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Abstract. This paper presents an original method for three-dimensional
elastic registration of multimodal images. We propose to make use of a
scheme that iterates between correcting for intensity differences between
images and performing standard monomodal registration. The core of
our contribution resides in providing a method that finds the transfor-
mation that maps the intensities of one image to those of another. It
makes the assumption that there are at most two functional dependen-
ces between the intensities of structures present in the images to register,
and relies on robust estimation techniques to evaluate these functions.
We provide results showing successful registration between several ima-
ging modalities involving segmentations, T1 magnetic resonance (MR),
T2 MR, proton density (PD) MR and computed tomography (CT).
keywords: Multimodality, Elastic registration, Intensity correction, Ro-
bust estimation, Medical imaging.

1 Introduction

Over the last decade, automatic registration techniques of medical images of the
head have been developed following two main trends: 1) registration of multimo-
dal images using low degree transformations (rigid or affine), and 2) registration
of monomodal images using high-dimensional volumetric maps (elastic or fluid
deformations). The first category mainly addresses the fusion of complementary
information obtained from different imaging modalities. The second category’s
predominant purpose is the evaluation of either the anatomical evolution pro-
cess present in a particular subject or of anatomical variations between different
subjects.

These two trends have evolved separately mainly because the combined
problem of identifying complex intensity correspondences along with a high-
dimensional geometrical transformation defines a search space arduous to tra-
verse. Recently, three groups have imposed different constraints on the search
space, enabling them to develop automatic multimodal non-affine registration
techniques. All three methods make use of block matching techniques to eva-
luate local translations. Two of them use mutual information (MI) [30,17] as a
similarity measure and the other employs the correlation ratio [23].
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An important aspect when using MI as a registration measure is to compute
the conditional probabilities of one image’s intensities with respect to those of
the other. To do so, Maintz et al. [18] proposed to use conditional probabilities
after rigid matching of the images as an estimate of the real conditional probabi-
lities after local transformations. Hence, the probabilities are evaluated only once
before fluid registration. However, Gaens et al. [11] argued that the assumption
that probabilities computed after affine registration are good approximations of
the same probabilities after fluid matching, is unsuitable. They also proposed
a method in which local displacements are found so that the global MI increa-
ses at each iteration, permitting incremental changes of the probabilities during
registration. Their method necessitates the computation of conditional probabi-
lities over the whole image for every voxel displacement. To alleviate themselves
from such computations owing to the fact that MI requires many samples to
estimate probabilities, Lau et al. [16] have chosen a different similarity measure.
Due to the robustness of the correlation ratio with regards to sparse data [23],
they employed it to assess the similarity of neighbouring blocks. Hence no global
computation is required when moving subregions of the image.

Our method distinguishes itself by looking at the problem from a different
angle. In the last years, our group has had some success with monomodal image
registration using the demons method [27,28], an optical flow variant when de-
aling with monomodal volumetric images. If we were able to model the imaging
processes that created the images to register, and assuming these processes are
invertible, one could transform one of the images so that they are both repre-
sented in the same modality. Then, we could use our monomodal registration
algorithm to register them. We have thus developed a completely automatic me-
thod to transform the different structures intensities in one image so that they
match the intensities of the corresponding structures in another image, and this
without resorting to any segmentation method.

The rational behind our formulation is that there is a functional relations-
hip between the intensity of a majority of structures when imaged with diffe-
rent modalities. This assumption is partly justified by the fact that the Woods
criterion [31] as well as the correlation ratio [23], which evaluate a functional
dependence between the intensities of the images to match, have been used with
success in the past, and sometimes lead to better results than MI, which assumes
a more general relation [22,21].

The idea of estimating an intensity transformation during registration is not
new in itself. For example, Feldmar et al. [10] as well as Barber [1] have both
published methods in which intensity corrections are proposed. These methods
restrict themselves to affine intensity corrections in a monomodal registration
context. We propose here a procedure based on one or two higher degree poly-
nomials found using a robust regression technique to enable the registration of
images from different modalities.

The remaining sections of this paper are organized in the following manner.
First, we detail our multimodal elastic registration method. We then describe
what kind of images were used to test the method and how they were acqui-
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red. Next, results obtained by registering different images obtained from several
modalities are presented and discussed. We conclude this paper with a brief
discussion on future research tracks.

2 Method

Our registration algorithm is iterative and each iteration consists of two parts.
The first one transforms the intensities of anatomical structures of a source
image S so that they match the corresponding structures intensities of a target
image T . The second part regards the registration of S (after intensity transfor-
mation) with T using an elastic registration algorithm.

In the following, we first describe the three-dimensional geometrical trans-
formation computation and then the intensity transformation computation. We
believe this ordering is more convenient since it is easier to see what result must
provide the intensity transformation once the geometrical transformation proce-
dure is clarified.

2.1 Geometrical Transformation

Many methods have been developed to deform one brain so its shape matches
that of another [29]. The one used in the present work is an adaptation of
the demons algorithm [27,28]. Adjustments were performed based on empirical
observations as well as on theoretical grounds which are discussed below. For
each voxel with position x in T , we hope to find the displacement v(x) so that
x matches its corresponding anatomical location in S. In our algorithm, the
displacements are computed using the following iterative scheme,

vn+1(x) = Gσ ⊗
(
vn +

S ◦ hn(x) − T (x)
||(∇S ◦ hn)(x)||2 + [S ◦ hn(x) − T (x)]2

(∇S ◦ hn)(x)
)
,

(1)

where Gσ is a Gaussian kernel, ⊗ denotes the three-dimensional convolution,
◦ denotes the composition and the transformation h(x) is related to the dis-
placement by h(x) = x + v(x). As is common with registration methods, we
also make use of multilevel techniques to accelerate convergence. Details about
the number of levels and iterations as well as filter implementation issues are
addressed in Section 4. We here show how our method can be related to other
registration methods, notably the minimization of the sum of squared difference
(SSD) criterion, optical flow and the demons algorithm.

Relation with SSD Minimization In this framework, we find the transfor-
mation h that minimizes the sum of squared differences between the transformed
source image and the target image. The SSD between the two images for a given
transformation h applied to the source is defined as

SSD(h) =
1
2

N∑
x=1

[S ◦ h(x) − T (x)]2. (2)
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The minimization of Equation (2) may be performed using a gradient descent
algorithm. Thus, differentiating the above equation we get

∇SSD(h) = −[S ◦ h(x) − T (x)](∇S ◦ h)(x).

The iterative scheme is then of the form,

hn+1 = hn + α[S ◦ hn(x) − T (x)](∇S ◦ hn)(x),

where α is the step length. This last equation implies,

vn+1 = vn + α[S ◦ hn(x) − T (x)](∇S ◦ hn)(x). (3)

If we set α to a constant value, this method corresponds to a steepest gradient
descent. By comparing Equation (3) to Equation (1), one sees that our method
sets

α =
1

||(∇S ◦ hn)(x)||2 + [T (x) − S ◦ hn(x)]2
(4)

and applies a Gaussian filter to provide a smooth displacement field. Cachier
et al. [6,20] have shown that using Equation (4) closely relates Equation (1) with
a second order gradient descent of the SSD criterion, in which each iteration n
sets hn+1 to the minimum of the SSD quadratic approximation at hn. We refer
the reader to these articles for a more technical discussion on this subject as well
as for the formula corresponding to the true second order gradient descent.

Relation with Optical Flow T and S are considered as successive time sam-
ples of an image sequence represented by I(x, t), where x = (x1, x2, x3) is a
voxel position in the image and t is time. The displacements are computed by
constraining the brightness of brain structures to be constant in time, so that
the following equality holds [14]:

∂I

∂t
+ v · ∇xI = 0. (5)

Equation (5) is however not sufficient to provide a unique displacement for each
voxel. By constraining the displacements to always lie in the direction of the
brightness gradient ∇xI, we get:

v(x) = − ∂I(x, t)/∂t
‖∇xI(x, t)‖2 ∇xI(x, t). (6)

In general, the resulting displacement field does not have suitable smoothness
properties. Many regularization methods have been proposed to fill this pur-
pose [2]. One that can be computed very efficiently was proposed by Thirion [28]
in his description of the demons registration method using a complete grid of
demons. It consists of smoothing each dimension of the vector field with a Gaus-
sian filter. He also proposed to add [∂I(x, t)/∂t]2 to the denominator of Equa-
tion (6) for numerical stability when ∇xI(x, t) is close to zero, a term which
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serves the same purpose as α2 in the original optical flow formulation of Horn
and Schunck [14]. As is presented by Bro-Nielsen and Gramkow [5], this kind of
regularization approximates a linear elasticity transformation model.

With this in mind, the displacement that maps a voxel position in T to its
position in S is found using an iterative method,

vn+1(x) = Gσ ⊗
(
vn − ∂I(x, t)/∂t

‖∇xI(x, t)‖2 + [∂I(x, t)/∂t]2
∇xI(x, t)

)
. (7)

Spatial derivatives may be computed in several ways [14,4,26]. We have ob-
served from practical experience that our method performs best when they are
computed from the resampled source image of the current iteration. As shown
in Section 2.1, this is in agreement with the SSD minimization. Temporal deri-
vatives are obtained by subtracting the target images from the resampled source
image of the current iteration. These considerations relate Equation (7) to Equa-
tion (1). The reader should note that the major difference between this method
and other optical flow strategies is that regularization is performed after the
calculation of the displacements in the gradient direction instead of using an
explicit regularization potential in a minimization framework.

Relation with the Demons Algorithm Our algorithm actually is a small
variation of the demons method [27,28] using a complete grid of demons, itself
closely related to optical flow as described in the previous section. The demons
algorithm finds the displacements using the following formula,

vn+1(x) = Gσ ⊗
(
vn +

S ◦ hn(x) − T (x)
‖∇T (x)‖2 + [S ◦ hn(x) − T (x)]2

∇T (x)
)
.

As can be seen from the last equation, the only difference between our formu-
lation (Equation (1)) and the demons method is that derivatives are computed
on the resampled source image of the current iteration. This modification was
performed following the observations on the minimization of the SSD criterion.

2.2 Intensity Transformation

Previous to each iteration of the geometrical transformation, an intensity cor-
rection is performed on S so that the intensities of its structures match those
in T . The displacement field is then updated by replacing S with its intensity
corrected version in Equation (1).

The intensity correction process starts by defining the set C of intensity
couples from corresponding voxels of T and of the current resampled source
image S ◦ h, which will be designated by S in this section for simplicity. Hence,
the set C is defined as

C =
{(
S(i), T (i)

)
; 1 ≤ i ≤ N

}
,
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where N is the number of voxels in the images. S(i) and T (i) correspond to
the intensity value of the ith voxel of S and T respectively when adopting the
customary convention of considering images as one-dimensional arrays. From
there, we show how to perform intensity correction if one or two functional
dependences can be assumed between the structures intensities.

Monofunctional Dependence Assumption Our goal is to model the trans-
formation that characterizes the mapping from voxel intensities in S to those
in T , knowing that some elements of C are erroneous, i.e. that would not be
present in C if S and T were perfectly matched. If we can assume a monofun-
ctional dependence of the intensities of T with regards to those of S as well as
additive stationary Gaussian white noise η on the intensity values of T , then we
can adopt the model

T (i) = f(S(i)) + η(i), (8)

where f is an unknown function to be estimated. This is exactly the model
employed in [22,21] which leads to the correlation ratio as the measure to be
maximized for registration. In that approach, for a given transformation, one
seeks the function that best describes T in terms of S. It is shown that, in a
maximum likelihood context, the intensity function f̂ that best approximates f
is a least squares (LS) fit of T in terms of S.

Here the major difference is that we seek a high-dimensional geometrical
transformation. As opposed to affine registration where the transformation is
governed by the majority of good matches, we have seen in Section 2.1 that
using the elastic registration model, displacements are found using mainly local
information (i.e. gradients, local averages, etc.). Hence, we can not expect good
displacements in one structure to correct for bad ones in another; we have to
make certain each voxel is moved properly during each iteration. For this, since
the geometrical transformation is found using intensity similarity, the most pre-
cise intensity transformation is required. Consequently, instead of performing a
standard least squares regression, we have opted for a robust linear regression
estimator which will remove outlying elements of C during the estimation of the
intensity transformation. To estimate f we use the least trimmed squares (LTS)
method followed by a binary reweighted least squares (RLS) estimation [25]. The
combination of these two methods provides a very robust regression technique
with outliers detection, while ensuring that a maximum of pertinent points are
used for the final estimation.

Least Trimmed Squares Computation For our particular problem, we will con-
strain the unknown function f to be a polynomial function with degree p:

f(s) = θ0 + θ1s+ θ2s
2 + · · · + θps

p,

where we need to estimate the polynomial coefficients θ = [θ0, . . . , θp]. A regres-
sion estimator will provide a θ̂ = [θ̂0, . . . , θ̂p] which can be used to predict the
value of T (i) from S(i), T̂ (i) = θ̂0 + θ̂1S(i) + θ̂2S(i)2 + · · · + θ̂pS(i)p, as well
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as the residual errors r(i) = T (i) − T̂ (i). A popular method to obtain θ̂ is to
minimize the sum of squared residual errors,

θ̂ = arg min
θ

N∑
i=1

r(i)2,

which leads to the standard LS solution. It is found by solving a linear system
using the Singular Value Decomposition (SVD) method. This method is known
to be very sensitive to outliers and thus is expected to provide a poor estimate of
the monofunctional mapping from S to T . The LTS method solves this problem
by minimizing the same sum on a subset of all residual errors, thus rejecting
large ones corresponding to outliers,

θ̂ = arg min
θ

h∑
i=1

ρ(i),

where ρ(i) is the ith smallest value of the set {r(1)2, . . . , r(N)2}. This corresponds
to a standard LS on the c values that best approximates the function we are
looking for. Essentially, c/N represents the percentage of “good” points in C
and must be at least 50%. A lesser value would allow to estimate parameters
that model a minority of point which could then all be outliers. The value of c
will vary according to the modalities used during registration. Assigning actual
values to c is postponed to Section 4.

Our method for LTS minimization is a simple iterative technique. First, we
randomly pick c/N points from C. We then iterate between calculating θ̂ using
the standard LS technique on the selected points and choosing the h/N closest
points from C. This process is carried until convergence, usually requiring less
than 5 iterations and is guaranteed to find at least a local minimum of the LTS
criterion [24].

Reweighted Least Squares Computation As discussed in [25], the LTS method is
very robust, but it tends to provide an estimate θ̂ that is notably less accurate
than that we would obtain with a standard LS in the absence of outliers. The
solution may be refined by considering all the points that relate well to the LTS
estimate, not only the best c/N × 100%. An efficient technique to achieve this is
the so-called RLS regression [25], which minimizes the sum of squared residuals
over all the points that are not “too far” from the LTS estimate,

θ̂ = arg min
θ

N∑
i=1

wir(i), where wi =

{
1 if r(i) ≤ 3σ̂,
0 otherwise,

where σ̂ is a scale parameter which actually estimates the standard deviation
of the Gaussian noise η introduced in Equation (8). Such an estimate can be
computed directly from the final value of the LTS criterion,

σ̂ =

√√√√K

c

c∑
i=1

ρ(i), with
1
K

=
∫ α

−α
x2g(x) dx, (9)
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where g(x) is the Gaussian distribution N(0, 1) and α is the (0.5 + c/2N)th

quantile of g(x). In Equation (9), K is a normalization factor introduced because
the LTS criterion is not a consistent estimator of σ when the r(i) are distributed
like N(0, σ2), except when c = N .

Bifunctional Dependence Assumption Functional dependence as expressed
in Equation (8) implicitly assumes that two structures having similar intensity
ranges in S should also have similar intensity ranges in T . With some com-
binations of multimodal images, this is a crude approximation. For example,
ventricles and bones generally give similar response values in a MR T1 weighted
image while they appear with very distinct values in a CT scan. Conversely,
white and black matter are well contrasted in a T1 image while corresponding
to similar intensities in a CT.

To circumvent this difficulty, we have developed a strategy that enables the
mapping of an intensity value in S to not only one, but two possible intensity
values in T . This method is a natural extension of the previous method. Instead
of computing a single function that maps the intensities of S to those of T , two
functions are estimated and the mapping becomes a weighted sum of these two
functions.

We start with the assumption that if a point has an intensity s in S, the
corresponding point in T has an intensity t that is normally distributed around
two possible values depending on s, fθ(s) and fψ(s). In statistical terms, this
means that, given s, t is drawn from a mixture of Gaussian distribution,

P (t|s) = π1(s)N(fθ(s), σ2) + π2(s)N(fψ(s), σ2), (10)

where π1(s) and π2(s) = 1 − π1(s) are mixing proportions that depend on the
intensity in the source image, and σ2 represents the variance of the noise in the
target image. Consistently with the functional case, we will restrict ourselves to
polynomial intensity functions, i.e. fθ(s) = θ0 + θ1s + θ2s

2 + · · · + θps
p, and

fψ(s) = ψ0 + ψ1s+ ψ2s
2 + · · · + ψps

p.
An intuitive way to interpret this modelling is to state that for any voxel,

there is a binary “selector” variable ε = {1, 2} that would tell us, if it was
observed, which of the two functions fθ or fψ actually serves to map s to t.
Without knowledge of ε, the best intensity correction to apply to S (in the sense
of the conditional expectation [19]) is seen to be a weighted sum of the two
functions,

f(s, t) = P (ε = 1|s, t)fθ(s) + P (ε = 2|s, t)fψ(s), (11)

in which the weights correspond to the probability that the point be mapped
according to either the first or the second function. We see that the intensity
correction is now a function of both s and t. Applying Bayes’ law, we find that
for ε = {1, 2}:

P (ε|s, t) =
P (ε|s)P (t|ε, s)

P (t|s) ,
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and thus, using the fact that P (ε|s) = πε(s) and P (t|ε, s) = Gσ(t − fε(s)), the
weights are determined by

P (ε|s, t) =
πε(s)Gσ(t− fε(s))

π1(s)Gσ(t− fθ(s)) + π2(s)Gσ(t− fψ(s))
, (12)

where it should be clear from the context that fε ≡ fθ if ε = 1, and fε ≡ fψ if
ε = 2.

In order to estimate the parameters of the model, we employ an ad hoc stra-
tegy that proceeds as follows. First, θ is estimated using the LTS/RLS method
described in section 2.2. The points not used to compute θ, in a number between
0 and N−c, are used to estimate ψ still using the same method. Note that if this
number is less than 10×p, p being the polynomial degree, functional dependence
is assumed and we fall back to the monofunctional assumption.

This provides a natural estimation of the “selector” variable for each voxel:
the n1 points that were used to build fθ are likely to correspond to ε = 1,
while the n2 points used to build fψ are likely to correspond to ε = 2. Finally,
the points that are rejected while estimating ψ are considered as bad intensity
matches. A natural estimator for the variance σ2 is then

σ̂2 =
n1

n1 + n2
σ̂2

1 +
n2

n1 + n2
σ̂2

2 ,

where σ̂2
1 and σ̂2

2 are the variances found respectively for fθ and fψ during the
RLS regression (See Section 2.2.). Similarly, the mixing proportions are compu-
ted according to

π̂ε(s) =
nε(s)

n1(s) + n2(s)
, ε = {1, 2},

in which nε(s) is the number of voxels having an intensity s and used to build
the function fε. Notice that in the case where n1(s) = n2(s) = 0 (i.e. no vo-
xel corresponding to the intensity class s has been taken into account in the
computation of fθ or fψ), then we arbitrarily set the mixing proportions to
π̂1(s) = π̂2(s) = 0.5.

The intensity correction of S can now be performed by reinjecting the esti-
mated parameters in Equations (12) and (11).

3 Data

Most of the data used in the following experiments were obtained from Brain-
Web [3,8,15,9]. This tool uses an atlas with a resolution of 1×1×1mm3 compri-
sing nine segmented regions from which T1, T2 and PD images can be generated.
Three images, one of each modality, were generated with the same resolution as
the atlas, 5% noise and no intensity non-uniformity. Since they are generated
from the same atlas, they represent the same underlying anatomy and are all
perfectly matched.
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We also made use of a T1 MR image and a CT image, both from different
subjects and having a resolution of 1×1×1mm3. Both these images were affinely
registered with the atlas using the correlation ratio method [23]. To differentiate
the T1 image obtained with the atlas from the other T1 image, the latter will
be referenced as SCH.

The images all respect the neurological convention, i.e. on coronal and axial
slices, the patient’s left is on the left side of the image.

4 Results and Discussion

In the following section we present registration results involving images obtained
from several different kinds of modalities. First, we show a typical example where
monofunctional dependence can be assumed: registration of an atlas with an MR
image. Then, more practical examples are shown where images from different
modalities are registered and where bifunctional dependence may be assumed.

The multilevel process was performed at three resolution levels, namely 4mm,
2mm and 1mm per voxel. Displacement fields at one level are initialized from
the result of the previous level. The initial displacement field v0 is set to a zero.
The Gaussian filter Gσ used to smooth the displacement field has a standard
deviation of 1mm. 128 iterations are performed at 4mm/voxel, 32 at 2mm/voxel
and 8 at 1mm/voxel. We believe that making use of a better stopping criterion,
such as the difference of the SSD values between iterations, would probably
improve the results shown below.

4.1 Monofunctional Dependence

We present here the result of registering the atlas with SCH. Since the atlas
can be used to generate realistic MR images, it is safe to assume a functional
dependence from the intensity of the atlas to that of SCH. Also, since SCH
and the atlas are well aligned due to the affine registration, we have roughly
estimated that the number of points already well matched are at least 0.80 ×N ,
to which we have set the value of c. Since 10 classes are present in the atlas, the
polynomial degree chosen was set to 9.

The result of registration is presented in Figure 1. For lack of space, we only
show one set of corresponding slices extracted from the 3D images. However,
we wish to make clear to the reader that the registration was performed in 3D,
not slice by slice. More illustrations will be found in [12]. From left to right,
the first picture shows an axial slice of the atlas. The second one presents the
corresponding slice of SCH (which was chosen as the target image). The third and
fourth pictures show the deformed atlas after elastic registration, respectively
without and with intensity correction.

As can be seen, large morphometric differences have been corrected. Still, the
matching is not perfect which may be observed by comparing the shape of several
structures between SCH and the deformed atlas, e.g. the ventricles and the white
matter. Registration imperfections are reflected in the intensity corrected image
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Fig. 1. Axial slices of the atlas to SCH registration result. From left to right: Atlas;
SCH; atlas without intensity correction after registration with SCH; atlas with intensity
correction after registration with SCH.

(right picture), where one may notice that the CSF intensity is slightly brighter
than that in SCH (as can be seen in the ventricles and around the cortex).
This problem can also be observed by looking at the intensity transformation
function presented in Figure 5. The intensity level corresponding to the CSF is
overestimated due to an overlap of the CSF in the atlas with the gray and white
matter in SCH, especially around the cortical area which is known to present
large variations between subjects.

This is probably an inherent limitation of elastic models when used in the
context of inter-subject registration. The strong smoothness constraints impo-
sed by the Gaussian regularization (or related regularization techniques) may
prevent the assessment of large and uneven displacements required to match the
anatomical structures of different subjects. To allow for larger displacements,
another regularization strategy should be used, such as that based on a fluid
model [7] or on a non-quadratic potential energy [13].

4.2 Bifunctional Dependence

When registering images from different modalities, monofunctional dependence
may not necessarily be assumed. Here, we applied the method described in Sec-
tion 2.2 where two polynomial functions of degree 12 are estimated. This number
was set arbitrarily to a relatively high value to enable important intensity trans-
formations.

Figure 2 presents the result of registering T1 with CT. Using these last
two modalities, most intensities should be mapped to gray and only the skull,
representing a small portion of the image data, should be mapped to white. After
affine registration almost all voxels are well matched. Hence, in this particular
case, we have chosen a high value for c set to 0.90 ×N .

As we can see in Figure 2, the skull, shown in black in the MR image and
in white in the CT scan, is well registered and the intensity transformation
adequate. The top right graph of Figure 5 presents the functions fθ and fψ
found during the registration process. The red line corresponds to fθ and the
blue one to fψ. The line width for a given intensity s is proportional to the value
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of the corresponding πε(s). The gray values represent the joint histogram after
registration. As can be observed on this graph, the polynomials found fit well
with the high density clusters of the joint histogram. Still, some points need to
be addressed.

Fig. 2. Axial slices of the T1 to CT registration result. From left to right: T1; CT; T1
without intensity correction after registration with T1; T1 with intensity correction
after registration with T1.

We can observe that due to the restricted polynomial degree, fθ, (shown in
red) oscillates around the CT gray value instead of fitting a strait line. This is
reflected in the intensity corrected image, where the underlying anatomy can
still be observed by small intensity variations inside the skull. This artifact has
insubstantial consequences during the registration process since the difference
between most of the voxel intensities is zero, resulting in null displacements.
The displacements driving the deformation will be those of the skull and the
skin contours, and will be propagated in the rest of the image as an effect of
smoothing the displacement field.

We also notice that fψ (shown in blue), which is mainly responsible for the
mapping of the skull, does not properly model the cluster it represents for intensi-
ties smaller than 5. The mapping for these intensities is slightly underestimated.
This may have two causes. First, as in the previous case, it might be due to the
restricted polynomial degree. Second, we can notice that some of the background
values in T1 that have an intensity close to 0 are mapped to gray values in the
CT which correspond to soft tissues. This means that some of the background
in the T1 is matched with the skin in the CT. This has the effect of “pulling”
fψ closer to the small cluster positioned around (2,65). If the underestimation
of fψ arises because of the second reason, letting the algorithm iterate longer
might provide a better result.

In Figures 3 and 4, we present the result of registering T2 and PD respectively
with SCH. The bottom graphs of Figure 5 show the corresponding intensity
transformations. For these experiments, c was set to 0.60 ×N , a value we have
found to be effective for these types of modalities after affine registration.

One observation that can be made by looking at the graphs of Figure 5 is that
the estimated functions fθ and fψ are quite similar in both cases. This suggests
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Fig. 3. Coronal slices of the T2 to SCH registration result. From left to right: T2;
SCH; T2 without intensity correction after registration with SCH; T2 with intensity
correction after registration with SCH.

Fig. 4. Sagittal slices of the PD to SCH registration result. From left to right: PD;
SCH; PD without intensity correction after registration with SCH; PD with intensity
correction after registration with SCH.

that assuming a monofunctional dependence would be relevant. However, the
results we obtained when registering T2 with SCH, and PD with SCH, using the
monofunctional model were less convincing than when using the bifunctional
model [12].

This may be explained by a closer look at our bifunctional intensity model-
ling. Equation 10 reflects the assumption that if an anatomical point has an
intensity s in S, the corresponding point has an intensity t in T that is distri-
buted normally around two possible values depending on s. But it makes no
assumption about how the intensities in S are distributed. This models the in-
tensities of S without noise, which may not necessarily be well justified, but
enables the use linear regression to estimate the intensity transformation.

The effect of noise in S is reflected in the joint histograms by enlarging clu-
sters along the x axis. This, added to bad matches and partial volume effect,
creates many outliers in C and makes the assessment of the true intensity trans-
formation more difficult and more resistant to our robust regression technique.
Preprocessing of S using for example anisotropic diffusion may narrow the clu-
sters and provide better results [22].

Adding the estimation of a second function in the bifunctional model helps
counter the effect of noise on S. For example, the CSF in the PD image has
intensity values ranging from about 200 to 240 and gray matter from about 175
to 210. In SCH, these ranges are about 30 to 70 and 55 to 80 respectively. As can
be seen in Figure 5, fθ models well the gray matter cluster but fails to reflect the
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Fig. 5. Graphs of the intensity corrections found in our experiments. From left to right,
top to bottom: Atlas to SCH, T1 to CT, T2 to SCH, PD to SCH. In the last three
graphs, which correspond to bifunctional models, the red (bright) line represents fθ
and the blue (dark) one fψ. The line width for a given intensity value s in the source
image corresponds to the value of the corresponding proportion, πε(s). The gray values
represent the joint histogram after registration.

CSF transformation. Estimating the second polynomial fψ solves this problem
by considering the CSF cluster.

4.3 Displacement Field Comparison

Since the atlas, the T1, the T2 and the PD images have all been registered with
SCH, it is relevant to compare some statistics of the resulting displacement fields
to assess if our algorithm provides consistent results across modalities.

We computed statistics regarding the difference between any two of these dis-
placement fields. The length of the vectors of the resulting difference fields were
calculated. Each cell of Table 1 presents, for each combination of displacement
fields, the median length, the average length with the corresponding standard
deviation and the maximum length of the difference field.

The two largest average errors are 1.58 mm and 1.76 mm, and were found
when comparing the Atlas-SCH registration with T1-SCH and PD-SCH, respec-



Multimodal Elastic Matching of Brain Images 525

Table 1. Statistics regarding the displacements difference between each type of regi-
stration. Each cell presents the median length, the average length with the correspon-
ding standard deviation and the maximum length. All measures are in millimeters.

Difference (mm) Atlas-SCH Atlas-SCH Atlas-SCH T1-SCH T1-SCH T2-SCH
T1-SCH T2-SCH PD-SCH T2-SCH PD-SCH PD-SCH

median 1.46 1.13 1.67 1.00 1.01 1.32
average 1.58 1.23 1.76 1.18 1.16 1.40
std. dev. 0.84 0.63 0.79 0.78 0.71 0.68
maximum 6.99 5.14 7.10 7.17 8.08 6.86

tively. This may be explained by the intensity correction bias for the CSF that
would tend to attenuate displacements and produce larger errors, a problem in-
voked in Section 4.1. Aside from these, the average error length varies between
0.97mm and 1.40mm and the median error is between 0.85mm and 1.32mm.
These are values in the range of the image resolution of 1.0mm. Note also that
all the standard deviations are below this value.

Also, we observe that the results obtained when registering images from diffe-
rent modalities (Atlas-SCH, T2-SCH, and PD-SCH) seem to be consistent with
the monomodal registration result (T1-SCH), in which no intensity correction
was performed. This suggests that the intensity correction may not cause a sen-
sible degradation of the registration when compared to the monomodal case. We
point out, however, that these are global measures that are presented to provide
an idea of the differences between the displacement fields. They do not strictly
provide a validation of the method, but do show a certain coherence between
the different results we obtained.

5 Conclusion

In this paper, we introduced an original method to perform non-rigid registra-
tion of multimodal images. This iterative algorithm is composed of two sections:
the geometrical transformation and the intensity transformation. We have rela-
ted the geometrical transformation computation to several popular registration
concepts: SSD, optical flow and the demons method. Two intensity transforma-
tion models were described which assume either monofunctional or bifunctional
dependence between the intensities of the images to match. Both of these models
are built using robust estimators to enable precise and accurate transformation
solutions. Results of registration were presented and showed that the algorithm
performs well for several kinds of modalities including T1 MR, T2 MR, PD MR,
CT and segmentations, and provides consistent results across modalities.

A current limitation of the method is that it uses Gaussian filtering to re-
gularize the displacement field. This technique was chosen for its computational
efficiency rather than for its physical relevance. In the context of inter-subject
registration, other regularization strategies need to be investigated to better
account for morphological differences.
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K. H. Höhne and R. Kikinis, editors, Proc. VBC’96, volume 1131 of Lecture Notes
in Computer Science, pages 267–276. Springer-Verlag, 1996.

6. P. Cachier, X. Pennec, and N. Ayache. Fast non rigid matching by gradient des-
cent: Study and improvements of the “demons” algorithm. Technical Report 3706,
INRIA, June 1999.

7. G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using
large deformation kinematics. IEEE Transactions in Medical Imaging, 5(10):1435–
1447, October 1996.

8. C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans. Brainweb: Online
interface to a 3D MRI simulated brain database. NeuroImage, Proc. HBM’97,
5(4):S425, May 1997.

9. D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes,
and A. C. Evans. Design and construction of a realistic digital brain phantom.
IEEE Transactions in Medical Imaging, 17(3):463–468, June 1998.

10. J. Feldmar, J. Declerck, G. Malandain, and N. Ayache. Extension of the ICP
algorithm to non-rigid intensity-based registration of 3D volumes. Computer Vision
and Image Understanding, 66(2):193–206, May 1997.

11. T. Gaens, F. Maes, D. Vandermeulen, and P. Suetens. Non-rigid multimodal image
registration using mutual information. In W. M. Wells, A. Colchester, and S. Delp,
editors, Proc. MICCAI’98, volume 1496 of Lecture Notes in Computer Science,
pages 1099–1106. Springer-Verlag, 1998.

12. A. Guimond, A. Roche, N. Ayache, and J. Meunier. Multimodal Brain Warping
Using the Demons Algorithm and Adaptative Intensity Corrections. Technical
Report 3796, INRIA, November 1999.
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