Abstract
Preferences and uncertainty occur in many real-life problems. The theory of possibility is one non-probabilistic way of dealing with uncertainty, which allows for easy integration with fuzzy preferences. In this paper we consider an existing technique to perform such an integration and, while following the same basic idea, we propose various alternative semantics which allow us to observe both the preference level and the robustness w.r.t. uncertainty of the complete instantiations. We then extend this technique to other classes of soft constraints, proving that certain desirable properties still hold.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amgoud, L., Prade, H.: Using arguments for making decisions: a possibilistic logic approach. In: Proc. UAI, pp. 10–17 (2004)
Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Optimization. Journal of the ACM 44(2) (March 1997)
Brafman, R.I., Tennenholtz, M.: On the Foundations of Qualitative Decision Theory. In: Proc. AAAI 1996, pp. 1291–1296. MIT Press, Cambridge (1996)
Brafman, R.I., Tennenholtz, M.: On the Axiomatization of Qualitative Decision Criteria. In: Proc. AAAI 1997 (1997)
Fargier, H., Sabbadin, R.: Qualitative decision under uncertainty: back to expected utility. In: Proc. IJCAI 2003, pp. 303–308 (2003)
Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Applied Intelligence 6, 287–309 (1996)
Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer, Dordrecht (1998)
Dubois, D., Prade, H.: Fuzzy sets and Systems - Theory and Applications. Academic Press, London (1980)
Dubois, D., Prade, H.: Possibility theory. Plenum Press (1988)
Dubois, D., Prade, H.: Belief Revision and Updates in Numerical Formalisms: An Overview, with New Results for the Possibilistic Framework. In: Proc. IJCAI 1993, pp. 620–625. Chambery, France (1993)
Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Handbooks of Fuzzy Sets Series. Kluwer, Dordrecht (2000)
Dubois, D., Fargier, H., Perny, P.: On the limitations of ordinal approaches to decision making. In: Proc. KR 2002, pp. 133–144 (2002)
Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: a framework for decision problems under incomplete knowledge constraint satisfaction framework for decision under uncertainty. In: Proc. AAAI 1996 (1996)
Zadeh, L.A.: Fuzzy sets as a basis for the theory of possibility. Fuzzy Sets and Systems, 13–28 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pini, M.S., Rossi, F., Venable, B. (2005). Possibility Theory for Reasoning About Uncertain Soft Constraints. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_67
Download citation
DOI: https://doi.org/10.1007/11518655_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27326-4
Online ISBN: 978-3-540-31888-0
eBook Packages: Computer ScienceComputer Science (R0)