) = compl(pred(L, s&x)),
pred(L, e) = (O, ~&L),
pred(L, s&L) = (L, s&O),
pred(L, s) = (L, s3 ~ pred(L, s&O) = (L, s'&L),
pred(O, s&x) = compl(succ(L, s&x)),
eq int((x, s), (x, s')) = eq_seqbit(s, s'),
eq_int((O, s), (L, s')) = eq-seqbit(s, e) and eq-seqbit(s', e),
eq_int(i, j) = eq_int(j, i),
non_negative(L, s) = true,
nonnegative(O, s) = eq_seqbit(s, s).

It can be shown that SEQBIT <~-~ INT and that INT and SEQBIT are admissible parameters of the
parameterized specifications SET, LIST, and ARRAY_POINTER (wrt. the signature morphism p with
p(elem) = int, p(const)= zero, p (e q) = e q int). (For the proof one uses the fact that all ground terms
over SEQBIT of sort int can be reduced to a normal form (L, e) or (L, e&L&al&. . .&a n) or
(O, e&L&al&.. .&an) with a # {O, L}.)

Moreover, one can show that the parameterized specifications SET, LIST, and ARRAY_POINTER are
parameter complete and parameter tolerant. Since by example 5.5 ARRAY_POINTER <~~~ SET
p ropos i t i on 6.2 and 6.3 can be appl ied and one obtains by hor izonta l composi t ion:
ARRAY POINTER(SEQBIT) <~~- SET~NT).

All implementation relations which can be constructed for the specifications in our example by horizontal
and vertical composition are illustrated by the following diagram:

ARRAY_POINTER(INT) < ~ - LIST(INT) <~~ SET(INT).

ARRAY_POINTER(SEQBrI) < ~ LIST($EQB1T) < ~ SET(SEQBIT)

303

7. Discussion

In the examples given above the formal parameter ELEM specifies not only the boolean values as
observable but also all objects of sort elem. Hence it would be meaningless e.g. to construct the
specification SET(SET(/NT)) (with an appropriately defined equality operation for sets) since sets am not
specified as observable and hence SET(INT) is not an admissible parameter of SET. As a solution there are
(at least) two possibilities:
First, one could simply omit the axiom Obs(Xelem) in the formal parameter ELEM. Then, of course, all
implementation relations from above remain valid. Compared with our example there is only one difference
concerning the parameterized specifications LIST and ARRAY_POINTER since now the elements of lists
can not more be observed via the operation first (but still are implicitly observable by the operations eq and
iselem). This means that we have adopted a more abstract view which allows to abstract from the non
observable properties of the elements. That way it would cause no problems to construct e.g. the following
implementations: ARRAY_POINTER(ARRAY_POINTER(INT)) <~~~ LIST(ARRAY_POINTER(INT))
< - - - LIST(LIST(INT)) < - - - SET(LIST(INT)) < - - ~ SET(SET(INT)).
The next possibility is to omit again the axiom Obs(Xelem) in the formal parameter ELEM but to introduce
the axiom Obs(first(s)) in the body of the parameterized specifications LIST and ARRAYPOINTER
(yielding parameterized specifications, say LIST' and ARRAY_POINTER'). Then still the implementation
relations ARRAY POINTER' <~~~ LIST' <~~~ SET hold but LIST' and ARRAYPOINTER' are not
more parameter t~erant since they introduce more objects as observable than specified by the formal
parameter. In fact, LIST' and ARRAY_POINTER' are not monotonic. (This is not surprising since an
observational implementation SP1 of SP (where SP and SP1 are admissible parameters of LIST') may
preserve only identities between terms of the observable sort bool whereas e.g. the in~lementation relation
LIST'(SP1) <~-~ LIST'(SP) only holds if LIST'(SP1) preserves additionally all identities between terms
of sort elem.) However, for the parameterized specifications SET and LIST' (resp. SET and
ARRAYPOINTER') horizontal composition works since proposition 6.2 says that it is enough if one of
the parameterized specifications involved is monotonic. Since SET is monotonic regardeless whether the
axiom Obs(xelem) belongs to the formal parameter or not one obtains for all admissible parameters SP and
SP1 such that SP1 <~~- SP, the implementation relation LIST'(SP1) <~~~ SET(SP) (resp.
ARRAY POINTER'(SP1) <~~~ SET(SP)).

A further issue to be discussed is more generally concerned with our notion of admissible parameter and its
consequences with respect to the horizontal composition property. Consider e.g. a parameterized
specification P, an admissible parameter SP of P, and an observational implementation SPI of SP. If one
wishes to implement P(SP) by P(SP1) this may be not feasible in our framework i f SP1 is not an
admissible parameter of P. To prevent this situation the notion of admissible parameter could be
appropriately generalized such that observational implementations automatically preserve admissibility of
parameters. From the observational point of view we suggest that an actual parameter should be considered
as "observationally admissible" if it respects the observable behaviour specified by the formal parameter.
Formally, this notion could be defined similarly to the observational implementation relation by requiring
behaviour class inclusion wrt. the behaviour classes of the actual and the formal parameter. In contrast to
observational implementations in this case the definition of behaviour classes has to be extended to non
term generated algebras.

8. Concluding remarks

The present study shows that observational specifications provide a semantically well founded and flexible
tool for the formal development of software. Based on the theory of observational specifications the
observational implementation relation formalizes the intuitively clear idea that an implementation is correct ff
it produces correct observable output. It has been shown that observational implementations compose
vertically and (under certain conditions) horizontally and hence are useful for the modular and stepwise
construction of implementations. An advantage of the observational specification technique is their
axiomatic description of behaviours which gives rise to the development of proof theoretic criteria for
implementation relations and horizontal composability. Since it is highly desirable to support
implementation proofs by machine a further step should be the development of algorithms for the
verification of implementation relations. Based on the principle of context induction a first attempt into this
direction has been undertaken in [Hennicker 88].

304

Acknowledgements
I would like to thank Martin Wirsing who supported this work by many ideas and valuable inspirations and
Manfred Broy for many fruitful discussions. I gratefully acknowledge a number of useful comments made
by the referees.

References

[Broy et al. 84]
M. Broy, C. Pair und M. Wirsing: A systematic study of models of abstract data types. Theoretical
Computer Science 33, 139-174 (1984).

[Broy et al. 86]
M. Broy, B. Mrller, P. Pepper und M. Wirsing: Algebraic implementations preserve program correctness.
Science of Computer Programming 7, 1, 35-54 (1986).

[Burstall, Goguen 80]
R.M. Burstall, J.A. Goguen: The semantics of Clear, a specification language. Proc. of Advanced Course
on Abstract Software Specifications, Kopenhagen. Springer Lecture Notes in Computer Science 86,
292-332 (1980).

[Ehrig, Kreowski 82]
H. Ehrig, HJ, Kreowski: Parameter passing commutes with implementation of parameterized data types.
In: M. Nielsen, E.M. Schmidt (eds.): Proc. ICALP 82, 9th Coll. on Automata, Languages and
Programming, Aarhus, July 1982. Springer Lecture Notes in Computer Science 140, 197-211 (1982).

[Ehrig, Mahr 85]
H. Ehrig, B. Mahr: Fundamentals of algebraic specification 1. EATCS Monographs on Theor. Comp.
Science, Vol. 6, Springer Verlag (1985).

[Ehrig et al. 82]
H. Ehrig, H.J. Kreowski, B. Mahr und P. Padawitz: Algebraic implementation of abstract data types.
Theoretical Computer Science 20, 209-263 (1982),

[Futatsugi et al. 85]
K. Futatsugi, J.A. Goguen, J.P. Jouannaud und J. Meseguer: Principles of OBJ2. Proc. 12th ACM
Symposium on Principles of Programming Languages, New Orleans, 52-66 (1985).

[Ganzinger 83]
H. Ganzinger: Parameterized specifications: parameter passing and implementation with respect to
observability. ACM Trans. on Prog. Lang. and Systems 5, 3, 318-354 (1983).

[Geser, Hussmann 86]
A. Geser, H. Hussmann: Experiences with the RAP system - a specification interpreter combining term
rewriting and resolution. In: B. Robinet, R. Wilhelm (eds.): Proc. ESOP 86, Europ. Symp. on
Programming, Saarbrticken, March 1986. Springer Lecture Notes in Computer Science 213, 339-350

[Giarratana et al, 76]
V. Giarratana, F. Gimona und U. Montanari: Observability concepts in abstract data type specification. In:
A. Mazurkiewicz (ed.): Proc. MFCS 76, 5th Internat. Symp. on Mathematical Foundations of Comp.
Science, Gdansk, Sept. 1976. Springer Lecture Notes in Computer Science 45, 576-587 (1976).

[Goguen, Burstall 80]
LA. Goguen, R.M. Burstall: CAT, a system for the structured elaboration of correct programs from
structured specifications. Technical report CSL-118, Computer Science Laboratory, SRI International

[Goguen, Meseguer 82]
J.A. Goguen, J. Meseguer: Universal realization, persistent interconnection and implementation of abstract
modules. In: M. Nielsen, E.M. Schmidt (eds.): Proc. ICALP 82, 9th Coll. on Automata, Languages and
Programming, Aarhus, July 1982. Springer Lecture Notes in Computer Science 140, 265-281 (1982).

305

[Hennicker 88]
R. Hennicker: Beobachmngsorientierte Spezifikationen. Dissertation, Fakultgt ftir Mathematik und
Informatik, Universit~it Passau (1988).

[Hennicker, Wirsing 85]
R. Hennicker, M. Wirsing" Observational specification: a Birkhoff-theorem. In: H.J. Kreowski (ed.):
Recent Trends in Data Type Specification. 3rd Workshop on Theory and Appl. of Abstract Data Types,
Selected Papers. Informatik Fachberichte 116, 119-135, Springer Verlag (1985).

[Nivela, Orejas 87]
M a P. Nivela, F. Orejas: Initial behaviour semantics for algebraic specifications. Proc. 5th Workshop on
Algebraic Specifications of Abstract Data Types, Gullane, September 1987, Springer Lecture Notes in
Computer Science 332, 184-207 (1988).

[Pepper 83]
P. Pepper: On the correctness of type transformations. Talk at 2nd Workshop on Theory and Appl. of
Abstract Data Types, Passau, May 1984.

[Reichel 81]
H. Reichel: Behavioural equivalence -- a unifying concept for initial and final specification methods. In:
M. Arato, L. Varga (eds.): Math. Models in Comp. Systems, Proc. 3rd Hungarian Computer Science
Conf., Budapest, January 1981, 27-39 (1981).

[Sannella, Tarlecki 85]
D.T. Sannella, A. Tarlecld: On observational equivalence and algebraic specification. In: H. Ehrig,
C. Floyd, M. Nivat, J. Thatcher (eds.): Proc. TAPSOFT 85, Joint Conf. on Theory and Practice of
Software Development, Berlin, March 1985. Springer Lecture Notes in Computer Science 185, 308-322
(1985).

[Sannena, Tarlecld 87]
D.T. Sannella, A. Tarlecki: Toward formal development of programs from algebraic specifications:
implementations revisited. Proc. TAPSOFT 87, Joint Conf. on Theory and Practice of Software
Development, Pisa, March 1986. Springer Lecture Notes in Computer Science 249, 96-110 (1987).

[Sannella, Wirsing 82]
D.T. Sannella, M. Wirsing: Implementation of parameterized specifications. In: M. Nielsen, E.M. Schmidt
(eds.): Proc. ICALP 82, 9th Coll. on Automata, Languages and Programming, Aarhus, July 1982.
Springer Lecture Notes in Computer Science 140, 473-488 (1982).

[Schoett 87]
O. Schoett: Data abstraction and the correctness of modular programming, Ph.D. thesis, CST-42-87,
Department of Comp. Science, University of Edinburgh (1987).

[Selman 72]
A. Selman: Completeness of calculii for axiomatically defined classes of algebras. Algebra universalis 2,

[Wirsing 86]
M. Wirsing: Structured algebraic specifications: a kernel language. Theoretical computer science 42,
123-249 (1986).

