
Evolution of Distributed Java Programs

Susan Eisenbach, Chris Sadler, and Shakil Shaikh

1 Department of Computing, Imperial College, London, UK SW7 2BZ,
[sue, sas97]@doc.ic.ac.uk

2 School of Computing Science, Middlesex University, London, UK N14 4YZ,
c.sadler@mdx.ac.uk

Abstract. A major challenge of maintaining object-oriented programs
is to find a means of evolving software that already has a distributed
client base. This should be easier for Java developers than for most,
because dynamic linking has been designed into the runtime system.
It turns out however that things are not so straightforward as they seem,
since a given modification can leave a remote client in one of a number of
states, not all of which are tolerable, let alone desirable. In this paper we
attempt to delineate these states, and to consider ways of avoiding the
worst of them. We describe our utility, which offers library developers a
transparent version control system, to protect their remote clients.

1 Introduction

In this paper we consider the choices faced by a programmer who wishes to
develop code for use by a community of heterogeneous and dispersed application
developers. We refer to the code as a library and to its developer as the library
developer. The users of the library we call the client developers.

The main issue of concern in this paper is the maintenance, or evolution of
the library over time. We envisage that from time-to-time, the library developer
will modify the code in the library and that different groups of client developers
will initially join the user community at different points in its lifetime (different
generations). We make a number of assumptions which it will be useful to clarify
here:

1. The library developer is concerned to support all clients, no matter what
generation of the library they are currently using.

2. The library developer has no idea which parts of the library are being used.
The consequences of this is that, whenever a modification is made, no mat-
ter how obscure, the library developer must consider the potential impact,
whether or not there are any clients who will actually be affected.

3. When the library developer makes a modification, he or she knows what is
to be achieved, knows how to achieve it, and modifies the code in such a way
as to achieve the desired result. We say such modifications are intentional
and effective. Many library developers can and do make modifications which
produce unintentional effects or which are not effective. We are not trying to
solve this problem – if we could solve it, we would eliminate much of software
maintenance altogether.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 51–66, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



52 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

4. When a library developer has modified the library, they will want to make
it available to client developers and they will take any steps necessary to do
so.

5. When a client developer needs to modify the client code as a result of a mod-
ification made to the library, the re-coding will be done with full knowledge
about the nature of the library modification and the developer will continue
re-coding until the modification has been successfully accommodated.

An early choice facing the library developer is how to distribute the code.
On the one hand there is a very mature software engineering technology, which
involves delivering a static version of the library on a physical medium or, with
improved communications technology, by downloading from a network. The li-
brary developer can take care of his (or her) clients by imposing a good version
control system [26] and offering frequent upgrades. Once downloaded, the soft-
ware resides on the client system. For most of the history of software develop-
ment this has been the standard method of distribution. It is still in use today
(for example, by Sun Microsystems for delivering updated versions of the Java
Development Kit [21]).

On the other hand, improved communication technology has given rise to a
number of developments in software technology, which offer the library developer
some alternatives. These include the concept of object request brokering [4,5,2].
Here the library developer never loses control of the library since the code to be
executed resides at the library developer’s site. Clients wishing to make use of the
library must connect with the system and the library functions will be executed
there. Provided that the integrity of the software interface is not compromised,
this arrangement offers the library developer considerably more control over the
immediate functionality of the library. Instead of waiting for the next ‘release’
to implement bug-fixes or enhancements, the library developer can implement
these in situ to the immediate benefit of all concerned.

However, there are some disadvantages. Firstly, the library developer must
have a system sufficiently powerful to deliver reasonable performance for an
unknowably large community of client developers and their application users,
and must be willing to pay for this. This is the processor problem. Secondly, if
the system goes down or there are network problems, applications will not run at
all, so all clients developers and users will be vulnerable – the downtime problem.
Lastly, object request brokering doesn’t allow for the software re-use that comes
about through mechanisms that permit sub-classing (and sub-interfacing).

In this paper we consider dynamic loading which lies between the extremes
of static library distribution and object request brokering. Dynamic libraries
have a long history of providing support to executables at the operating sys-
tem level [20]. However, these were usually distributed statically. Today’s most
prominent manifestation, the Windows dynamic link library (DLL) allows for a
more incremental approach to updating, but imposes some restrictions and ac-
knowledges some problems [1] compared with a more static approach to linking.
Modern object oriented programming languages (specifically Java) incorporate



Evolution of Distributed Java Programs 53

similar dynamic loading capabilities into the runtime system and it is this tech-
nology we investigate here.

In section two we describe how Java’s dynamic loading mechanism can give
the library developer more control over the immediate functionality of his (or
her) library and also some of the pitfalls which relying on this may entail. The
main contribution of this paper is made in section three where we develop a
scheme to help the library developer keep track of the different modification
effects that can arise as the library evolves, and in section four which describes
the design and development of a utility conceived to assist library developers in
their task in such a way that even solves the downtime problem. In section five
we report on other recent work, which has addressed this problem and in section
six give some indications of where we want to take this work in the future.

2 Using Remote Libraries

2.1 Dynamic Loading

In most programming language environments linking occurs at compile-time
and at runtime the system loads the complete binary. In Java environments, the
compiler embeds only symbolic references into the binary and the Java Virtual
Machine (JVM) uses this information to locate and load individual classes and
interfaces ‘on demand’ – that is, dynamically [12,9]. This makes for a much more
complex loading process but there are advantages:

– There is a faster start-up because less code needs to be loaded (at least
initially). In particular, there is ‘lazier’ error detection since exceptions only
need to be thrown when there is an actual attempt to link with unsafe code.

– At runtime, the program can link to the latest version of the binary, even if
that version was not available at the time of compilation.

It is this last feature that we are interested in and it makes Java sound like
the perfect solution for library developers with remote clients. Java is pretty
good, but it is not perfect. In the first place, the designers of the JVM could
not (quite rightly) just leave the loading mechanism at that – between loading
the code and executing it, the Verifier must be run to ensure that any changes
that may have been made to the code do not break the type checks that were
originally performed by the compiler. If they do a link error occurs.

Secondly, even if the Verifier can be persuaded to accept a modified library
class, it is possible to introduce modifications which will

– not be ‘felt’ at all by the client application;
– compromise the safe execution of the client application;
– put the code in such a state that further recompilation on the part of the
client developer will result in failure – that is, an executable application
cannot be re-created from the existing sources.



54 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

2.2 Binary Compatibility

If the Verifier detects no link errors at run time we say that the (new) library
is binary compatible with the client [12]. Every individual modification that led
to the existence of the new version must have been such as to maintain binary
compatibility and so is a binary compatible modification.

Binary compatible modifications have been the subject of some study [10,11,7,8].
The way binary compatibility works is that at compile-time the compiler em-
beds symbolic references (not binary code!) into the client binaries. These refer-
ences record the location of the library binaries together with type information
(field types and method signatures). When the library source is modified and
re-compiled, if the symbolic references are unchanged the new binary can still
link to previously compiled clients.

Figure 1 lists some important types of modifications, which do not interfere
with the symbolic references. There are also (see Figure 2) significant and com-
mon modifications that do interfere with symbolic information and which must
be assumed to be binary incompatible with old clients.

Binary compatibility is a powerful concept, which, through the mechanism
of dynamic loading, can offer the library developer a great deal of support in
propagating the benefits of library evolution directly to clients. However, library
developers should not be too comforted by binary compatibility because there
are a number of traps waiting for unwary old clients.

Any modification made to anything private.
Any modifications which improve performance or correct errors with-
out modifying field types, method signatures or the positions of classes,
interfaces or members within the class hierarchy.
Any new classes, interfaces or members. Any modification which re-
laxes control over the class hierarchy. Thus abstract − > non-abstract
permitting instantiation, final − > non-final permitting subclassing
and any increases in the accessibility of classes, interfaces and members
(private − > protected − > public).
Any modification, which moves a field up the class hierarchy. At runtime,
the system attempts to resolve unresolved field references by searching
up the class hierarchy.

Fig. 1. Some Binary Compatible Modifications

2.3 Old Clients

New clients of course experience a ‘virgin’ library and are not our concern here.
It is the existing clients that we want to try to help to keep up-to-date. Those
old clients that are likely to experience link (and other) errors are considered in a
subsequent section. In earlier work [11], we considered those old client developers
who may be beguiled by error-free linking into believing that their users



Evolution of Distributed Java Programs 55

Any modification, which removes (deletes) an accessible class or inter-
face. If no old clients actually subclass or instantiate that class, they will
in fact link without error. However, since the library developer cannot
know which features and facilities his (or her) clients are using he (or
she) must assume that all features and facilities are being used.

Any modification, which changes field types or method signatures in situ.

Any modification, which strengthens control over the class hierarchy.
Thus non-abstract − > abstract preventing instantiation, non-final − >
final preventing subclassing and decreases in the accessibility of classes,
interfaces and members (public − > protected − > private).

Any modification, which repositions a field further down the class hier-
archy.

Fig. 2. Some Binary Incompatible Modifications

1. will benefit immediately from recent modifications;
2. will run trouble-free; or
3. will be able to continue evolving their applications without difficulty.

In some cases a client binary will link to a modified library binary without
error, but the client user will not experience the effect of the modification until
re-compilation. We called these blind clients. Situations in which blind clients
can occur include the introduction into the library of a shadowing field and the
modification of a compile-time constant. In other cases a client binary will link
to a modified library binary but will no longer compile without error. Examples
of such fragile clients include the use of shadowing fields when the field type is
changed, the introduction of a more limited access modifier and the introduction
of a new method into an interface [11].

3 Modification Effect Analysis

In order that modifications should not lead to such surprises, it is important
to understand the possible effects of all types of modifications. In this analysis
of modification effect outcomes we distinguish between effects that will occur
without any action on the part of the client developer, save simply executing
the client code (link-time effects); and effects which occur after client developer
action (i.e. re-coding and/or recompilation) – compile-time effects.

3.1 Link-Time Effects

Once the modification has been made, the library will be rebuilt and the next
time the client runs it will be dynamically linked with the new library. There
are three possible effects:

LE0: The client links without error and runs without any discernible modifica-
tion effect;



56 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

LE1: The client links without error and the modification effect is immediately
discernible;

LE2: The modification is not binary compatible and consequently a link error
occurs.

In relation to ‘smooth’ evolution, clearly the states LE0 and LE1 are desirable
in the sense that the immediate client execution is not compromised by the
modification, whilst LE2 is undesirable.

3.2 Compile-Time Effects

At some point (probably immediately in the case of a link-time or run-time error)
the client is likely to recompile. The compilation may be trouble-free or it may
be troublesome (i.e. there are compilation errors). In the case of troublesome
compilation, it is assumed in the model that the client developer will re-code
until compilation succeeds, and that re-coding will be done in the light of full
knowledge about the library modification and with a view to benefiting from the
modification. This gives rise to three possible effects:

CE0: The client rebuilds without error and runs without any discernible mod-
ification effect;

CE1: The client rebuilds without error and the modification effect appears (or
persists if it was previously discernible);

CE2: The client encounters a compilation error, and, after re-coding achieves
the desired modification.

CE0 is a desirable outcome if the modification made was not intended for these
clients at all, but for a new species of client. CE1 is also desirable. CE2 places the
burden of achieving a desirable modification effect on the client developer. We
delineate all possible states by combining all LE and CE states as in Figure 3.

3.3 Classifying Reaction Types

On the assumption therefore that the client is bound to use the current version
of the library (as dynamic linking presupposes), any individual modification to a
library class can result in one of nine distinct outcomes for the client. However,
from the library developer’s point of view they can be classified into four reaction
types.

Type I. The client can link to the new library and continue operations without
hindrance. This category covers four distinct outcomes. In some cases (00 and
11) there are no further implications for the library developer provided that the
actual outcome is the desired one.

In the case of 00 for instance, if the library developer had introduced a new
class, which was not intended for old clients, then the fact that the old clients
would never see the class is a desirable outcome.



Evolution of Distributed Java Programs 57

LE CE Description Reaction
Type

0 0 The client experiences nothing (ever). I

0 1
The client experiences nothing until a trouble-free re-
compilation makes the modification discernible. I

0 2 The client must re-code in order to experience the mod-
ification.

II

1 0
The client experiences the modification but it disappears
after a trouble-free compilation.

I

1 1 The client experiences the modification immediately. I

1 2
The client experiences the modification but the client
developer will need to re-code as soon as recompilation
occurs.

II

2 0
The client experiences an immediate linking problem.
On recompilation, the problem disappears, but the mod-
ification never appears.

III

2 1
The client experiences an immediate linking problem
which a trouble-free compilation resolves.

III

2 2
The client experiences an immediate problem, which the
client developer will need to re-code to fix.

IV

Fig. 3. Modification Effects

In the case of 11, the modification would be discernible for old clients. If
the effect is intended (for example, if it achieved improved performance of an
algorithm, or corrected a spelling mistake in an error message) then the outcome
is desirable.

However, the library developer could introduce a modification, which caused
old clients to compute incorrect results (for example, changing a method so that
it returned financial data in Euros rather than Pounds). Although the modifi-
cation is discernible, its effect is an undesirable one and further intervention is
indicated.

For outcome 01, the modification will only become discernible after rebuild-
ing. It may be that no action is required on the part of the library developer, but
if the modification corrects an error, which threatens future runs of the client,
it would be desirable for the client developer to deal with it urgently. Another
case may arise when the developer introduces an unintentional name-clash. On
re-compilation the client binary may link to the wrong entity. Since it was un-
intentional, the library developer is unlikely to be aware of this and the client
developer will have to detect the error and recover.

Type II. The modification does not threaten the running of the existing client,
but when the client code is re-built, the modification will compromise the re-



58 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

sulting binaries unless further client coding is done. Since it is not possible for
the library developer to dictate precisely when the client recompiles, it would be
safer if the client were to continue to link to the previous version.

Type III. Even though the re-build will be trouble-free, any execution before
it is done will compromise the client. Once again, because the library developer
cannot force the client to rebuild, a conservative policy dictates that the client
should continue to link to the previous version of the library.

Type IV. The modification has compromised the client binaries – the client
cannot link with the new library and cannot recompile without further coding.
This is the least desirable scenario of all.

3.4 An Evolutionary Development Strategy

How can Java library developers evolve their classes without forcing their dis-
tributed clients into undesirable reaction states? One possibility is to restrict
modifications so that they are only Type I. To help library developers to achieve
this, we want to be able to determine, for any particular modification, whether

1. the client code will link and run (i.e. the modification is binary compatible,
LE=0 or LE=1);

2. the client code will compile without error (CE=0 or CE=1);
3. the client code will execute correctly (LE=1, CE=1 and the discernible effect

is desirable).

In any utility designed to assist Java library developers with distributed
evolution, it should be possible to implement (1) and (2), although (3) will
always be the developer’s responsibility.

The restriction to Type I modifications is severely limiting for developers and
we need to find a way to overcome this limitation. One idea is to devise a method
of compromising the dynamic loading mechanism so that, under controlled con-
ditions, potentially incompatible clients can link to earlier versions of the library
(with which they are compatible). This can be incorporated relatively easily into
any utility for the evolution of distributed Java programs. Another idea would
be to develop techniques for embedding the code of undesirable modifications
into structures that can mitigate their effects.

Finally, the discussion above identified several situations when it would be
highly desirable for the library developer to be able to communicate with the
client developer – for example to advise of an essential bug-fix which can be made
discernible by means of a simple rebuild (01 or 21) or to warn not to rebuild (12).
To achieve this it is not necessary to maintain a large contact list of clients or
to require clients to go through a registration process, since every time a client
runs, it ‘touches base’ with the library. We would like a Java evolution utility to
help the library developer achieve this communication.



Evolution of Distributed Java Programs 59

In the next section we discuss the design of a Distributed Evolution for Java
Utility Dejavu which has been developed to implement and experiment with
some of the ideas discussed above.

4 Dejavu – The Distributed Evolution for Java Utility

We set out to design a utility to help library developers and their client appli-
cation developers to overcome the problems discussed above. To limit the scope
and also to exploit the potential embedded in its design, we decided to restrict
ourselves to distributed program development using Java. We assume further-
more that any modification made by the library developer is intentional (in the
sense that it does what the library developer wanted it to do) and effective (in
the same sense). A number of other stipulations were made to determine the
scope of the utility:

1. All modifications are to be made to source code. No bit-twiddling of the
binaries or other hacking can be permitted.

2. Evolution and access are to be mutually asynchronous. Any concept of ‘re-
leases’ should be utterly transparent to clients.

3. Clients should be able to access and use the library without having to identify
themselves or ‘register’ in any other way.

4. No changes to the Java language definition or to Java technical standards
should be imposed.

5. Both library developers and client developers should be able to develop their
code in standard Java development environments.

6. Library developers and client developers should not have to modify their
programming style in order to use the tool.

7. Library developers and client developers should have access to version infor-
mation.

8. The existence and operation of the tool should be transparent to all client
application users.

From these indications we deduce the operation of the utility as follows:

1. The utility should accept versions of libraries from the library developer.
2. Having accepted a new version, it must compare it with the existing version.

In making this comparison, it must detect significant modifications and must
assess their impact at some level. (Initially Response Type I.)

3. The utility must report its findings to the library developer.
4. On the basis of the report (or otherwise), it must permit the library developer

to publish the new version – that is to make it available to clients.
5. When a client developer wishes to compile, the utility must provide access

to the appropriate library code.
6. When a client application attempts to link at runtime, the utility must de-

termine whether or not the compile-time library version corresponds to the
current runtime version. If not, it must ensure that the client application
links to (and hence runs with) the appropriate (updated if necessary) ver-
sion of the library.



60 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

7. The utility must be able to report to the client developer where and how
the client application’s most recently compiled version of the library diverges
from the latest published version.

4.1 Architecture

Providing the client developer with a custom classloader, which is sensitive to the
various versions of the library, could solve this problem. When this classloader
detects a class that had been updated since the last build or run, it could analyze
subsequent versions of the library to determine the most recent compatible one
from which to load the class.

However, this is not a feasible solution for distributing libraries because of
the way the current JVM works (see [24]). Either the client developer or the
library developer would have to alter their programming style quite radically
for such a system to work. (The client developer would need to use reflection
to invoke methods. The library developer would need to establish fixed static
interfaces). Instead we adopted the idea of updating at the level of the library
as a whole. On the library developer side, we proposed a Controller component,
which allows developers to maintain multiple versions of the library. One version
is labelled ‘latest’ and this is the default version with which all new clients will
link. Older clients will originally have compiled using an earlier version. The
Controller needs to know, for any given client, whether the linked version is
compatible with the latest version, and if not, which is the most recent version
that it is compatible with.

The crucial question here is to determine what constitutes ‘compatible’ in
these circumstances. In our system we define compatibility via a set of ‘rules’
governing one or more differences between versions of a class. If all the rules
are satisfied the two versions will be considered compatible. By enunciating new
rules and expanding the ruleset, we plan to extend the support, which the utility
can provide to developers. The component of the system that applies Rules to
two versions of a any library class is the RuleEngine. The overall architecture
can be represented schematically as in Figure 4.

4.2 The Rule Engine

In order to drive the RuleEngine, an abstract Rule class was developed. This
contains a number of fields and methods whose explanation will serve to describe
the structure of the class.

1. Vector newClasses, oldClasses. When the RuleEngine attempts to ap-
ply a rule, it needs to compare two versions of a class library. The Vectors
store all the classnames of each version, so each rule can be applied in turn
to all the classes in the library.

2. Vector ruleBreakingClasses. Once it has been determined that a rule has
been broken, the RuleEngine needs to be able to identify those classes where
this has been detected.



Evolution of Distributed Java Programs 61

Fig. 4. Tool architecture

3. String rule, ruleName, ruleExp. These are designed to store specific re-
porting data for each specific rule, respectively the rule’s operation, name
and a description of the nature of the breakage.

4. void setClasses (Vector nc, Vector oc). This method establishes the
classnames of classes in the two versions of the library to be compared.

5. static Class extract (Class c, Vector v). This method is used to ex-
tract corresponding classes from the two libraries.

6. abstract Boolean checkRule(). This method applies the (concrete) rule
to the current set of library versions.

7. abstract String diagnose(). Rreturns a diagnostic message when a rule
is broken.

8. abstract Vector getDetails(). Returns ruleBreakingClasses to report
where the rule was broken.

Some rules cover classes as a whole – for example, there are rules to de-
tect deleted public classes; classes that have become abstract, final and other
than public; and a rule to determine whether the inheritance chain has been
changed. Others are concerned with members of classes - deleted public fields
and methods; deleted constructors; reduction of access to fields and methods.

Using this scheme, a set of such Rules can be implemented and passed to
the RuleEngine, which iterates through, reporting its findings. The RuleEngine
works with java.lang.reflect to examine and compare class versions. To do this
the relevant classes must be loaded in the normal way. However the routine
classloader provided with the JVM [18] is not capable of loading two classes
with the same name from different locations. To bypass this a server-based cus-
tom classloader was developed capable of loading named classes from arbitrary
locations.



62 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

4.3 The Controller and Synchroniser

On the client side, the system provides a Synchronizer component, which must
be invoked as a part of the client application initialization. The client developer
must start with an initial version of the library, downloaded into a local Class-
Cache, and containing the Synchroniser class ClassSynchr with the method
syncClasses(). It is this method that must be invoked early in the execution
of the client application. At compile time the client code will link to the local
version of the library and build the binaries accordingly. At runtime, the call to
syncClasses() will create a connection to the remote RuleServer to test to
see if the library needs updating. If it does then the entire library is replaced by
the latest compatible version before loading continues once again from the local
ClassCache.

In order to implement this, it is essential that the syncClasses() enquiry
(about version compatibility) can be quickly dealt with. To enable this a number
of persistent ‘settings’ files are maintained by the utility. These are

1. RuleSettings. This file is maintained by the RuleServer and covers all ver-
sions of the library as a whole – thus it records a list of all ‘currently pub-
lished’ versions.

2. ServerVersionSettings. This file resides in the directory of each version. It
stores the version number together with a record of the latest compatible
version and also the latest version with which it has been compared.

3. LocalVersionSettings. This records the most recently copied local version of
the library.

The Controller provides the interface for all the users of the system. It must be
able to

1. accept updated versions of the library and, when requested, publish these.
2. interact with the ClassSyncr object of each client to determine whether a

new library version is required and, if so, which one to download.

To manage multiple simultaneous clients, the Controller is implemented by
a Controller/Slave pattern. Library developer requests cause a RuleRemoteObj
to be created. This manages the upload of the new library files and invokes the
RuleEngine to generate the version compatibility data.

This is not an ideal arrangement since the library developer cannot deduce
the precise compatibility circumstances governing the current modifications in
any interactive way, but must instead wait until the new library has been up-
loaded. For this reason the upload occurs in two stages. First the library is
uploaded. Then it can be checked by the RuleEngine and a report for the li-
brary developer generated. Only then may the library developer ‘publish’ the
new version, making it available to external clients. Correspondingly, on receiv-
ing a request from a remote ClassSyncr object, the controller creates a slave
RuleRemoteCL to retrieve and examine the LocalVersionSettings file of the re-
quester and choose an appropriate library version to download to the remote
ClassCache. This can be represented schematically as in Figure 5.



Evolution of Distributed Java Programs 63

Fig. 5. Rule controller and slave objects

5 Related Work

The work described here arose directly out of theoretical work on binary com-
patibility done in collaboration with Drossopoulou and Wragg [7,8]. As binary
compatibility was conceived to assist with the development of distributed li-
braries [10,11], we examined its effect on evolving libraries. Drossopoulou then
went on to model dynamic linking in [6] and we looked at the nature of dynamic
linking in Java [9]. We have looked at the problems that arise with binary com-
patible code in [10] and built a less powerful tool, described in [11]. Other formal
work on distributed versioning has been done by Sewell in [23], but this work
does not consider the issue of binary compatibility.

Other groups have studied the problem of protecting clients from unfortunate
library modifications. [25] identified four problems with ‘parent class exchange’.
One of these concerned the introduction of a new (abstract) method into an
interface. As discussed in [11], this is a 02 modification effect since the client will
not compile correctly until the method has been implemented. The other issues
all concern library methods which are overridden by client methods in circum-
stances where, under evolution, the application behaviour is adversely affected.
To solve these problems, reuse contracts are proposed in order to document the
library developer’s design commitments. As the library evolves, the terms of
the library’s contract change and the same is true of the corresponding client’s
contract. Comparison of these contracts can serve to identify potential problems.



64 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

Mezini [19] investigated the same problem (here termed horizontal evolution)
and considered that conventional composition mechanisms were not sophisti-
cated enough to propagate design properties to the client. She proposed a smart
composition model wherein, amongst other things, information about the library
calling structure is made available at the client’s site. Successive versions of this
information can be compared using reflection to determine how the client can
be protected. These ideas have been implemented as an extension to Smalltalk.

[17,3,27] have done work on altering previously compiled code. Such systems
enable library code to be mutated to behave in a manner to suit the client. Al-
though work on altering binaries preceded Java [27] it came into its own with
Java since Java bytecode is high level, containing type information. In both the
Binary Component Adaptation System [17] and the Java Object Instrumenta-
tion Environment [3] class files are altered and the new ones are loaded and
run. One of the main purposes of this kind of work is extension of classes for
instrumentation purposes but these systems could be used for other changes.
We have not taken the approach of altering library developers’ code because it
makes the application developer responsible for the used library code. Respon-
sibility without source or documentation is not a desirable situation. There is
also the problem of integrating new library releases, which the client may not
benefit from.

Often configuration management is about configuration per se – technical
issues about storage and distribution; or management per se – policy issues about
what should be managed and how. Network-Unified Configuration Management
(NUCM) [13,14] embraces both in an architecture, incorporating a generic model
of a distributed repository. The interface to this repository is sufficiently flexible
to allow different policies to be manifested.

World Wide Configuration Management (WWCM) [15,22] provide an API
for a web based client-server system. It is built around the Configuration Man-
agement Engine (CME) to implement what is effectively a distributed project.
CME allows elements of a project to be arranged in a hierarchy and working
sets to be checked in and out, and the project as a whole can be versioned so
several different versions may exist concurrently.

In this paper we have mostly discussed changes that should propagate with-
out requiring such explicit management. Where there are more major modifica-
tions, which will need substantial rebuilding, Configuration Management systems
such as those described will be necessary.

6 Conclusions and Future Work

We have attempted to address the problems faced by a library developer who
wishes to support remote clients by means of Java’s dynamic loading mechanism.
Although we started by considering binary compatibility as a key criterion for
safe evolution, our analysis indicates that the situation is more complicated
and that there is a greater variety of modification effects. We have developed a



Evolution of Distributed Java Programs 65

utility that helps to manage some of the issues raised and which we believe has
the potential to be extended to cover a wider range of the issues.

In contemplating the further development of our project we see a number of
ideas, which could serve to enhance the utility. These include:

1. Support for library development at the package level [16]. We have considered
a library to be simply a hierarchy of classes. The Java language designers
envisage libraries more in terms of Packages and we need to consider what
issues this raises.

2. Library clients. It is possible that the client developer is developing a library
for use by downstream clients. This leads to a multi-layered development
model and we need to consider how our utility might work when a down-
stream client tries to link to several libraries each linked to a different version
of the original.

3. Touching Base. Every time a client application runs, dynamic loading causes
it to ‘touch base’ with the library’s home system. There are many ways in
which this communication could be exploited, such as
(a) transmitting warnings and other updating information;
(b) collecting information about the numbers of users and frequency of use

of different versions of the library;
(c) managing licenses and intellectual property data;
(d) charging users on a ‘per use’ basis. Sun is developing support for this

via its JMX (Java Management Extensions) specification [16]. We need
to see whether this technology can serve our purposes.

Acknowledgements

We acknowledge the financial support of the EPSRC grant Ref GR/L 76709.
Some of this work is based on more formal work done with Sophia Drossopolou.
We thank the JVCS implementation team Y. Lam, K. Lin, Y. Gojali, C. Xu and
D. Woo for their contributions to the predecessor tool of DEJaVU.

References

[1] R. Anderson, The End of DLL Hell, Microsoft Corporation,
http:msdn.microsoft.comlibrarytechartdlldanger1.htm, January 2000.

[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.
F. Nielsen, S. Thatte, D. Winer, SOAP: Simple Object Access Protocol,
http://msdn.microsoft.com.

[3] G. Cohen, J. Chase, and D. Kaminsky, Automatic Program Transformation with
JOIE, USENIX Annual Technical Symposium, New Orleans, 1998.

[4] CORBA, http://www.corba.org/.
[5] DCOM, http://www.microsoft.com/com/tech/DCOM.asp.
[6] S. Drossopoulou, An Abstract Model of Java Dynamic Linking, Loading and Ver-

ification, Types in Compilation Montreal, September 2001.



66 Susan Eisenbach, Chris Sadler, and Shakil Shaikh

[7] S. Drossopoulou, S. Eisenbach and D. Wragg, A Fragment Calculus – to-
wards a model of Separate Compilation, Linking and Binary Compatibility,
IEEE Symposium on Logic in Computer Science, Jul. 1999, http://www-
dse.doc.ic.ac.uk/projects/slurp/.

[8] S. Drossopoulou, D. Wragg and S. Eisenbach, What is Java Binary
Compatibility?, OOPSLA’98 Proceedings, October 1998, http://www-
dse.doc.ic.ac.uk/projects/slurp/.

[9] S. Eisenbach and S. Drossopoulou, Manifestations of the Dynamic Linking Pro-
cess in Java, June 2001, http://www-dse.doc.ic.ac.uk/projects/slurp/dynamic-
link/linking.htm.

[10] S. Eisenbach and C. Sadler, Ephemeral Java Source Code, IEEE Workshop on
Future Trends in Distributed Systems, Cape Town, Dec. 1999.

[11] S. Eisenbach and C. Sadler, Changing Java Programs, IEEE Conference in Soft-
ware Maintenance, Florence, Nov. 2001.

[12] J. Gosling, B. Joy, G. Steele and G. Bracha, The Java Language Specification
Second Edition, Addison-Wesley, 2000.

[13] D. Hoek, M. Heimbigner, and A.L. Wolf, A Generic, Peer-to-Peer Repository for
Distributed Configuration Management, ACM 18th International Conference on
Software Engineering, March 1996.

[14] D. Hoek, M. Heimbigner, and A.L. Wolf, Versioned Software Architecture, 3rd
International Software Architecture Workshop, Orlando, Florida, November 1998.

[15] J. J. Hunt, F. Lamers, J. Reuter and W. F. Tichy. Distributed Configuration
Management Via Java and the World Wide Web, In Proc 7th Intl. Workshop on
Software Configuration Management”, Boston, 1997.

[16] Java Management Extensions (JMX), java.sun.com/products/JavaManagement/,
Jul. 2000.

[17] R. Keller and U. Holzle. Binary Component Adaptation, Proc. of the European
Conf. on Object-Oriented Programming, Springer-Verlag, July 1998.

[18] T. Lindholm and F. Yellin, The Java(tm) Virtual Machine Specification,
http:java.sun.comdocsbooksvmspec2nd-editionhtmlChangesAppendix.doc.html.

[19] M. Mezini, Maintaining the Consistency of Class Libraries During Their Evolu-
tion, Proc. of OOPSLA, 1997.

[20] J. Peterson and A. Silberschatz, Operating System Concepts, Addison Wesley,
1985.

[21] Products and APIs, http://java.sun.com/products/.
[22] J. Reuter, S. U. Hanssgen, J. J. Hunt, and W. F. Tichy. Distributed Revision

Control Via the World Wide Web, In Proc. 6th Intl. Workshop on Software Con-
figuration Management”, Berlin, Germany, March, 1996.

[23] P. Sewell, Modules, Abstract Types, and Distributed Versioning, Proc. of Princi-
ples of Programming Languages, ACM Press, London, Jan. 2001.

[24] S. Shaikh, Distributed Version Control for Java, June, 2001, http://www-
dse.doc.ic.ac.uk/projects/slurp/.

[25] P. Steyaert, C. Lucas, K. Mens and T. D’Hondt, Reuse Contracts: Managing the
Evolution of Reusable Assets, Proc. of OOPSLA,1996.

[26] W. Tichy. RCS: A System for Version Control, Software – Practice and Experi-
ence, 15(7):637–654, July 1985.

[27] R. Wahbe, S. Lucco, and S. Graham. Adaptable binary programs, Technical Re-
port CMU-CS-94-137, Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA 15213, Apr. 1994.


	1 Introduction
	2 Using Remote Libraries
	2.1 Dynamic Loading
	2.2 Binary Compatibility
	2.3 Old Clients

	3 Modification Effect Analysis
	3.1 Link-Time Effects
	3.2 Compile-Time Effects
	3.3 Classifying Reaction Types
	3.4 An Evolutionary Development Strategy

	4 {sc Dejavu} -- The Distributed Evolution for Java Utility
	4.1 Architecture
	4.2 The Rule Engine
	4.3 The Controller and Synchroniser

	5 Related Work
	6 Conclusions and Future Work
	References

