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Abstract. Template matching by normalized correlations is a common
technique for determine the existence and compute the location of a
shape within an image. In many cases the run time of computer vision
applications is dominated by repeated computation of template match-
ing, applied to locate multiple templates in varying scale and orientation.
A straightforward implementation of template matching for an image size
n and a template size k requires order of kn operations. There are fast
algorithms that require order of nlogn operations. We describe a new
approximation scheme that requires order n operations. It is based on
the idea of “Integral-Images”, recently introduced by Viola and Jones.

1 Introduction

Searching and locating shapes in images and video is an important component in
many computer vision systems. Template matching by normalized correlations
(e.g., [1]) is arguably the most common approach, and can be traced back to very
early research in pattern recognition [2]. Suppose ¢ is a template to be detected
in an image f. Template matching by normalized correlations computes the
following value at each point (u,v) of the image:
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where the summations are over all template coordinates. A large value of h(u,v)
indicates a likely match at the coordinate (u,v). It can be shown that a match
that maximizes h is identical to the template ¢ up to scaling.

To express the complexity of normalized correlations we denote by n the num-
ber of image pixels and by k& the number of template pixels. A straightforward
computation of () requires order of kn operations. Since both numerator and
denominator can be implemented with correlations, computing () is directly
tied to the complexity of computing convolutions, a well researched topic (e.g.,

h(u,v) (1)
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[Bl). Using fast convolutions (e.g. by means of an FFT algorithm) it is possible
to compute in order of nlogn operations for any value of k.

The computational cost of template matching may dominate the speed of
computer vision systems (see, e.g., [4]). Typically such systems are built to de-
tect multiple objects, with a search being performed at multiple scales and ori-
entations. Systems that use fast nlogn algorithms are rare. A possible reason
might be the complex coding, and the fact that order nlogn run time might
be too high. Instead, common strategies include the development of specialized
hardware (e.g., [5l6]) and special acceleration techniques that compute the value
of h(u,v) only at a subset of the image locations.

One such approach (e.g., [7]) is to perform a first stage where matching is
computed for a small subset of the template pixels. The exact value of h(u,v)
is then computed in a second stage only at image locations that were ranked
high in the first stage. A related approach (e.g., [8l9]) uses coarse-to-fine search,
determining matching candidates first in a low resolution version of the image.
The search is refined in higher resolutions only at areas where candidates were
found in the lower resolution.

The motivation for our work is a recent result by Viola and Jones [10] that
takes a different approach to speeding up matching. Unlike the approaches that
compute h(u,v) only at a subset of image locations, Viola and Jones show that
these values can be computed very fast (order n operations) everywhere for a
special type of template: axis parallel uniform rectangles. This can be used to
create more complex templates as combinations of several rectangles. Match-
ing can then be computed by using the h(u,v) values computed from several
templates as “features” that are analyzed by a learning algorithm.

1.1 The Main Contribution

The key to the speedup obtained by Viola and Jones is a pre-computed data-
structure called “an integral image”. Our main contribution is the observation
that integral images can be used to compute algebraic moments in linear time.
This enables us to compute in linear time the best least squares approxima-
tion polynomials at each location of the image. (A total of n polynomials are
computed for an image of n pixels.) These approximations are used to compute
accurate estimates to the values of h(u,v).

The order of the polynomials used in the approximation affects the run time
complexity. Using polynomials of order d requires order of d*n operations. On the
other hand, the estimates to h(u,v) improve with the order of the polynomial
approximation. Our experiments show that second order polynomial approxi-
mations give sufficiently accurate estimates in typical situations at significantly
reduced run time.

1.2 Paper Organization

The paper is organized as follows. Integral images are introduced in Section [2]
following Viola and Jones. It is shown in Section [3 that local algebraic moments
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of low order can be computed efficiently using integral images. These moments
are used to compute local least squares polynomial approximations to the image.
A closed form expression to the normalized matching computed between these
polynomials and a template is derived in Section [4. The algorithm steps are
described in Section [l with an analysis of its complexity. Experimental results
are described in Section [6]

2 Integral Images

This section describes the idea of integral images following Viola and Jones.
Suppose f(z,y) is an integrable function for nonnegative x,y. Define:

I(u,v) = /u /Uf(a:,y)dydx

=0 y=0

then an explicit integral can be computed as:

/ / F (. y)dydz = I(zp, ) + 1(@arya) — I(wasys) — 1@, o)

T=Ta Y=Ya

The discrete version of this formula is very similar (but not identical). For an
image f(z,y) define the integral image I(x,y) as:

Iz,y)= > > f@y) (2)

z’'=0y’'=0

Then a summation of f over any axis parallel rectangle can be computed as:

oy 2y f(2,y) =
I(zy,yp) + I(wg — 1,yq — 1) (3)
_I(xa - 1ayb) - I(xlﬂya - 1)

As shown by Viola and Jones the integral image () can be computed in one
pass over the image, using the following recursive formulas:

s(x,y) = S(x’y - 1) + f(x,y), I(x’y) = I(.Q? - Ly) + S(.Z‘,y)

where s(x,y) is the cumulative column sum.

This implies that once the integral image is computed, the sum of values
over any rectangle can be computed very fast. Viola and Jones used this to
compute “features” that were created from correlations with two, three, and four
adjacent rectangles, as shown schematically in Fig. [[l The question of whether
these results can be generalized to other functions, not created from uniform
rectangles, was not addressed in [10].
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Fig. 1. Rectangle features used by Viola and Jones. The value of a two-rectangle feature
is the difference between the sum of the pixels within two rectangular regions. The
regions have the same size and shape and are horizontally or vertically adjacent. A
three-rectangle feature computes the sum within two outside rectangles subtracted
from the sum in a center rectangle. A four-rectangle feature computes the difference
between diagonal pairs of rectangles.

3 Fast Computation of Local Algebraic Moments

In this section we show that integral images can be used to compute low or-
der local algebraic moments, generalizing the results of Viola and Jones. The
algebraic moments of a rectangular region are defined as follows:

Th

Mpq = Z 2Pyl f(z,y) (4)

m:xﬂ/ y:y(l

The order of the moment m,, is p+q. Fig. 2 shows the templates corresponding
to moments of order 1 and 2, with the origin taken at the center of the rectangle.
Notice the similarity between these and the rectangle features of Viola and Jones.

mio mo1 m2o mi1 mo2

Fig. 2. Templates corresponding to algebraic moments

Replacing f with 2Py?f in equations (2)),(3) it is clear that algebraic moments
can be computed with the technique of integral images. This by itself is not
useful since the value of m,, (with the exception of mgg) depends on the choice
of origin, and the origin in (@),(B) is the image origin. The reason for choosing
algebraic moments is the observation that there is a simple relationship between
mypq and the centralized moments computed with respect to the center of the
rectangle. Let u,, denote the centralized moments, and let (zg,yo) denote the
center of the rectangle. Then:

23 Yv

pg = > > (& —20)"(y —y0)'f(x,y)

T=Ta Y=Ya
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A direct computation gives:

s+t (P[4 s
Hpg = Z (_1) +t (8) (t) xoyémp—s,q—t (5)
0<s<p
0<t<gq

The important observation is that the moment i, is computed from moments
My, of the same or lower order. The explicit formulas for several low order
moments are:

Moo = Moo

H10 = Mi10 — LMoo

Ho1 = Mo1 — Yo™Moo

f20 = M2y — 2xomao + T3Moo

K11 = M11 — ToMo1 — YoM1o0 + ToYoMoo

[z = mo2 — 2yomo1 + ygmoo

[130 = M3o — 3ToMmag + 3ximig — zFmoo

[i21 = a1 — Yomgo — 2zoma1 + 2TeYomio + T3mor — TZYomoo
fi2 = miz — 2yomi1 — ToMo2 + Ygmio + 2ToYomor — Toygmoo
[t03 = ™oz — 3Yo™oz + 3Y3mor — Ygmoo

In summary, this section gives an algorithm for computing the local (cen-
tralized) algebraic moments p,, up to a given order at any given rectangle in
the image. The required preprocessing that needs to be computed just once per
image is the integral images of the functions zPy?f(z,y). The values of m,, at
the desired rectangle are computed from (3], and the values of p,, are computed
from the my, values using (B.

4 Fast Template Matching

In this section we develop a match measure that uses the local moments. In
developing this measure we focus on a single rectangle in the image. The pixel
values are denoted by f(z,y) as before, but the origin of the coordinate system
is placed at the center of the rectangle.

Let t be a template with the local moments U; = (ugy, - - - , i1,,). We denote

by Uy (u,v) = (,ugo, .. ,ugq) be the corresponding local moments computed over
a rectangle centered at (u,v) of the same dimensions as the template. One may
be tempted to use the Euclidean distance, or other direct comparisons between
Uy and U, as an indication of match. One choice is to use the same normalized
measure as in (), which gives:

b, ) — Do 1 (14 0) by
T VS, (e (u,0))2)

As in the case of ([I)) it can be shown that (@) is maximized by the exact match,
but unlike () it does not degrade gracefully. As shown in Section [ using these

(6)
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values for matching gives unsatisfactory results since the moments of order 2 and
higher are very sensitive to noise. We proceed to derive an alternative measure
based on a polynomial approximation to f over the rectangle.

4.1 Notation

We wish to approximate a rectangle of the image f(x,y) with a low degree
polynomial. As an example, the polynomial of total degree 2 can be written as:

p(x,y) = ago + @102 + a1y + az0x® + a1y + agey®

Vector notation simplifies the derivations in this section. Let A be a coefficients
vector and X a variables vector. U denotes a vector of centralized moments. For
example, limiting the order to 2 we have:

ago 1 Hoo
a10 x K10
A= ao1 . X = y2 . U= Ho1
a20 x K20
a1 xy H11
ap2 y2 Ho2

In this notation the polynomial p above can be written as p = A’X. (The
symbol “ /7 indicates matrix transpose.) We use the “bar” notation to indicate
summation over the rectangle. Writing Equation () in this notation gives:

Ur=Xf

where Uy is the moments vector computed from f.

4.2 Approximation by Polynomials
In our notation the mean squared error of a polynomial approximation to f is
given by:

E=p—f)2=AXX'A-24U;+ f2= A'BA—-2A'U; + f2
where B = X X' is a positive-definite and symmetric matrix. For the example
above we have:

1 =z y 22 2y o?
z 2 xy 3 2%y a9

B_xo~ | Yy 2ty ey )
= T 2?2 2P 2%y 2t 2By a?y?

w
N

y? oy yP a?y? ay® oy
Therefore, the error F is quadratic in A, and the value of A that minimizes
E is Ay = B~'U;. This gives the following formula for the best polynomial
approximation to f:

py=U;}B'X (8)

Observe that p?r = U}BilUf.
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4.3 The Match Measure

We proceed to compute our main result, the match measure obtained from
Eq. @) by replacing f with py. (No approximation is applied to the template ¢.)
The approximation to the numerator of () can be written as:

pri=UBX i = UlB~'X T =U}BU,

From the note following (B) the approximation to the denominator of ([} can be

written as:
V}) = /U B~1U;

Combining these expressions gives the following measure:
U’ (u,v)B~1U,
h(u,v) = r() i
\/U;(u, v)B=1U{(u,v)

9)

where Uys(u,v) are the local moments of f computed over a rectangle centered
at (u,v).

We note that the measure given in (@) is up to a scaling factor of the cosine
of the angle between the two vectors Uy and Uy. The same is true for (@), but
in an elliptic coordinate system determined by the positive definite matrix B~!.
In particular, the value of (@) is maximized by the exact match.

4.4 Structure of the Matrix B

The dominant computation steps in (d) are the matrix/vector products. Since
the matrix B depends only on the moments order and the dimensions of the
rectangle, but not on f, it is possible to take advantage of its structure and
simplify the computation. Define:

Xy = Z 2P, where the sum is over one row of the rectangle.

Y, = Z y?,  where the sum is over one column of the rectangle.

The entries of B are terms of the form X,Y;. When measured with respect to
the rectangle center, X, and Y, are 0 for odd p, g. Thus, the matrix B in Eq. (@)
can be written as:

XoYo 0 0 Xo¥p 0 XoYe
0 X, 0 0 0 0
0 0 XY 0 0 0
XY 0 0 XuYo 0 XoYs
0 0 0 0 XY 0
XoYa 0 0 Xo¥a 0 XoYi

B =
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A direct computation gives:

21 w1
22 w2
B! 23 _ | ws
Z4 Wy
25 Ws
26 We

where

(XOX4Y0}/4 — X22Y22)21 =+ X()XQ(Y22 — Y()YZL)Z4 + (X22 — XOX4)YOY226

w1 = K
22
Wo =
T XY,
<3
Wa =
T XY,
XOXQ(}/QQ — }/OY4)21 + Xg(YOY4 — Y22)Z4
Wy =
K
25
Wy =
T,
(X22 — XOX4)Y0}/22:1 + (XOX4 — X22)5/022’6
We — K

K = Xo(X3 — XoX4)Yo (Y5 — YoYs)

These formulas can be used to simplify the computation of both numerator and
denominator of ([@). They show that for this case the matrix/vector product
requires only 8 multiplications. Similar simplifications can also be computed for
the matrix needed for the third order approximation.

5 The Algorithm

This section summarizes the algorithm. Given a template ¢ and an image f our
goal is to estimate the matching values h(u,v) using polynomial approximations
of order d. Observe that there are [ moments p, , satisfying p + ¢ < d, where
Il=d+1)(d+2)/2.

Step 1. Compute Uy, the moments of the template. Uy is a vector of length I.

Step 2. Compute the integral images for the [ moments m,,.

Step 3. For each location (u,v) of the image compute the centralized moments
Uy (u,v) using equations (B) and (G).

Step 4. For each location (u, v) of the image compute the values of h(u, v) from
U; and Uy (u,v) using ().

The heavy computation steps are 2,3,4. With n the number of image pixels the
number of operations in steps 2,3,4 is order of nd?. Observe that when matching
multiple templates over the same rectangle dimensions it is enough to repeat
only steps 1 and 4.
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6 Experimental Results

All experiments described in this section were performed on a single image and
a single template, created from the ORL collection of faces. The image to be
searched was created as a mosaic of 40 face images, and the template was chosen
as one of the faces in the mosaic. (It is the second face from the right in the
fourth row from the top.) The template size is 91 x 111, and the image size is
826 x 670.

Run time: We observed a huge saving in time when compared to the order
kn implementation of the classic technique. Our technique was faster by about
a factor of 100.

Quality of the results: Several criteria were used to evaluate the results:

— Location of faces should have higher values than location of non-faces.

— Location of faces of the individual shown in the template (all faces on fourth
row) should have higher values than the location of other faces.

— The location of exact match should have the highest value.

It is known (e.g., [I]) that template matching by normalized correlations pro-
duces smooth output, so that matches appear as peaks of the match measure.
Therefore, in evaluating the performance we consider only the peak maxima. A
peak maximum in the correlation output was computed as a local maximum,
defined as a pixel whose matching value is greater than or equal to the matching
values of all other pixels in its 8-neighborhood.

Poor quality was observed for the moments method, as given by Eq. (@), and
for the proposed technique implemented with 1st order polynomials. These cases
will not be discussed further. Implementations of the proposed technique with
2nd and 3rd order polynomials produced very good results even in the presence
of large amounts of noise.

What is being shown: We show results of experiments performed with noise-
free and noisy images. In each case the local maxima of the measure were de-
tected, and the top 20 are plotted using the following graphic code:

8-pointed star: the location of the highest match
4-pointed cross: the location of matches ranked 2 and 3
Diamond: the location of matches ranked 4 to 10
Square: the location of matches ranked 11 to 20

Color coded images of match values (not limited to local maxima) are also shown,
using the following color code:

White: Top 0.1% of the match values.

Blue: Top match values between 0.1% and 1.0%

Magenta: Match values corresponding to the range 1.0% to 5.0%
Black: Match values below the top 5%
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2

Template

Image (10% noise added) Image (20% noise added)

Fig. 3. The template and the image used in the experiments

Experiments: Four experiments have been run. The template and images
used are shown in figure Bl Experimental results are shown in figures [ [5,
and [71 The crude detection of local maxima, as shown in the left column of these
figures, sometimes produces adjacent pixels as local maxima. But in all cases,
the location of the top 20 maxima always detect very accurately the location of
a face. In most cases, the majority of the faces on the fourth row are detected
(these are the faces of the individual shown in the template).

7 Concluding Remarks

This paper describes a very fast template matching technique, generalizing the
integral images approach of Viola and Jones. The implementation of the pro-
posed technique is straightforward. It produces highly accurate approximations
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Results obtained with 2nd order interpolation polynomials

Fig. 4. Noise free results. All the top 20 local maxima (shown in the left column) are
exact face locations. All faces of the individual being targeted (fourth row) are found
among the top 20 matches. The color coded images in the right-hand column show that
seven of the eight faces of the individual are within the top 0.1% of all match values.
The best match value shown by the 8-pointed star is the correct location of the exact
template.
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Results obtained with 2nd order interpolation polynomials

Fig. 5. Results for 2% noise. All the top 20 local maxima (shown in the left column)
are exact face locations. All faces of the individual being targeted (fourth row) are
found among the top 20 matches. The color coded images in the right column show
that seven of the eight faces of the individual are within the top 0.1% of all match
values. The best match value shown by the 8-pointed star of all match values is the
correct location of the exact template.
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Results obtained with 3rd order interpolation polynomials

Results obtained with 2nd order interpolation polynomials

Fig. 6. Results for 10% noise. All the top 20 local maxima (shown in the left column)

are exact face locations. There are only 2 misses among the faces of the individual in

the template, when 2nd order interpolation is used. The color coded images in the right

column show that all of the faces of the individual shown in the template are within
) of all match values.
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Results obtained with 2nd order interpolation polynomials

Fig. 7. Results for 20% noise. All the top 20 local maxima (shown in the left column)
are exact face locations. There are only 5 misses among the faces of the individual
in the template, mostly when when 2nd order interpolation is used. The color coded
images in the right column show that all of the faces of the individual shown in the
template are within the top 1.0% of all match values.
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to the matching computed by the classic normalized correlations method in a
fraction of the run time.

We have shown that the set of functions that can be computed from integral
images includes the algebraic moments of low order. The results of Viola and
Jones are the special case of the mgy moment. The question of whether or not
this set of functions can be further expanded remains open. To compute other
functions that are not algebraic combinations of moments one must show that
they can be analytically “shifted”, as shown by Eq. (&) for moments.
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