CIIPS Glory
Soccer Robots with Local Intelligence

Thomas Briunl
Dept. of Electrical and Electronic Engineering
The University of Western Australia
Nedlands, Perth, WA 6907
www.ee.uwa.edu.au/~braunl

Abstract. Our team was named after the new and successful Perth Glory soc-
cer team. The heart of our robots are the EyeBot controllers, which we devel-
oped form scratch. We use a Motorola 68332 32-bit controller, which offers a
variety of digital/analog 1/O facilities. We developed our own operating system
RoBIOS for these systems, which allows a great deal of flexibility. All image
processing and planning is done locally on-board the EyeBot. We do not use
any global sensor systems. The same EyeBot controller is also used for 6-
legged and biped walking machines, and — as a boxed version — for undergrad-
uate courses on assembly language programming.

1 Introduction

Our system architecture uses local intelligence without any global sensors. Although
our approach is clearly disadvantaged with respect to performing well at a RoboCup
competition, we do believe that our approach of truly autonomous and locally intelli-
gent systems does make more sense for less restrictive applications. We are more inter-
ested in research on general purpose intelligent agents, as opposed to building a system
which can serve only in a certain competition, has to rely on global sensors, and
reduces mobile robots to remote controlled toy cars. We incorporated a digital color
camera and a graphics display to our microcontroller system. All image processing is
performed on-board.

Fig 1. EyeBot soccer robot with local intelligence

M. Asada and H. Kitano (Eds.): RoboCup-98, LNAI 1604, pp. 416-421, 1999.
(© Springer-Verlag Heidelberg Berlin 1999



CIIPS Glory Soccer Robots with Local Intelligence 417

After our experience in the AAAI Mobile Robot Competition [2] with large indus-
trial robots and equipment failure, we decided to develop completely new mini-robots
to enter the small robot league of RoboCup. Each robot is driven by two DC motors in
differential steering and is equipped with two shaft encoders, five infrared range sen-
sors, and a digital color camera. Two PWM servos enable tilting of the camera and
activation of the ball kicker bar. A wireless communication unit is currently being
developed to allow the robots to talk to each other. We are able to operate without com-
munication between the robots. Each robot is told its starting position and uses its shaft
encoders plus infrared sensors to keep track of its current position. This limits our soc-
cer strategies to finding the ball and heading for the goal. Although theoretically possi-
ble without robot communication, we will wait with more sophisticated behaviours
like passing a ball to another robot, until wireless communication is in place. Since our
processing unit is a relatively simple on-board microcontroller, there are obvious limi-
tations on what can be done in terms of image processing in real time.

We are currently operating on images of size 60180, which we found have sufficient
resolution for detecting objects (ball, goals, players, walls) and navigating towards/
away from them. The controller is powerful enough to perform real-time on-line image
processing, depending on the complexity of the operation.

sdieika 1

l;jb Ii ; ]

1,'.?".

Fig 2. EyeBot MK3 controller

2 Hardware

Our extendable EyeBot base platform is a very compact board (about 9cm [110 cm),
which was developed around the key requirements of image processing. It therefore
features a digital camera and an LCD graphics display. It is based on a Motorola 68332
microcontroller [4] and therefore also provides a sufficient number of /O ports for the
connection of various sensors and actuators or any future extensions. While most robot
vision systems are either tethered or remote-controlled [1], on-board real-time vision is
feasible for large and expensive mobile platforms. Although it seemed very difficult to
implement real-time vision on a small and inexpensive system, EyeBot accomplishes
this goal. EyeBot has been successfully used in the construction of a wheel-driven



418 Thomas Briunl

vehicle, a 6-legged walking machine, and two biped walker robots. It is currently con-
sidered for the project of a flying robot.

The controller runs at a moderate speed (25 MHz), but it is fast enough to compute
basic image operations on a low resolution image in real time. E.g. gray image acquisi-
tion, Sobel edge detection and display on the LCD for a 80 [1 60 image can be per-
formed at a rate of more than 10 frames per second. EyeBot’s graphics LCD is essen-
tial for interaction between the robot and the programmer. One needs to see the robot’s
view in order to set camera parameters and orientation. Although the camera provides
gray scale or color images at medium resolution, the display can only show low resolu-
tion black/white images. This is sufficient as a feedback to the programmer when run-
ning the robot, but not for program development, which is done on a workstation using
the Improv tool.

While the hardware was started at Univ. Stuttgart, software design is an ongoing
international joint research project between Univ. Stuttgart, Univ. Kaiserslautern (Ger-
many), Rochester Institute of Technology (USA), and The Univ. of Western Australia.

3 Software

The operating system RoBIOS (robot basic input output system) has been imple-
mented in C plus m68k assembly language, after adapting a version of the gnu C com-
piler and assembler tools for the EyeBot. This allows program development in a high
level language, using assembly routines for time-critical passages [3]. RoBIOS com-
prises a small real time system with multi-tasking scheduler (essential for all robotics
applications), libraries for various I/O functions (Table 1), and a number of demonstra-
tion applications. The microcontroller’s timing processor unit (TPU) is being used for
servo control with pulse width modulation (PWM), for sound synthesis and playback,
as well as the control of infrared distance sensors.

KEY key input, e.g. C routine getchar()
LCD screen output, text and graphics

CAM camera routines for grayscale and color
oS operation system specific functions
MT multi-tasking functions

SEM semaphore operations

TIME timer functions

RS232 serial line functions, e.g. prog. download
AUDIO recording and playing back sounds
PSD distance sensor routines

IR infrared sensor readings

SONAR sonar distance measurement

BUMP acoustic collision detection

SERVO servo positioning routines

MOTOR servo motor control routines

LATCH digital input/output and analog input
IMG basic image processing routines

Table 1. RoBIOS function groups



CIIPS Glory Soccer Robots with Local Intelligence 419

The C low level text input and output routines have been adapted for EyeBot. This
enables us to use the standard C I/O library clib together with the EyeBot system for
user application programs. E.g., a user can call getchar(), in order to read a key input
and use printf(..), in order to write text on the screen.

Special care has been taken to keep the RoBIOS operating system flexible among
several different hardware configurations, because the same system is to be used for
wheeled robots and for legged robots. Therefore, a hardware description table has been
included into the system design, as described in the following. The EyeBot operating
system RoBIOS relies on the hardware description table HDT, in order to find out
which hardware components are currently connected to the system. These hardware
components can be sensors or actuators (motors or servos), whose control routines are
already available in the general RoBIOS system. HDT allows easy detection, initializa-
tion, and use of hardware components.

4 Tools

We developed a number of tools to facilitate robot programming. This is especially
essential in the case of our mini-robots for which programs have to be cross-compiled
and downloaded from a workstation.

4.1 Improv

Improv as a tool for designing the image processing part of a robot control program. It
is an application running under Linux/X windows, using EyeBot’s digital camera.
Improv displays the camera image at a higher resolution in a real time, together with
five additional windows, representing user defined image processing stages. The
Improv library comprises a number of low level image processing routines, while addi-
tional user defined operators can be added easily. The idea is to use Improv to design,
test, and debug the robot’s image processing component on a PC, until it has reached a
stage where it can be tested on the vehicle. Then, the code needs to be recompiled for
the microcontroller and downloaded to the robot.

Fig 3. Improv real-time robot vision tool — Rock&Roll program development tool



420 Thomas Braunl

4.2 Rock&Roll

On top of the operating system, we developed the integrated tool Rock&Roll (robot
construction kit and robot locomotion link) [5]. This system allows a "click-and-con-
nect" construction of robot control structures. In its data flow model, sensors are
sources and actuators are sinks, both representing system-defined module boxes. User-
defined control boxes can be added, together with interconnection links between all
modules, representing data flow.

43 EyeSim

The EyeBot simulator EyeSim is a valuable tool for the development of robot control
programs. The simulator is actually implemented as a library with identical interface to
the RoBIOS functions. That way a program can be compiled either way, for simulation
or the real robot, without a change. Complex robot routines can be debugged and
tested much more efficiently. Input/output routines can selected identical to the EyeBot
LCD in a separate window or via Unix streams. EyeSim allows the concurrent simula-
tion of multiple robots, several environment data formats, as well as the inclusion of
moveable objects (here: soccer ball).

Fig 4. EyeSim mobile robot simulator

In Figure 4, the robot drives a spline curve towards the ball. The trajectory is gener-
ated by Hermite splines, involving the robot’s start position and orientation, together
with the perceived ball position and direction towards the goal. Intermediate control
points are inserted in certain cases, e.g. when the robot is positioned between goal and
ball.

5 Summary and Future Research

EyeBot robot developments include not only the robot soccer vehicles, but also several
different 6-legged and biped walking machines. These are all using the same control-
lers and the same operating system, individually adapted the each robot’s sensor/actua-
tor configuration by the concept of a hardware description table.



CIIPS Glory Soccer Robots with Local Intelligence 421

Fig 5. EyeBot walking robots are also members of the same family

We have discussed EyeBot, a platform used for mobile robots with local intelli-
gence, allowing autonomous real-time vision control. Future research will concentrate
on behaviour-based control models for groups of robot. More information is available
on the Internet:

http://www.ee.uwa.edu.au/~braunl/eyebot/robots.html

Acknowledgments

The author acknowledges the work Jorg Henne (mechanics), Frank Sautter (electron-
ics), Klaus Schmitt, Barbara Linn, Gerrit Heitsch, Michael Kasper (system software),
Thomas Lampart (system software and programming tool), Nicholas Tay, Elliot
Nicholls (simulator), and Birgit Graf (soccer software).

References

1. H. Bayer, Th. Braunl, A. Rausch, M. Sommerau, P. Levi, Autonomous Vehicle Control by
Remote Computer Systems, Proceedings of the 4th International Conference on Intelligent
Autonomous Systems, IAS—4, Karlsruhe, March 1995, pp. 158-165 (8)

2. Th. Brdaunl, M. Kalbacher, P. Levi, G. Mamier, CoMRoS: Cooperative Mobile Robots
Stuttgart, Proc. 13. Nat. Conf. on Artificial Intelligence, AAAI Press, Portland OR, August
1996

3. The GNU Project, GNU Documentation, online, Delorie Software,
www.delorie.com/gnu/docs/

4. Th. Harman, The Motorola MC68332 Microcontroller, Prentice Hall, 1991

5. P. Levi, M. Muscholl, Th. Briaunl, Cooperative Mobile Robots Stuttgart: Architecture and
Tasks, Proceedings of the 4th International Conference on Intelligent Autonomous Systems,
IAS—4, Karlsruhe, March 1995, pp. 310-317 (8)



	Introduction
	Hardware
	Software
	Tools
	Improv
	Rock&Roll
	EyeSim

	Summary and Future Research
	Acknowledgments
	References

