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Abstract. In this paper, we first show that there are several equivalent
keys for t + 1 chosen plaintexts if the degree of the reduced cipher is
t−1. This is against the claim by Jakobsen and Knudsen. We also derive
an upper bound on the number of equivalent last round keys for t + 1
chosen plaintexts. We further show an efficient method which finds all
the equivalent keys by using Rabin’s root finding algorithm. We call our
attack root finding interpolation attack
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1 Introduction

Consider a Feistel type block cipher of block size 2n with a round function
F (K,x). For a fixed key K, F (K,x) can be viewed as a polynomial fK(x) in
x over GF(2n). The interpolation attack [4] succeeds if deg fK(x) is small for
any K and the number of rounds is not large. More precisely, suppose that the
degree of the reduced cipher is t− 1, where the degree of the reduced cipher will
be defined in Definition 2.1. Then

1. Jakobsen and Knudsen claimed that the last round key Km can be recovered
from t + 1 chosen plaintexts (see [4, Theorem 3]).

2. They used exhaustive search to find Km.

On the other hand, given a polynomial f(x) over GF(p), Berlekamp proposed
a probabilistic algorithm of finding a root α ∈ GF(p) of f(x) = 0 for any odd
prime p [1]. Rabin generalized Berlekamp’s algorithm to any finite fields [8].
In Rabin’s algorithm, the expected number of bit operations to find a root of
f(x) = 0 over GF(2n) is

O(n2dL(d)L(n)),

where d = deg f(x) and L(n) = logn × log log n.
In this paper, we first show that for t+1 chosen plaintexts, there are several

equivalent keys. This is against the claim by Jakobsen and Knudsen [4, Theorem
3]. We also derive an upper bound on the number of equivalent last round keys
for t + 1 chosen plaintexts.
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We next show an efficient method which finds all the equivalent last round
keys Km. We call our attack root finding interpolation attack because it uses
Rabin’s root finding algorithm [8]. By using more than t + 1 chosen plaintexts,
we can uniquely determine Km.

Further, Jakobsen and Knudsen claimed that the number of necessary chosen
plaintexts can be smaller than t+1 if they use the meet in the middle approach
[4]. However, the number of equivalent keys increases if the number of chosen
plaintexts decreases in general. Therefore, their claim cannot be justified. For
this problem, we derive another upper bound on the number of equivalent last
round keys for a certain number of chosen plaintexts which is less than t + 1.

Related works: Youssef and Gong studied the effect of the choice of the irreducible
polynomial defining GF(2n) on deg fK(x) and whether or not there exists a
simple linear transformation on the input or output bits such that the resulting
polynomial has a less degree [9].

The higher differential attack succeeds if the round function F (K,x) can be
expressed as a set of low degree Boolean functions [4]. Moriai et al. showed an
improved higher differential attack for a 5 rounds CAST cipher in which Km is
computed by solving simultaneous linear equations [6].

2 Preliminaries

2.1 Notation

Consider an m round Feistel type block cipher with block size 2n. Let x =
(xL, xR) denote the plaintext, where xL = (x1, . . . ,xn) and xR = (xn+1, . . . ,x2n).
Similarly, let y = (yL, yR) denote the ciphertext. Let

CL
0

�
= xL and CR

0
�
= xR .

The round function F operates as follows.{
CL

i = CR
i−1 ,

CR
i = F (Ki, C

R
i−1) + CL

i−1 ,
(1)

where Ki denotes the i-th round key. The ciphertext y = (yL, yR) is given by
(CR

m, CL
m). See Fig. 1.

2.2 Reduced Cipher Assumption

We say that:

1. (CR
m−1, C

L
m−1) is the reduced ciphertext and

2. (CR
m−2, C

L
m−2) is the second reduced ciphertext, respectively.

Define

ỹ = (ỹL, ỹR)
�
= (CR

m−1, C
L
m−1)

ŷ = (ŷL, ŷR)
�
= (CR

m−2, C
L
m−2).

See Fig. 1.
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Fig. 1. The m round Feistel cipher

Definition 2.1. Fix the right half of a plaintext xR as xR = 0. Fix the key of
the block cipher arbitrarily. Then we say that:

1. A block cipher satisfies the reduced cipher assumption of degree t − 1 if the
right half ỹR of the reduced ciphertext can be expressed as

ỹR = f1(xL) (2)

for some polynomial f1(x) over GF(2n) such that deg f1(x) ≤ t − 1.
2. A block cipher satisfies the second reduced cipher assumption of degree u− 1
if the right half ŷR of the second reduced ciphertext can be expressed as

ŷR = f2(xL) (3)

for some polynomial f2(x) over GF(2n) such that deg f2(x) ≤ u − 1.
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2.3 Lagrange Interpolation

Let Q be a field. Given 2t elements x1, . . . , xt, y1, . . . , yt ∈ Q, where the xis are
distinct. Define

f(x) =
t∑

i=1

λi(x)yi, (4)

where
λi(x) =

∏
1≤j≤t,j �=i

x − xj

xi − xj
.

Then f(x) is the only polynomial over Q of degree at most t − 1 such that
f(xi) = yi for i = 1, . . . , t. Eq.(4) is known as the Lagrange interpolation formula.

3 Root Finding Algorithm over GF(2n)

Given a polynomial h(x) of degree d with coefficients in GF(2n), Rabin showed
an efficient probabilistic polynomial time algorithm which computes a root of
h(x) = 0 in GF(2n) if such a root does exist [8].

First compute
h1(x) = gcd(h(x), x2n−1 − 1).

If h1(x) = 1, then h(x) has no roots in GF(2n). In general,

h1(x) = (x − α1) · · · (x − αk), k ≤ d,

where the αi are the pairwise different roots in GF(2n) of h(x) = 0.
On the other hand, the trace function is defined as

Tr(x) = x + x2 + · · · + x2n−1
.

For any α ∈ GF(2n), it is known that

Tr(α) = 0 or 1.

Rabin first proved the following proposition

Proposition 3.1. For any fixed α1 �= α2 ∈ GF(2n), choose r ∈ GF(2n) ran-
domly. Then

Pr(Tr(rα1) �= Tr(rα2)) =
1
2
.

Rabin next showed the following root finding algorithm.
Let h0(x) = h1(x).

Step 1. If deg h0(x) = 1, then we have found a root. Otherwise goto step 2.
Step 2. Choose r ∈ GF(2n) randomly. Compute

hr(x) = gcd(h0(x),Tr(rx)).
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Step 3. If hr(x) = 1 or h0(x), goto step 2. Otherwise, let

h0(x) :=
{

hr(x) if deg hr(x) ≤ 1
2 deg h0(x)

h0(x)/hr(x) otherwise.

Goto Step 1.

From Proposition 3.1, it holds that

Pr [0 < deg hr(x) < deg h1(x)] ≥ 1
2
.

Therefore, it can be shown that [8] the expected number of bit operations is

O(n2dL(d)L(n)),

where
L(n) = logn × log log n.

4 Equivalent Keys
and Root Finding Interpolation Attack

In this section, we first show that for t + 1 chosen plaintexts, there are several
equivalent keys. This is against the claim by Jakobsen and Knudsen [4, Theorem
3]. We also derive an upper bound on the number of equivalent last round keys
for t + 1 chosen plaintexts.

We next show an efficient method which finds all the equivalent keys. We call
our attack root finding interpolation attack because it uses Rabin’s root finding
algorithm [8]. By using more than t + 1 chosen plaintexts, we can uniquely
determine Km.

For a plaintext (xL, xR) = (xi, 0), let (yL,i, yR,i) denote the ciphertext,
(ỹL,i, ỹR,i) denote the reduced ciphertext and (ŷL,i, ŷR,i) denote the second re-
duced ciphertext.

4.1 Key Equation

In this subsection, we derive a key equation

h(Km) = 0

in Km such that deg h(Km) ≤ d, where d is given below.

Definition 4.1. We say that the round function F satisfies K polynomial as-
sumption of degree d if for any fixed x, there exists a polynomial gx with deg gx(K)
≤ d such that

F (K,x) = gx(K).
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Suppose that there exists a block cipher which satisfies the reduced cipher
assumption of degree t − 1. Further, without loss of generality, we can assume
that there exists d such that the block cipher satisfies K polynomial assumption
of degree d.

First by using the Lagrange formula, f1(x) of eq.(2) can be expressed as

f1(x) = λ1(x)f1(x1) + · · · + λt(x)f1(xt)

for some polynomials λ1(x), . . . , λt(x), where each λi(x) is determined by x1,
. . . , xt. Then we have

f1(xt+1) = λ1(xt+1)f1(x1) + · · · + λt(xt+1)f1(xt)

for x = xt+1. Substituting eq.(2) into the above equation yields that

ỹR,t+1 = λ1(xt+1)ỹR,1 + · · · + λt(xt+1)ỹR,t (5)

On the other hand, from eq.(1), it holds that

ỹR,i = F (Km, yR,i) + yL,i. (6)

Substitute eq.(6) into eq.(5). Then we have

F (Km, yR,t+1) + yL,t+1

= λ1(xt+1)(F (Km, yR,1) + yL,1) + · · · + λt(xt+1)(F (Km, yR,t) + yL,t) (7)

The above equation is rearranged as

h(Km) = 0 (8)

for some polynomial of Km over GF(2n) such that

deg h(K) ≤ d

from K polynomial assumption of degree d. We call eq.(8) the key equation. (This
equation is not redundant. That is, we cannot reduce deg h(Km).)

4.2 Equivalent Keys

Jakobsen and Knudsen claimed that the last round key Km can be recovered
from t+1 chosen plaintexts in [4, Theorem 3]. However, eq.(8) implies that there
are d or less equivalent keys. Now we have proved the following theorem.

Theorem 4.1. Suppose that there exists a block cipher which satisfies the re-
duced cipher assumption of degree t − 1 and K polynomial assumption of degree
d. Then for t+1 chosen plaintexts, there are d or less equivalent last round keys.

In fact, the interpolation attack must require more than t+1 chosen plaintexts
to uniquely determine Km. If the round function F (K,x) is not algebraically
constructed, the situation is worse because d is usually large. In this case, there
are many equivalent keys for t+1 chosen plaintexts and the interpolation attack
will require many chosen plaintexts to uniquely determine Km.
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4.3 Root Finding Interpolation Attack

We propose an attack which efficiently finds all the equivalent keys Km by solv-
ing eq.(8) by using Rabin’s algorithm of Sec.3. By using more than t+1 chosen
plaintexts, we can uniquely determine Km. We call this attack root finding in-
terpolation attack.

First suppose that t + 1 chosen plaintext/ciphertext pairs are available such
that the plaintexts are (x1, 0), . . . , (xt+1, 0) and the ciphertexts are (yL,1, yR,1),
. . . , (yL,t+1, yR,t+1). Then

Step 1. Compute the coefficients of h(Km) of eq.(8) from x1, . . . , xt+1 and
(yL,1, yR,1), . . . , (yL,t+1, yR,t+1). Especially, λi(x) is determined by x1, . . . , xt

though the Lagrange interpolation formula.
Step 2. Solve eq.(8) by using Rabin’s algorithm of Sec.3. Then we obtain d or

less equivalent keys Km.

Next suppose that some extra (chosen plaintext, ciphertext) pairs are avail-
able. Then the set of equivalent keys is made smaller and we can finally uniquely
determine Km. An alternative way is as follows. Obtain two key equations
hi(Km) = 0 for i = 1, 2 from t + 2 chosen plaintexts. Compute gcd(h1(Km),
h2(Km)). If Km is uniquely determined from the gcd, then we have done. Oth-
erwise, execute the same procedure for more chosen plaintexts.

5 On the Meet in the Middle Approach

Jakobsen and Knudsen also claimed that the number of necessary chosen plain-
texts can be smaller than t + 1 if they use the meet in the middle approach
[4]. However, the number of equivalent keys increases if the number of chosen
plaintexts decreases in general. Therefore, their claim cannot be justified.

In this section, we derive an upper bound on the number of equivalent last
round keys for certain number of chosen plaintexts which is less than t + 1.

Suppose that there exists a block cipher which satisfies the second reduced
cipher assumption of degree u − 1 and K polynomial assumption of degree d.
Then from u+2 chosen plaintexts, we first derive two equations on (Km−1,Km)
such that

H1(Km−1,Km) = 0,
H2(Km−1,Km) = 0.

We next compute the resultant

h(Km)
�
= R(H1, H2)

of H1 and H2 which yields that deg h(Km) ≤ 2d3. The above equation means
that there are 2d3 or less equivalent last round keys for u+ 2 chosen plaintexts.

Finally, we can find all the equivalent keys by solving h(Km) = 0 by the
Rabin’s algorithm.
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5.1 Resultant [10]

Let

A(x) =
d∑

i=0

aix
i

B(x) =
e∑

i=0

bix
i

be two polynomials over a field Q.
Define

R(A,B) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ad ad−1 · · · a0
ad ad−1 · · · a0

. . . . . .
be be−1 · · · b0

be be−1 · · · b0
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


 e


 d

We say that R(A,B) is the resultant of A(x) and B(x).

Proposition 5.1. A(x) and B(x) have a common root in Q if and only if

R(A,B) = 0.

5.2 Key Equation

First by using the Lagrange formula, f2(x) of eq.(3) can be expressed as

f2(x) = δ1(x)f2(x1) + · · · + δu(x)f2(xu)

for some polynomials δ1(x), . . . , δu(x), where each δi(x) is determined by x1,
. . . , xu. Then we have

f2(xu+1) = δ1(xu+1)f2(x1) + · · · + δu(xu+1)f2(xu)

for x = xu+1. Substituting eq.(3) into the above equation yields that

ŷR,u+1 = δ1(xu+1)ŷR,1 + · · · + δu(xu+1)ŷR,u (9)

On the other hand, from eq.(1), it holds that

ŷR,i = F (Km−1, ỹR,i) + ỹL,i

= F (Km−1, F (Km, yR,i) + yL,i) + yR,i. (10)

Substitute eq.(10) into eq.(9). Then we have

H1(Km−1,Km) = 0
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such that

H1(Km−1,Km) =
d∑

i=0

ai(Km)Ki
m−1

deg ai(Km) ≤ d2

from K polynomial assumption.
Similarly for x = xu+2, we have

H2(Km−1,Km) = 0

such that

H2(Km−1,Km) =
d∑

i=0

bi(Km)Ki
m−1

deg bi(Km) ≤ d2

Finally, let
h(Km)

�
= R(H1, H2),

where R(H1, H2) is the resultant of H1 and H2. From Proposition 5.1, it holds
that

h(Km) = 0

since H1 and H2 have a common root. Further, we can see that

deg h(K) ≤ 2d3

5.3 Equivalent Keys

From the previous subsection, we obtain the following theorem.

Theorem 5.1. Suppose that there exists a block cipher which satisfies the second
reduced cipher assumption of degree u−1 and K polynomial assumption of degree
d. Then for u + 2 chosen plaintexts, there are 2d3 or less equivalent last round
keys.

5.4 Root Finding Resultant Attack

We propose an attack such as follows which we call root finding resultant attack.
First suppose that u+2 chosen plaintext/ciphertext pairs are available such

that the plaintexts are (x1, 0), . . . , (xu+2, 0) and the ciphertexts are (yL,1, yR,1),
. . . , (yL,u+2, yR,u+2). Then

Step 1. Compute the coefficients of H1 and H2 from x1, . . . ,xu+2 and (yL,1,yR,1),
. . . , (yL,u+2, yR,u+2).

Step 2. Compute h(Km) = R(H1, H2).
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Step 3. Solve h(Km) = 0 by using Rabin’s algorithm of Sec.3. Then we obtain
2d3 or less equivalent keys Km.

Next suppose that some extra (chosen plaintext, ciphertext) pairs are avail-
able. Then the set of equivalent keys is made smaller and we can finally uniquely
determine Km. We can also have an alternative method similarly to Sec.4.3.

6 Example

The m round PURE cipher [4] is defined by letting

F (K,x) = (K + x)3

over GF(232).

Lemma 6.1. In eq.(4),

λ1(x) + · · · + λt(x) = 1.

Proof. f(x) = 1 is the only polynomial over Q of degree at most t− 1 such that
f(xi) = 1 for i = 1, . . . , t. Therefore, from eq.(4), we have

1 = λ1(x) + · · · + λt(x).

Q.E.D.

Corollary 6.1. The m round PURE cipher has two or less equivalent last round
keys for 3m−3 + 2 chosen plaintexts.

Proof. Let t − 1 = 3m−3 and d = 3. Then Theorem 4.1 tells us that there are
d = 3 or less equivalent last round keys for t + 1 = 3m−3 + 2 chosen plaintexts.
However, in this case, eq.(7) is written as follows.

(Km + yR,t+1)3 + yL,t+1

= λ1(xt+1)((Km + yR,1)3 + yL,1) + · · · + λt(xt+1)((Km + yR,t)3 + yL,t).

By rearranging the above equation, we obtain the key equation h(Km) such that

deg h(Km) = 2

because the coefficient of K3
m is canceled from lemma 6.1. This implies that there

are two or less equivalent last round keys.
Q.E.D.

The proposed attack computes all the equivalent keys Km by solving the
quadratic equation h(Km) = 0 over GF(232). By using one more chosen plain-
text, we can uniquely determine Km.

On the contrary, Jakobsen and Knudsen claimed that the interpolation attack
needs 3m−3 + 2 chosen plaintexts to recover Km.
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Corollary 6.2. The m round PURE cipher has 54 or less equivalent last round
keys for 3m−4 + 3 chosen plaintexts.

Proof. Let u − 1 = 3m−4 and d = 3. Then Theorem 5.1 tells us that there are
2d3 = 54 or less equivalent last round keys for u+2 = 3m−4+3 chosen plaintexts.

Q.E.D.

7 Summary

In this paper, we first showed that for t + 1 chosen plaintexts, there are several
equivalent last round keys if the degree of the reduced cipher is t − 1. This is
against the claim by Jakobsen and Knudsen on interpolation attack [4, Theorem
3]. We also derived an upper bound on the number of equivalent last round keys
for t + 1 chosen plaintexts.

We next showed an efficient method which finds all the equivalent last round
keys Km. We call our attack root finding interpolation attack because it uses
Rabin’s root finding algorithm [8]. By using more than t + 1 chosen plaintexts,
we can uniquely determine Km.

The number of equivalent keys increases if the number of chosen plaintexts
decreases in general. For this problem, we derived another upper bound on the
number of equivalent last round keys for a certain number of chosen plaintexts
which is less than t + 1.

As an example, we showed that the m round PURE cipher has two or less
equivalent last round keys for 3m−3+2 chosen plaintexts and 54 or less equivalent
last round keys for 3m−4 + 3 chosen plaintexts. The proposed attack efficiently
computes all the equivalent keys Km by solving a key equation h(Km) = 0
over GF(232) by using Rabin’s root finding algorithm. By using more chosen
plaintext, we can uniquely determine Km.

It will be interesting if we can extend our method to the probabilistic in-
terpolation attack [3] which succeeds even if F (K,x) is approximated by a low
degree polynomial.
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