Abstract
The problem of numerical investigation of metastable states decay is described in this work on example of melting of the superheated solid crystal simulated within the framework of molecular dynamics method. Its application in the case of non-equilibrium processes has certain difficulties, including the averaging procedure. In this work an original technique of averaging over the ensemble of configuration is presented. The question of the instability of the phase space trajectories of many-particle system (i.e. chaotic character of motion) and its consequences for simulation are also discussed.
Chapter PDF
Similar content being viewed by others
Keywords
- Lyapunov Exponent
- Molecular Dynamic Method
- Identical Initial Condition
- Chaotic Character
- Newtonian Trajectory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bonnes, D. A., Brown, J. M.: Bulk Superheating of Solid KBr and CsBr with Shock Waves. Phys. Rev. Lett. 71 (1993) 2931–2934
Jin, Z. H., Gumbsch, P., Lu, K., Ma, E.: Melting Mechanisms at the Limit of Superheating. Phys. Rev. Lett. 87 (2001) 055703-1–4
Krivoguz, M. N., Norman, G. E.: Spinodal of Superheated Solid Metal. Doklady Physics 46 (2001) 463–466
Hoover, W. G.: Time Reversibility, Computer Simulation and Chaos. World Scientific, Singapore (1999)
Ciccotti, G., Hoover, W. G. (eds.): Molecular-Dynamics Simulation of Statistical Mechanical Systems. Proc. Int. School of Physics ”Enrico Fermi”, course 97, North-Holland, Amsterdam (1986)
van Gunsteren, W. F.: in Truhler, D. (ed.): Mathematical Frontiers in Computational Chemical Physics. Springer-Verlag, New York (1988) 136
Valuev, A. A., Norman, G. E., Podlipchuk, V. Yu.: Molecular Dynamics Method: Theory and Applications. In: Samarskii, A. A., Kalitkin, N. N. (eds.): Mathematical Modelling. Nauka, Moscow (1989) 5 (in russian)
Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)
Norman, G. E., Podlipchuk, V. Yu., Valuev, A. A.: J. Moscow Phys. Soc. (Institute of Physics Publishing, UK) 2 (1992) 7
Hoover, W. G.: Computational Statistical Mechanics. Elsevier, Amsterdam (1991)
Rapaport, D. C: The Art of Molecular Dynamics Simulations. Cambridge University Press, Cambridge (1995)
Frenkel, D., Smith, B.: Understanding Molecular Simulations. Akademie Press, London (1996)
Zaslavsky, G.M.: Stochastisity of dynamic systems. Nauka, Moscow (1984); Harwood, Chur (1985)
Norman, G.E., Stegailov, V.V.: Zh. Eksp. Theor. Phys. 119 (2001) 1011 [J. of Experim. and Theor. Physics 92 (2001) 879]
Norman, G.E., Stegailov, V.V.: Stochastic and Dynamic Properties of Molecular Dynamics Systems: Simple Liquids, Plasma and Electrolytes, Polymers. Computer Physics Communications (proc. of the Europhysics Conf. on Computational Physics 2001) to be published
Morozov, I.V., Norman, G.E., Valuev, A.A.: Stochastic Properties of strongly coupled plasmas. Phys. Rev. E bf 63 (2001) 036405
Ueshima, Y., Nishihara, K., Barnett, D.M., Tajima, T., Furukawa, H.: Partice Simulation of Lyapunov Exponents in One-Component strongly coupled plasmas. Phys. Rev. E bf 55 (1997) 3439
Kravtsov, Yu. A. in: Kravtsov, Yu. A. (ed.): Limits of Predictability. Springer, Berlin (1993) 173
Gertsenshtein, M.E., Kravtsov, Yu. A.: Zh. Eksp. Theor. Phys. 118 (2000) 761 [J. of Experim. and Theor. Physics 91 (2000) 658]
Rowlands, G.J.: Computational Physics 97 (1991) 235
Lopez-Marcos, M.A., Sanz-Serna, J.M., Diaz, J.C.: Are Gauss-Legendre Method Useful in Molecular Dynamics? J. Comput. Appl. Math. 67 (1996) 173
Lopez-Marcos, M.A., Sanz-Serna, J.M., Skeel, R.D.: Explicit Symplectic Integrators Using Hessian-Vector Products. SIAM J. Sei. Comput. 18 (1997) 223
Skripov, V. P., Koverda, V. P.: Spontaneous Crystallization of Supercooled Liquid. Nauka, Moscow (1984) (in russian)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stegailov, V.V. (2002). Determinism and Chaos in Decay of Metastable States. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds) Computational Science — ICCS 2002. ICCS 2002. Lecture Notes in Computer Science, vol 2331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47789-6_121
Download citation
DOI: https://doi.org/10.1007/3-540-47789-6_121
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43594-5
Online ISBN: 978-3-540-47789-1
eBook Packages: Springer Book Archive