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Abstract. The National Weather Service (NWS) Mesocyclone Detec-
tion Algorithms (MDA) use empirical rules to process velocity data from
the Weather Surveillance Radar 1988 Doppler (WSR-88D). In this study
Support Vector Machines (SVM) are applied to mesocyclone detection.
Comparison with other classification methods like neural networks and
radial basis function networks show that SVM are more effective in meso-
cyclone/tornado detection.

1 Introduction

The National Weather Service (NWS)uses several severe weather detection algo-
rithms. One of them is the Mesocyclone Detection Algorithm(MDA). It is based
on empirical rule based algorithms and works on the WSR-88D. The skill of the
MDA algorithm is rather low. For example, the percentage of observed mesocy-
clones that were correctly forecast is below fifty percent. Additionally, there are
a large number of mesocyclones forecast that do not occur. Moreover, modeling
of a complex dynamical system with a closed mathematical expression is not an
easy task. Owing to these two factors, there is a need to develop or use new
techniques to address the problem.

One of the techniques that does not rely on assumptions about the under-
lying probability distribution governing the input data is Support Vector Ma-
chines(SVM). This is in contrast to other types of models that assume the data
follow the normal distribution, like those based on the linear discriminant anal-
ysis (DA) method. Furthermore, the SVM classification method is more robust
than other techniques such as neural networks (NN) and radial basis networks
[14].

The MDA algorithm and SVM methods will be briefly explained in the next
two sections. Then a comparison with other techniques is discussed in section 4.
Section 5 concludes the paper.
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2 The Mesocyclone Detection Algorithm (MDA)

In this section we present one of the detection algorithms developed by the
National Severe Storms Laboratory (NSSL), the MDA (Mesocyclone Detection
Algorithm). The data used in this study are intermediate data computed by this
algorithm. The NSSL has developed the NSSL MDA for the WSR-88D system
to automatically detect and diagnose the Doppler radar radial velocity patterns
associated with all storm-scale (1-10km diameter) vortices in thunderstorms,
rather than defining the strength thresholds at the very first analysis step used
by 88D B9MDA. The first step of the algorithm is to preprocess the Doppler
velocity data. Noisy data, such as velocities whose reflectivity values are below
a preset threshold (typically 0 - 20 dBZ), are deleted. Next, the NSSL MDA’s
automated vortex detection techniques set the initial strength thresholds to be
much lower, and classifications and diagnosis are performed on the properties of
the four-dimensional detections. The algorithm first processes data at the one-
dimensional (1D) level; shear segments of cyclonic azimuthal shear are detected.
Next, the shear segments are horizontally associated to form two-dimensional
(2D) features. The NSSL MDA then uses vertical association to create three-
dimensional (3D) detections at the end of each volume scan. Finally, time as-
sociation and tracking are employed to complete the process. More information
about how MDA works can be found in [5,13].

3 Support Vector Machines: A Brief Review

SVM is a learning machine developed by Vapnik [3,14] based on statistical learn-
ing theory [15]. In the case of classification [1,3,6,7], we try to find an optimal
hyperplane that separates two classes of data points D� as shown in Figure 1.
The objective is to establish an equation of the hyperplane that divides D� into
two sets S1 and S2, leaving all the points of the same class on the same side while
maximizing the minimum distance between either of the two classes and the re-
sulting hyperplane [3,1]. In order to find the hyperplane that has the maximum
margin between the two classes while at the same time minimizes the misclas-
sification error on D�, one has to solve the following Quadratic Programming
(QP) optimization problem:

min
1
2
‖w‖2 + C

�∑

i=1

ξi (1)

Subject to
yi · (w · xi + b) ≥ 1 − ξi, i = 1, 2, ..., l

ξi ≥ 0,

where w ∈ �d is the vector normal to the separating hyperplane, b ∈ � is the
offset with respect to the origin, ξi are the slack variables that measure the em-
pirical misclassification error, y = ±1 and C is the regularization parameter [4,
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16,11,15] defining the trade off between margin and empirical error. By assigning
a Lagrangian multiplier αj to each constraint and by introducing the variables
α = (α1, α2, ..., αl), the matrix Kij = (yiyjxixj), and vectors e = (1, 1, ..., 1),
and y = (y1, y2, ..., yl), the dual problem can be formulated in closed form as:

max −αT e +
1
2
αT · K · α (2)

Subject to
αT · y = 0

0 ≤ αj ≤ C ∀j = 1, ..., l.

Fig. 1. Separating hyperplane and optimal separating hyperplane. Both solid lines in
(a) and (b) separate the two identical sets described by circles and triangles. But the
solid line in (b) leaves the closest points (filled circles and triangles) at the maximum
distance. The distance between dashed lines in (b) gives the maximum margin.

The above approach can be generalized in the case of nonlinear separating
surfaces mapping the input data {xi}l

i=1 into a higher dimensional feature space
through the use of a feature map φ : �d → F . Then a separating hyperplane (if
it exists) can be found in that space.

Our objective is to determine a discriminant function

f(x) = sign(w · φ(x) + b) =
{

+1 if x ∈ S1
−1 if x ∈ S2

}
, (3)

where φ : �d → F is a map of �d into the feature space F.
Specifically, the corresponding SVM optimization problem is as follows:

min
1
2
‖w‖2 + C

�∑

i=1

ξi (4)

Subject to
yi · (w · φ(xi) + b) ≥ 1 − ξi, i = 1, 2, ..., l

ξi ≥ 0.
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The solution of the above problem can be expressed as a linear combination
of the φ-images of the data points [9], i.e.

w =
l∑

i=1

αi · yi · φ(xi). (5)

Therefore, if we define a dot product in the feature space [9] as k(xi, xj) = φ(xi)·
φ(xj), then problem 4 can be expressed as in 2 but with Kij = yi · yj · k(xi, xj).

Combining equation (3) and (5), f(x) can be expressed as follows

f(x) = sign

(
l∑

i=1

αi · yi · φ(xi) · φ(x) + b

)
(6)

or equivalently, using the kernel function as

f(x) = sign

(
l∑

i=1

αi · yi · k(xi, x) + b

)
(7)

The important data points are the ones for which αi > 0 where α denotes the
optimal solution of the above problem 1. Those points are called support vectors
and provide a sparse representation of the discriminant function. Usually, the
number of support vectors is smaller than the number of data points. There are
several kernel function to choose, e.g. radial basis function, polynomial function,
etc. [16].

To solve this quadratic programming problem, several decomposition algo-
rithm have been proposed [12,2,8]. In this paper, an SVM learning decomposition
algorithm, SVMTorch [2] is applied to mesocyclone detection since the number
of data is large (3768 data points).

4 Experiments

The circulation database used for SVM method was ’truthed’ to determine which
circulations were associated with reports of tornado events. This was the first
step to obtain the actual target value for each observation. Then, the missing
observations were removed from the dataset. 23 variables were chosen as inputs.
These variables are intermediate outputs of WSR-88D and NSSL mesocyclone
algorithms. They are used by the National Weather Service to diagnose meso-
cyclones during the severe storm warning operations.

In a recent paper [13],the reduction of input variables is suggested by using
statistical methods or principal component analysis. On the other hand, some
authors suggest that these techniques do not improve the prediction of the tor-
nados [5]. Because of this, all variables will be used in this paper. The definition
of the variables and more information can be found in [13,5].
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Table 1. Confusion Matrix

Observed

Yes No Total

Forecast Yes Hits (a) False Alarm (b) Forecast Yes
No Misses (b) Correct Negatives (d) Forecast No

Total Observed Yes Observed No Total

The performance of SVM methods is evaluated by using a suite of forecast
evaluation indices based on a contingency table (otherwise also known as a ”con-
fusion matrix”). More information about some of these measures can be found
in [13,5,10,17]. The confusion matrix is shown in Table 1.

In this definition of the confusion matrix, the Probability of Detection, POD,
can be defined as

POD =
a

(a + c)
. (8)

POD measures the fraction of observed events that were correctly forecast.Its
range is 0 to 1 and a perfect score is 1 (or 100%). Note that POD is sensitive
to hits, good for rare events. POD ignores false alarms and can be improved
artificially by issuing more ”yes” forecasts to increase the number of hits.

False Alarm Rate, FAR, can be defined as

FAR =
b

(a + b)
. (9)

FAR measures the fraction of ”yes” forecasts in which the event did not occur.
Its range is 0 to 1 and 0 is a perfect rate. FAR is sensitive to false alarms and it
ignores misses. It can be improved artificially by issuing more ”no” forecasts to
reduce the number of false alarms.

The Critical Success Index, CSI, is defined as

CSI =
a

(a + c + b)
. (10)

CSI measures the fraction of observed and/or forecast events that were cor-
rectly forecast. Its range is 0 to 1 with a perfect score being 1. CSI is sensitive to
hits, penalizes both misses and false alarms. It does not distinguish the source
of forecast error and it depends on the climatological frequency of events (worse
scores for rarer events) since some hits can occur purely due to random chance.
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Accuracy is defined as

Accuracy =
(a + d)
total

. (11)

Accuracy measures the fraction of all forecasts that were correct, which makes
it a seemingly intuitive measure. The range is 0 to 1 with 1 being best. However,
it can be misleading since it is heavily influenced by the most common category,
usually ”no event” in the case of severe weather.

Bias is defined as

Bias =
(a + b)
(a + c)

. (12)

Bias measures the ratio of the frequency of forecast events to the frequency
of observed events. The range is from 0 to infinity. A perfect score is 1. Bias
indicates whether the forecast system has a tendency to underforecast (bias <
1) or overforecast (bias >1) events. It does not measure how well the forecast
corresponds to the observations; it measures only relative frequencies.

Probability of False Detection, POFD, is defined as

POFD =
b

(b + d)
. (13)

POFD measures the ratio of false alarms to the total number of no observa-
tions. The probability of false detection is a measure of inaccuracy with respect
to the observations and provides a measure of the extent to which the forecasts
provide a false warning for the occurrence of an event. POFD varies from 0 to
1. A perfect score is zero.

Hanssen and Kuipers discriminant (true skill statistic), H-K Skill,is a measure
of the improvement of a forecast over some reference forecast (e.g., random
forecast).

H − KSkill =
a

(a + c)
− b

(b + d)
. (14)

H-K Skill measures the ability of the forecast to separate the ”yes” cases from
the ”no” cases. It can also be interpreted as accuracy(events) + accuracy(non-
events) - 1. H-K Skill ranges from -1 to 1 with 0 indicating no skill. A perfect
statistic value is 1. The advantage of H-K Skill is that it uses all elements in
contingency table. It does not depend on climatological event frequency. For
rare events, H-K Skill is weighted heavily toward the first term (same as POD).

Odds Ratio, OR, is a newer statistic for forecast evaluation.

OR =
(a ∗ d)
(c ∗ b)

. (15)

OR measures the ratio of the probability of making a hit to the probability
of making a miss or false alarm. For the OR, the range is 0 to infinity, 1 indicates
no skill. A perfect score is infinity. OR gives better scores for rarer events.
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Comparison of SVM, NN, DA and the rule-based MDA based on these indices
are given in Tables 3 and 4. The trade-off value(C), kernel functions and kernel
related parameter have to be determined. The trade-off value is set to 1000. The
radial basis kernel function is used that is shown in equation (16).

k(x, y) = exp(− 1
2σ2 ‖x − y‖2) (16)

We have used different σ’s to find the best fit. Table 2 shows the results for
different parameters. As it can be seen from the Table 2, the tornado dataset
verification indices are very sensitive to this parameter. The results show that
accuracy increases up to a σ of 7.25 and then decreases slightly. A similar be-
havior can be seen for CSI. The POD is relatively insensitive to σ over the range
tested, though the highest values occur between σ values of 2.5 and 7.25. The
Bias indicates that all of the values lead to underforecasting, though it is min-
imized at the two lowest values of σ. The odds ratio shows a clear advantage
at the two largest σ. Both the FAR and POFD should be lowest for the best
results. These measures are lowest for the two largest values of σ. The skill score
is high over the σ range 2.5 to 15, with a maximum of 57.13 percent at a σ of
7.5.

Table 2. The Accuracy, CSI, POD, Bias, ODDS, FAR, POFD and H-K Skill for
different kernel parameters

σ ACCURACY CSI POD Bias ODDS FAR POFD H-K Skill

(%) (%) (%) (%) (Ratio) (%) (%) (%)

1.25 83.60 44.65 60.13 94.76 14.08 36.43 9.77 50.36
2.5 85.54 48.70 62.38 90.48 19.54 30.99 7.93 54.45
7.25 88.27 53.46 61.24 75.80 37.44 19.19 4.11 57.13
15 87.98 51.75 58.71 72.15 36.53 18.61 3.79 54.92

Tables 3 and 4 show that the SVM method outperforms the NN, DA and
MDA rule based algorithms. For comparison, 10 different training and validation
sets are used. The average CSI, POD and FAR are provided.

Since the MDA employs a rule based algorithm, it does not explain the
relation between the tornado and the input variables. DA is a classification
method with several assumptions such as normality and the homoscedasticity of
the distribution. Most of the time those assumptions are violated. The theory
behind the NN does not make any assumption about the distribution of the
empirical data. Because of this, it outperforms the MDA rule based algorithm
and DA. Despite this, the error function for NN is not convex and most of the
time, the solution is a local optimum. In contrast, the SVM approach provides
the most optimal solution of the methods tested because the SVM training
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Table 3. The validation CSI for SVM, NN, MDA and DA for ten different training
and validation sets. The values for MDA, DA and NN are taken from [5].

Seed CSIMDA CSIDA CSINN CSISV M

1 26.9 31 36.9 47.78
2 24 29.2 35.7 47.49
3 24.7 28.1 38.3 50.2
4 28.7 27.7 33.6 49.38
5 27.4 30 34.2 47.5
6 28 28.8 32.5 44.93
7 29.9 26.1 33.1 51.62
8 21.3 28.7 29.1 48.19
9 27.7 30.6 37.8 50.5
10 21.5 26.5 31.7 49.41

Average 26.01 28.67 34.29 48.7

Table 4. The POD and the FAR are also shown for SVM and NN. The values for
MDA, DA and NN are taken from [5].

Seed PODNN FARNN PODSV M FARSV M

1 51.2 43.10 62.53 33.06
2 50 44.4 60 30.5
3 55 44.3 64.05 30.11
4 58.8 56.1 60.51 27.13
5 50 48.1 60.25 30.81
6 47.5 49.3 59.49 35.26
7 52.5 52.8 68.61 32.42
8 46.2 56 60.51 29.71
9 60 49.5 64.56 30.14
10 47.5 51.3 63.29 30.75

Average 51.87 49.49 62.38 30.99

algorithm is convex. Hence, it outperforms the other three methods. The details
of the comparison between these techniques are based on the forecast verification
statistics. The results indicate that both the CSI and POD are considerably
larger for SVM, whereas the FAR is reduced dramatically to less than half of
value found for the currently deployed NN algorithm (Table 2, σ =7.25).

5 Conclusions

We have applied a novel approach to mesocyclone and tornado detection. In the
forecasting of tornadoes, accuracy or detection, length of lead time and a low false
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alarm rate are crucial elements for success. If mesocyclones are predicted with an
algorithm containing these attributes, that will help to minimize the loss of life.
Comparison of the four methods (MDA, DA, NN, SVM) has been performed.
Currently, the WSR-88D Doppler radar uses the MDA rule based algorithm
and NN. These existing algorithms have moderate detection probabilities and
moderate false alarm rates. The moderate FAR is particularly insidious, as it
tends to lull the public into a false sense of complacency concerning tornado
warnings. The SVM algorithm is the most accurate algorithm in terms of the
highest values of CSI, POD and the lowest of FAR (less than half the FAR of the
NN technique for one SVM model tested). In order to improve the capability of
WSR-88D Doppler radar to detect mesocyclones, this work has established that
the SVM algorithm can be used successfully. Accordingly, SVM should be tested
more fully to determine if these results generalize well in other situations and
geographical locations. We are currently investigating refining SVM modeling to
improve these results with data being assimilated from an array of radars.
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