Nothing Special   »   [go: up one dir, main page]

Skip to main content

Possibility Theory for Reasoning About Uncertain Soft Constraints

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)

Abstract

Preferences and uncertainty occur in many real-life problems. The theory of possibility is one non-probabilistic way of dealing with uncertainty, which allows for easy integration with fuzzy preferences. In this paper we consider an existing technique to perform such an integration and, while following the same basic idea, we propose various alternative semantics which allow us to observe both the preference level and the robustness w.r.t. uncertainty of the complete instantiations. We then extend this technique to other classes of soft constraints, proving that certain desirable properties still hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amgoud, L., Prade, H.: Using arguments for making decisions: a possibilistic logic approach. In: Proc. UAI, pp. 10–17 (2004)

    Google Scholar 

  2. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Optimization. Journal of the ACM 44(2) (March 1997)

    Google Scholar 

  3. Brafman, R.I., Tennenholtz, M.: On the Foundations of Qualitative Decision Theory. In: Proc. AAAI 1996, pp. 1291–1296. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Brafman, R.I., Tennenholtz, M.: On the Axiomatization of Qualitative Decision Criteria. In: Proc. AAAI 1997 (1997)

    Google Scholar 

  5. Fargier, H., Sabbadin, R.: Qualitative decision under uncertainty: back to expected utility. In: Proc. IJCAI 2003, pp. 303–308 (2003)

    Google Scholar 

  6. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Applied Intelligence 6, 287–309 (1996)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer, Dordrecht (1998)

    Google Scholar 

  8. Dubois, D., Prade, H.: Fuzzy sets and Systems - Theory and Applications. Academic Press, London (1980)

    MATH  Google Scholar 

  9. Dubois, D., Prade, H.: Possibility theory. Plenum Press (1988)

    Google Scholar 

  10. Dubois, D., Prade, H.: Belief Revision and Updates in Numerical Formalisms: An Overview, with New Results for the Possibilistic Framework. In: Proc. IJCAI 1993, pp. 620–625. Chambery, France (1993)

    Google Scholar 

  11. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Handbooks of Fuzzy Sets Series. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  12. Dubois, D., Fargier, H., Perny, P.: On the limitations of ordinal approaches to decision making. In: Proc. KR 2002, pp. 133–144 (2002)

    Google Scholar 

  13. Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: a framework for decision problems under incomplete knowledge constraint satisfaction framework for decision under uncertainty. In: Proc. AAAI 1996 (1996)

    Google Scholar 

  14. Zadeh, L.A.: Fuzzy sets as a basis for the theory of possibility. Fuzzy Sets and Systems, 13–28 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pini, M.S., Rossi, F., Venable, B. (2005). Possibility Theory for Reasoning About Uncertain Soft Constraints. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_67

Download citation

  • DOI: https://doi.org/10.1007/11518655_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27326-4

  • Online ISBN: 978-3-540-31888-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics