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Abstract. As the number of applications that are made available over
the Internet rapidly grows, providing services with adequate performance
becomes an increasingly critical issue. The performance requirements of
the new applications span from few milliseconds to hundreds of seconds.
In spite of the continuous technological improvement (e.g., faster servers
and clients, multi-threaded browsers supporting several simultaneous and
persistent TCP connections, access to the network with larger bandwidth
for both servers and clients), the network performance as captured by re-
sponse time and throughput does not keep up and progressively degrades.
Several are the causes of the poor “Quality of Web Services” that users
very often experience. The characteristics of the traffic (self-similarity
and heavy-tailedness) and the widely varying resource requirements (in
terms of bandwidth, size and number of downloaded objects, processor
time, number of I/Os, etc.) of web requests are among the most im-
portant ones. Other factors refer to the architectural complexity of the
network path connecting the client browser to the web server and to the
protocols behavior at the different layers.

In this paper we present a study of the performance of web services.
The first part of the paper is devoted to the analysis of the origins of
the fluctuations in web data traffic. This peculiar characteristic is one of
the most important causes of the performance degradation of web ap-
plications. In the second part of the paper experimental measurements
of performance indices, such as end-to-end response time, TCP connec-
tion time, transfer time, of several web applications are presented. The
presence of self-similarity characteristics in the traffic measurements is
shown.

1 Introduction

In the last few years, the number of network-based services available on the Inter-
net has grown considerably. Web servers are now used as the ubiquitous interface
for information exchange and retrieval both at enterprise level, via intranets, and
at global level, via the the World Wide Web. In spite of the continuous increase
of the network capacity, in terms of investments in new technologies and in new
network components, the Internet still fails to satisfy the needs of a consistent
fraction of users. New network-based applications require interactive response
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time ranging from few milliseconds to tens of seconds. Traditional best-effort
service that characterizes the Internet is not adequate to guarantee strict re-
sponse time requirements of many new applications. Hence, the need for Quality
of Service (QoS) capabilities.

In order to develop techniques that allow to improve performance, it is im-
portant to understand and reduce the various sources of delay in the response
time experienced by end users. The delays introduced by all the components,
both hardware and software, that are involved in the execution of a web ser-
vice transaction are cumulative. Therefore, in order to decrease the end-to-end
response time it is necessary to improve all the individual component response
times in the chain, and primarily that of the slowest one.

A first effort should be devoted to the analysis of the workload characteristics
with the goal of identifying the causes of traffic fluctuations in the Internet.
Such fluctuations contribute to transient congestions in the network components
and therefore are the primary sources of the response time increase. At the
application level, it is known that the applications that contribute major portions
of the network traffic transmit their load in a highly bursty manner, which is a
cause of further congestion.

The complexity of the network structure and the behavior of the trans-
port/network protocols play a fundamental role in the propagation of the fluc-
tuations from the application level to the link level.

The complexity of the Internet infrastructure, from the network level up
to the application level, results in performance indexes characterized by high
variability and long-range dependence. Such features introduce new problems
in the analysis and design of networks and web applications, and many of the
past assumptions upon which web systems have been built are no longer valid.
Usual statistics as average and variance become meaningless in the presence of
heavy-tailedness and self-similarity.

The paper is organized as follows. In Sect. 2] we illustrate some of the main
sources of web delays: the complexity of the request path browser-server-browser
and the origin of the self-similarity property in the Internet traffic are analyzed.
In Sect. Bl experimental results concerning the heavy-tailedness properties of
end-to-end response times of some web sites are presented. Section Ml describes
few case studies that show how to measure and improve web user satisfaction.
Section Bl summarizes our contributions and concludes the paper.

2  Sources of Web Delays

One of the typical misconceptions related to the Internet is that the bandwidth
is the only factor limiting the speed of web services. Thus, with the diffusion of
broadband networks in the next few years, high performance will be guaranteed.
This conclusion is clearly wrong.

Indeed, although high bandwidth is necessary for the efficient download of
large files such as video, audio and images, as more and more services are offered
on the Internet, a small end-to-end response time, i.e., the overall waiting time
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that end users experience, is becoming a requirement. The main components
that contribute to the end-to-end response time fall into three categories: client
side, server side, and network architecture and protocols.

On the client side, the browser parameters, such as the number of simul-
taneous TCP connections, the page cache size, the memory and computation
requirements of the code downloaded from the server (applet, java scripts, plug-
ins, etc.), and the bandwidth of the access network, must be taken into account.
On the server side, among the factors that should be carefully analyzed are:
the behavior of the server performance with respect to the forecast workload
increase, some of the application architecture parameters (e.g., multithreading
level, maximum number of opened connections, parallelism level), the CPU and
1/0 power available (as demand for dynamic content of pages increases, more
and more computational power and I/O performance/capacity are required),
and the bandwidth of the access network.

The Internet network architecture is characterized by the large number of
components that a user request visits along the path between the browser and
the web server and back. Each of these components, both hardware and software,
introduces some delay that contribute to the creation of the end-to-end response
time. The global throughput of a connection between a browser and a web server,
and back, corresponds to the throughput of the slowest component in the path.
This component, referred to as bottleneck, is likely in a congestion state and
causes severe performance degradation.

Two are the factors that contribute to the congestion of a component: the
frequency of the arriving requests and the service time required for the complete
execution of a request. These two factors are related to the characteristics of the
workload and to the characteristics of the component. Thus, concentrating only
on the bandwidth with the objective of providing a small end-to-end response
time it is not enough.

In this section we will analyze some of the most important sources of web
delays, namely, the complexity of the path between browsers and servers, and
the self-similarity characteristic of Internet traffic.

2.1 The Complexity of the Request Path

A current trend in the infrastructure of the Internet is the increase of the com-
plexity of the chain of networks between a client and a server, that is, the path
in both directions between the user browser and the web server, also referred
to as request path. From the instant a request is issued by a browser, a series
of hardware components and software processes are involved in the delivery of
the request to the server. Hardware components comprise routers, gateways, in-
termediate hosts, proxy cache hosts, firewalls, application servers, etc. Software
processes involved in the delivery of a request refer to the protocol layers (HTTP,
TCP, IP, and those of lower layers), the routing algorithms, the address transla-
tion process, the security controls, etc. In Fig. [, a simplified model of a request
path between a user browser and a web server is illustrated.
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Fig. 1. Simplified model of a request path from a user browser to a web server.

As a consequence, the end-to-end chain of components, or hops, between a
client browser and a web server (including also the return path) may be very
long. They can be subdivided into the hops located in the access networks (ISP
and NSP), both on the client and server sides, the hops located in the server farm
or the corporate intranet, if not used, and the hops in the Internet infrastructure
(mix among national and international carriers, international backbone, routers,
etc.). Several statistics collected at business users show that the average number
of hops is increasing with the popularity of Internet, reaching an average value
of about 15-20. The trend is clearly towards an increase of the number of hops
since the architectures of the Internet and of the intranets and server farms are
becoming more and more complex due to various new functions to be executed
(e.g., security controls, complex back—end applications).

The majority of the components of a request path operate on a store-and-
forward basis, i.e., the incoming requests are queued waiting to use the resource,
and thus are potential source of delays. The request path browser-server-browser,
represented in Fig. [ll can be modeled as an open queueing network, i.e., a network
of interconnected queues characterized by more sources of arriving requests and
by the independence of the arrival processes from the network conditions. Queue-
ing networks are well suited for representing resource contention and queueing
for service (see, e.g., [6]). In an open network the number of customers can grow
to infinity depending on the saturation condition of the bottleneck resource. As-
suming that the distributions of request interarrival times and service times at
all resources are exponential and that the scheduling discipline at each resource
is FCFS, a typical characteristic of such networks [8] is that each resource be-
haves like an independent M/M/1 queue. In this case the response time tends
to a vertical asymptote as the load increases until the resource saturation. The
rate of increase of a component response time R, normalized with respect to the
square of service time S, as a function of the request arrival rate X is given by:

dR 1 1 1

ST A8 T -Dp (1)

where U = AS is the wtilization of the component, i.e., the proportion of time
the component is busy. As it can be seen from Fig. B, when the arrival rate is
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such that the utilization is greater than 80%, the rate of increase of the response
time is extremely high, i.e., the resource is congested and the delay introduced
in the packet flow is huge.
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Fig. 2. Rate of increase of response time of a component (normalized with respect to
the square of service time) vs component utilization.

The burstiness of Internet traffic produces a variability in the request inter-
arrival time much higher than the one exhibited by traffic following exponential
assumption, making the actual situation even worse than the one described by
(@M. As a consequence, the probability of finding a congested component along
a request path is much higher than in usual telecommunication environments.
Thus, the further away the client browser is from the web server, the greater
the likelihood that one, or more, components of the path is found congested.
Let p be the probability that a component is in a congestion state and let n be
the number of (independent) components along the request path, including the
return path, the probability of finding exactly ¢ congested components is

(,’Z) pl (1_p)n71/ ) Z.:O71727"'7n (2)

and the probability of finding at least one component congested is 1—(1—p)™. In
Fig. Bl the probability of finding one or more congested components (i.e., of a very
high response time experienced by a user) along a request path browser-server-
browser as a function of the congestion probability p of a single component and
the path length n is reported. The maximum number of components considered
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in a path is 15, a conservative value if compared to the actual average situation
encountered in the Internet. As it can be seen, with a probability of congestion
of a component p = 0.01, i.e., 1%, and a path length n = 15 hops, the probability
of finding at least one component congested is 13.9%, a clearly high value.

prob. of high response time

path length 0 9

prob. of comp. congestion

Fig. 3. Probability of finding one or more congested components along a request path
browser-web server-browser (i.e., of a very high response time) as a function of the
congestion probability p of a single component and the path length n.

2.2 The Self-Similarity of Web Traffic

The World Wide Web is a more variable system than it was expected. Several
analyses show that the limited variability notion widely used for several decades
in telecommunication modelling, i.e., the assumption of the Poisson nature of
traffic related phenomena, has very little in common with Internet reality. Ev-
idence is provided by the fact that the behavior of the aggregated traffic does
not become less bursty as the number of sources increases [12].

More precisely, models in which the exponential distribution of the variables
is assumed are not able to describe Internet conditions in which the variables
(e.g., duration of the sessions, end-to-end response times, size of downloaded
files) show a variability encompassing several time scales. The high temporal
variability in traffic processes is captured assuming the long-term dependence of
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the corresponding variables and the heavy-tail distribution of their values (i.e.,
distribution whose tail declines according to a power-law).

A distribution is heavy-tailed (see, e.g., [5]) if its complementary cumulative
distribution 1 — F'(x) decays slower than the exponential, i.e. if

lim e’ [1— F(z)] = 400 (3)
r—+00
for all v > 0. One of the simplest heavy-tailed distributions is the Pareto distri-
bution, whose probability density function f(z) and distribution function F'(z)
are given by (see, e.g., [15]):

f@)=a k2™, Fl@)=1-k""% 0<k<z, a>0 4)

where k is a positive constant independent of x and « represents the tail index.
If 1 < a < 2, the random variable has infinite variance, if 0 < a < 1 the
random variable has infinite mean. Note that the first and second moments are
infinite only if the tail stretches to infinity, while in practice infinite moments
are exhibited as non-convergence of sample statistics.

An interesting property exhibited by the processes whose values follow heavy-
tailed distributions is the self-similar, or fractal-like, behavior, i.e., the behavior
of the variables is invariant over all time scales. The autocorrelation function of
self-similar time series declines like a power-law for large lags. As a consequence,
autocorrelations exist at all time scales, i.e., the high values of the tail of the
distribution occur with non-negligible probability and the corresponding traffic
is bursty.

The probability density functions (in log scale) of several Pareto random
variables, with different parameters « and k (@), are compared with the proba-
bility density function (dashed line) of an exponential variable in Fig. @l All the
functions have the same mean value equal to one. As it can be seen, the tails of
the Pareto random variables are much higher than the one of the exponential
random variable.

Evidence of Internet traffic self-similarity is reported in several papers. This
type of behavior has been identified in high-speed Ethernet local area networks
[9], in Internet traffic [I6], in the file sizes of the web servers and in the think
time of browsers [4], in the number of bytes in FTP transmissions [12], and in
several others variables.

As we showed, the self-similarity property of Internet traffic implies that
the values of the corresponding variables exhibit fluctuations over a wide range
of time scales, i.e., their variance is infinite. The peculiar nature of the load
generated at the application layer, the self-similarity and the heavy-tail charac-
teristics, propagates to lower layers affecting the behavior of the transport and
network protocols. This, in turns, induces a self-similarity behavior of the link
traffic negatively affecting network performance. The most important causes of
such a high variability and of its ubiquitous presence at all layers in the network
environment fall into three categories: the sources related ones, the request path
related ones, and the protocols related ones.
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Fig. 4. Probability density functions (in log scale) of several Pareto random variables,
with different parameters a and k, compared with the probability density function
(dashed line) of an exponential random variable; the mean value of all the functions is
one.

The activity of a typical Internet user can be regarded as a sequence of
active periods interleaved with idle periods. Observing the usage patterns of the
most significant Internet applications, like the retrieval/download/upload cycle
of web files using HTTP, the file transfer with FTP, and the send /receive process
of SMTP, their execution can be seen as a sequence of activity phases, during
which a given amount of data is transferred from one site to another, intermixed
with idle phases, when users analyze the downloaded objects (or pages) and type
a message or issue a new command, but no load is generated on the network.
Such a behavior favors the known burstiness of application data transmission.

Thus, a user can be modeled as a source of traffic that alternates between two
states identified with ON and OFF, respectively. ON/OFF sources are widely
used to model the workload generated by the users of the Internet. During the
ON periods, the source is active and data packets are sent on the network, i.e., a
burst of load is generated. During the OFF periods, no activity is performed. The
characteristics of the ON and OFF periods, e.g., average durations, distributions,
traffic generation rates, depend on the application considered. Typically, in the
ON periods the traffic is generated at constant rate and the lengths of ON and
OFF periods follow known distributions, that may differ from each other, having
finite or infinite variance. The very high, or infinite, variance of the input traffic
parameters is explained by the results of several empirical studies (see, e.g., [2])
that have shown the presence of self-similarity in the size distribution of web
files transferred over the network and thus of their transmission times.

At a more aggegated level than the one of a single source, the traffic generated
by a set of users can be modeled considering several ON/OFF sources sharing the
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network resources. It has been shown [16] [17] that, under certain assumptions,
the superposition of many ON/OFF sources generates a process exhibiting the
long-term dependency characteristic. Thus, the corresponding model is able to
capture the self-similar nature of Internet traffic.

Another phenomenon that influences the origin of fluctuations of Internet
traffic (at a more macroscopic level than the one seen at single source level)
is related to the amount of correlation existing among the sources. Empirical
observations suggest the presence of traffic cycles on a temporal basis, among
which the daytime cycle is the most evident. The existence of such a cycle is
enough intuitive and is connected to office working hours and availability periods
of some on-line services (e.g., typically the traffic peaks during the morning and
the afternoon hours). The time difference across the globe may also generate
cycles with different periodicity. Other types of source correlations are generated
by the occurrence of special events (sport competitions, natural disasters, wars,
etc.).

As we have seen, the Internet is a network environment where load fluctu-
ations should be considered physiological rather than exceptional events. The
self-similarity characteristic of the load propagates its effects on all the network
layers, from the application to the link layer. As a consequence, transient con-
gestions may occur with non-negligible probability in each of the components
along the request path browser-server-browser (Sect2.1)). While the task of per-
formance optimization is relatively straightforward in a network with limited
load variability, it becomes significantly more complex in the Internet because of
transient congestions. The load imbalance in the resources, usually modeled as
an open network of queues (Fig. [), of a request path will be extreme and will
grow as the load increases. Thus, the probability of finding a component subject
to transient congestion in a relatively long request path, e.g., of about 15 hops,
is consistent (Fig. ).

When a fluctuation of traffic creates a congestion in a component (e.g., a
router) of an open network of queues, the performance degradation due to the
overload is huge since the asymptotes of the performance indices are vertical
(Fig.[2)): the response time increases several orders of magnitude, the throughput
reaches saturation, and the number of customers at the congested component
tends to infinity.

This unexpected increase of response time triggers the congestion control
mechanism implemented in the TCP protocol in order to prevent the source of
traffic from overloading the network. Since the source uses a feedback control,
directly computed from the network or received from intermediate components,
to tune the load sent on the network, the increase of response time (in this
context usually referred to as round trip time) beyond a threshold value triggers
an immediate reduction of the congestion window size, thus a reduction of the
traffic input on the network. The throughput decreases suddenly and will increase
slowly according to the algorithm implemented by the TCP version adopted.
The various versions of TCP implement different congestion control mechanisms
inducing a different impact on network performance [I1]. Clearly, this type of
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behavior introduce further fluctuations in the throughput and, more generally,
in the indices capturing the traffic of the Internet.

3 Measurements of End-to-End Performance

In the previous section we have seen that there is a wide evidence of high vari-
ability and self-similarity in aggregate Internet traffic. In this section we will see
that this property is valid also for end-to-end performance.

3.1 Experiments

The monitoring system used to collect the data consists of a Java—based tool
WPET (Web Performance Evaluation Tool) developed at the Politecnico di Mi-
lano. WPET is composed by a set of agents for the collection of Internet per-
formance data. Each agent is an automated browser that can be programmed
to periodically download web pages and to measure several performance metrics
(e.g., download times). Each agent is connected to Internet through a different
connection type (e.g., ISDN, xDSL, cable, backbone), from different geograph-
ical locations (e.g., Rome, Milan) and through different providers. A WPET
agent can surf on a web site performing a set of complex operations, such as
fill a form, select an item from a list, follow a link. An agent can handle HTTP
and HTTPS protocols, session tracking (url-rewriting and cookies) and plug-ins
(e.g., flash animations, applets, activexes). For each visited page, the agent col-
lects performance data for all the objects in the page. For each object, several
performance metrics are measured: DNS lookup time, connection time, redirect
time, HTTPS handshake time, server response time, object download time, ob-
ject size, error conditions. All the data collected by the agents are stored in a
centralized database and analyzed in order to extract meaningful statistics.

3.2 Evidence of Heavy-Tail Distribution

Figure [B] shows the time required to download the home page of the MIT web
site (www.mit.edu). Measurements have been collected for 9 days (from March,
20th till March, 28th 2002) downloading the home page every 15 minutes with
a WPET agent located in Milan and connected to Internet directly through a
backbone. The upper part of the figure shows a sample of the download times.
In order to investigate the heavy-tail properties of the download times, a log-log
plot of the page time complementary cumulative distribution is shown in the
lower left part of Fig. Bl

This plot is a graphical method to check the heavy-tailedness property of
a sequence of data. If a good portion of the log-log complementary plot of the
distribution is well fitted by a straight line then the distribution hold the heavy-
tail property. The plot of Fig. Bl is well approximated by a straight line with
slope —3.2, indicating that the distribution is the Pareto one @) with oo = 3.2
7).
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Fig. 5. Download times of the home page of the MIT web site (upper part). Log-Log
complementary plot of cumulative distribution F'(x) (lower left). Quantile-quantile plot
of the estimated Pareto distribution vs. the real distribution (lower right).

While the log-log complementary distribution plot provides solid evidence for
Pareto distribution in a given data set, the method described above for producing
an estimate for « is prone to errors. In order to confirm the correctness of the
estimated parameter o we can use the quantile-quantile plot method (lower
right part of Fig. ). The purpose of this plot is to determine whether two
samples come from the same distribution type. If the samples do come from the
same distribution, the plot will be linear. The quantile-quantile plot in Fig. Bl
shows quantiles of the measured data set (x axis) versus the quantiles of a
Pareto distribution with tail parameter a = 3.2 (y axis). The plot confirms the
correctness of the results.

Figures [6l and [7l extend the analysis by comparing the download times of the
home pages of four web servers:

— Massachusetts Institute of Technology (www.mit.edu)
— Standford University (www.standford.edu)

Google www.google.com)

Altavista (www.altavista.com).
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The four plots in both the figures show the log-log complementary cumulative
distributions (continuous lines), together with the approximating Pareto distri-
butions (dashed lines). The measurements of Fig. [6l have been collected with a
WPET agent running on a system directly connected on a backbone. The mea-
surements of Fig. [[lhave been collected with an agent connected to the Internet
via an ADSL line. Both the agents were located in Milan. All the figures confirm
the heavy-tail property of end-to-end download times.
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Fig. 6. Log-Log complementary plots of the home page download times distribution of
four web sites measured from a backbone Internet connection. The real data distribution
(continuous line) and the approximated Pareto distribution (dashed line) are shown.
The estimated tail index « is reported on each plot.

It is interesting to observe that all the plots in Fig.[7 (ADSL connection) have
a lower value of a with respect to the corresponding plots in Fig. [ (backbone
connection). We remember that lower values of o mean higher variability. This
suggests that slow client connections are characterized by high variability, be-
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cause (i) the source of congestion is in the network, not in the client connection,
and (ii) the overhead of retransmissions is higher for slower client connections.
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Fig. 7. Log-Log complementary plots of the home page download times distribution
of the same four web server of Fig. [Bimeasured from an ADSL Internet connection.
The real data distribution (continuous line) and the approximated Pareto distribution
(dashed line) are shown. The estimated tail index « is reported on each plot.

3.3 Evidence of Self-Similarity

In Fig. [ we use the wavelet-based method proposed by Abry and Veitch [T] for
the analysis of self-similar data and for the estimation of the associated Hurst
parameter (for a formal definition of self-similarity see, e.g., [1]). Here we recall
that the Hurst parameter H measures the degree of long-range dependence.
For self-similar phenomena its value is between 0.5 and 1, and the degree of
self-similarity increases as the Hurst parameter approaches 1. For short-range
dependent processes, H — 0.5. Abry and Veitch’s method utilizes the ability of
wavelets to localize the energy of a signal associated with each time-scale. It is
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possible to study the scaling of a process by log-plotting the energy associated
with several time-scale: a signal which is self-similar will yield a linear plot for
the larger times scales. The slope m of the linear portion of the plot is related
to the Hurst parameter by the equation
m+1
H="" (5)
Figure [§] shows the scaling properties of the MIT home page download times
plotted in Fig. Bl The wavelet energy (continuous line) is approximated with a
straight line (dashed line) with slope m = 0.90. According to (@), the measure-
ments are consistent with a self-similar process with Hurst parameter H = 0.95
(very close to 1).
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Fig. 8. Scaling analysis of the download times of MIT web site home page. The wavelet
energy (continuous line) is approximated with a straight line (dashed line) with slope
0.90.

4 Improving Web Performance

For web sites that need to retain users beyond the first page there is a strong
motivation to reduce the delay between the browser click and the delivery of
the page content on the user’s screen. Although there are many reasons behind
poor web performance which are not due to the web server alone (e.g., low
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bandwidth, high latency, network congestion), in this section we discuss some
remedial actions that can be taken in order to reduce the negative influence of
such factors on the user end-to-end response time.

In Sect. [41] an analysis of how long users are willing to wait for web pages
to download is described. Section .2 presents some case studies oriented to the
detection of performance problems and to the improvement of the end-to-end
performance of web sites.

4.1 User Satisfaction

User-perceived response time has a strong impact on how long users would stay at
a web site and on the frequency with which they return to the site. Acceptable
response times are difficult to determine because people’s expectations differ
from situation to situation. Users seem willing to wait varying amounts of time
for different types of interactions [13]. The amount of time a user is willing to
wait appears to be a function of the perceived complexity of the request. For
example, people will wait longer:

— for requests that they think are hard or time-consuming for the web site to
be performed (e.g. search engines);

— when there are no simple or valid alternatives to the visited web site (e.g.,
the overhead required to move a bank account increases the tolerance of
home banking users).

On the contrary, users will be less tolerant to long delays for web tasks that they
consider simple or when they know there are valid alternatives to the web site.

Selvidge and Chaparro [14] conducted a study to examine the effect of down-
load delays on user performance. They used delays of 1 second, 30 seconds, and
60 seconds. They found that users were less frustrated with the one-second delay,
but their satisfaction was not affected by the 30 seconds response times.

According to Nielsen, download times greater than 10 seconds causes user
discomfort [I0]. According to a study presented by IBM researchers, a download
time longer than 30 seconds is considered too slow [7].

Studies on how long users would wait for the complete download of a web
page have been performed by Bouch, Kuchinsky and Bhatti [3]. They reported
good ratings for pages with latencies up to 5 seconds, and poor ratings for pages
with delays over 10 seconds. In a second study, they applied the incremental load
of web pages (with the banner first, text next and graphics last). Under these
conditions, users were much more tolerant of longer latencies. They rated the
delay as “good” with latencies up to 30 seconds. In a third study they observed
that, as users interact more with a web site, their frustration with downloading
delays seems to accumulate. In general, the longer a user interacts with a site
(i.e., the longer is the navigation path), the less delay he will tolerate.

In Fig.[@ we have integrated the results of these studies in order to identify two
thresholds for the definition of a user satisfaction. The thresholds are function
of the navigation step:
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— the lower threshold (continuous line) identifies the acceptable experience:
users are always satisfied when web pages have a latency up to the lower
threshold, independently of the situation;

— the higher threshold (dashed line) identifies the unsatisfactory experience:
users will not tolerate longer latencies, independently of the other conditions.
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Fig. 9. User satisfaction as a function of the navigation steps. Users are always satisfied
with web pages whose download time is below the lower threshold (continuous line).
Users will not tolerate latencies longer than the upper threshold (dashed line).

4.2 Optimization Issues
The possible sources of unsatisfactory end-to-end delays fall into three categories:

— Network problems: high delays are originated by network problems along
the path connecting the user to the web site (such problems can be classified
into insufficient bandwidth at the client/web site or congestions in a network
component).

— Site problems: one or more components of the web site are under-dimensioned
(e.g., web server, back-end systems, firewall, load balancer).

— Complexity problems: page content and web applications are not optimized
(e.g., too many objects in a page, usage of secure protocols with high over-
head to deliver non-sensitive information, low-quality application servers).
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Figure [10 shows the performance of an Italian web site. Measurements have
been collected for two weeks (from December, 23th 2001 to January, 5th 2002)
downloading the home page every 30 minutes during work hours (8.00-20.00)
with three WPET agents located in Milan. Each agent was connected to the
Internet with a 64kbit ISDN line with a different provider. Each bar in the
figure is the median of the measurements collected in one day. The three main
components of the page download time, namely the connection time (i.e., the
round-trip or network latency time), the response time of the server and the
transfer time (or transmission time) are reported.

It is evident that the web site has performance problems because the average
download time for the home page is higher than 30 seconds (i.e., the maximum
tolerance threshold) for all the 14 days. The most probable source of problems
resides in the network at the web side. In fact, the average connection time,
which measures the round-trip time of one packet between the client and the
server, is about 10 seconds, while it should be usually smaller than one second.
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Fig. 10. End-to-end response time for the download of the home page of a web site
with network problems. The three basic components, the TCP/IP connection time, the
server response time and the page transfer time are shown.

Figure [[1l shows the performance of a second web site. Measurements have
been collected according to the same scheme of the previous experiment. The
performance of this web site are satisfactory, although not excellent. Download
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time is always lower than 30 seconds but higher than 10 seconds. Connection
time is always around 1 second. However, there is still space for optimizations.
In fact, the average response time, which measures the time required for the web
server to load the page from disk (or to generate the page dynamically), is about
10 seconds in most of the cases. By adding new hardware or improving the web
application, the response time should be reduced to 1-2 seconds.
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Fig. 11. End-to-end response time for the download of the home page of a web site
with server problems. The three basic components, the TCP/IP connection time, the
server response time and the page transfer time are shown.

Figure [2 presents an example of a complexity problem. The figure shows a
page component plot. Each vertical bar in the plot represents the download time
of a single object in the page. The bar in the lower-left corner is the main HTML
document. All the other bars are banners, images, scripts, frames, etc. The time
required to download the whole page is measured from the beginning of the first
object to the end of the last object to complete the download. Together with the
download time, the figure shows the dimension of each object. The measurements
have been collected with an agent connected to a backbone. The object pointed
out by the arrow is a small one (about 1.5 KByte) but it is the slowest object
in the page (it requires almost 20 seconds for its complete download). Without
this object the whole page would be received in less than 8 seconds. This object
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is a banner downloaded from an external ad-server which is poorly connected to
the Internet. Because of the banner, the users experience a long delay.

A possible way for the web site to improve the performance experienced by
the end user is to download off-line the banners from the ad-server and to cache
them locally into the web server.
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Fig. 12. Page components plot. Vertical bars represent the download times for all the
objects in the page. The line indicates the dimension of each object. The object pointed
by the arrow is a banner.

Figure [[3] is another example of complexity problem. Although the overall
size of the page is rather small (less than 100 KBytes) the page is composed of
more than 50 small different objects. The overhead introduced with the download
of each object (e.g., DNS lookup time, connection time, response time) makes
more convenient for a web site to have pages with few big objects than pages
with many small objects.

5 Conclusions

In this paper we have analyzed the origins of the high fluctuations in web traf-
fic. The sources of these fluctuations are located into the characteristics of the
applications, the complexity of the network path connecting the web user to the
web server, the self-similarity of web traffic (file sizes and user think times), and
the congestion control mechanism in the TCP/IP protocol. Empirical evidence
of self-similar and heavy-tail features in measured end-to-end web site perfor-
mance is provided. We have integrated this technical knowledge with the results
of recent studies aimed at determining the effects of long download delays on
users satisfaction. We have showed that users satisfaction can be modelled with
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Fig. 13. Page components plot. Vertical bars represent the download times for all the
objects in the page. The line indicates the dimension of each object.

two thresholds. Simple guidelines for the detection of web performance problems
and for their optimization are also presented.
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