ADAPTING QUERY OPTIMIZATION TECHNIQUES
FOR EFFICIENT ALERT CORRELATION*

Peng Ning and Dingbang Xu
Department of Computer Science
North Carolina State University

{ pning, dxu } @ncsu.edu

Abstract Intrusion alert correlation is the process to identify high-level attack scenarios
by reasoning about low-level alerts raised by intrusion detection systems (IDSs).
The efficiency of intrusion alert correlation is critical in enabling interactive
analysis of intrusion alerts as well as prompt responses to attacks. This paper
presents an experimental study aimed at adapting main memory index struc-
tures (e.g., T Trees, Linear Hashing) and database query optimization techniques
(e.g., nested loop join, sortjoin) for efficient correlation of intensive alerts. By
taking advantage of the characteristics of the alert correlation process, this pa-
per presents three techniques named hyper-alert container, two-level index, and
sort correlation. This paper then reports a series of experiments designed to
evaluate the effectiveness of these techniques. These experiments demonstrate
that (1) hyper-alert containers improve the efficiency of order-preserving index
structures (e.g., T Trees), with which an insertion operation involves search, (2)
two-level index improves the efficiency of all index structures, (3) a two-level
index structure combining Chained Bucket Hashing and Linear Hashing is the
most efficient for streamed alerts with and without memory constraint, and (4)
sort correlation with heap sort algorithm is the most efficient for alert correlation
in batch.

Keywords: Intrusion detection, intrusion alert correlation, query optimization

1. Introduction

Traditional intrusion detection systems (IDSs) focus on low-level attacks or
anomalies, and raise alerts independently, though there may be logical connec-
tions between them. In situations where there are intensive intrusions, not only
will actual alerts be mixed with false alerts, but the amount of alerts will also

*This work is partially supported by the National Science Foundation under grants CCR-0207297 and ITR-
0219315, by the U.S. Army Research Office under grant DAAD 19-02-1-0219. The authors would like to
thank the anonymous reviewers for their valuable suggestions.

76 DATA AND APPLICATIONS SECURITY XVII

become unmanageable. As a result, it is difficult for human users or intrusion
response systems to understand the alerts and take appropriate actions.

To assist the analysis of intrusion alerts, several alert correlation methods
(e.g., [6, 15]) have been proposed recently to process the alerts reported by
IDSs. As one of the methods, we have developed an alert correlation tech-
nique using prerequisites and consequences of attacks [11]. Intuitively, the
prerequisite of an intrusion is the necessary condition for the intrusion to be
successful, while the consequence of an intrusion is the possible outcome of
the intrusion. Based on the prerequisites and consequences of different types of
attacks, our method correlates alerts by (partially) matching the consequence
of some previous alerts and the prerequisite of some later ones.

We have implemented an offline intrusion alert correlator based on our ap-
proach, and the initial experiments indicate that our approach is promising
in constructing attack scenarios and differentiating true and false alerts [11].
However, our solution still faces some challenges. In particular, we imple-
mented the previous intrusion alert correlator as a DBMS-based application
[11]. Involving a DBMS in the alert correlation process provided enormous
convenience and support in intrusion analysis; however, relying entirely on the
DBMS also introduced performance penalty. For example, to correlate about
65,000 alerts generated from the DEFCON 8 CTF data set, it took the alert
correlator more than 4 minutes. Such performance is clearly insufficient to
be practical, especially for interactive analysis of intensive alerts. Our timing
analysis indicates that the performance bottleneck lies in the interaction be-
tween the intrusion alert correlator and the DBMS. Since this implementation
completely relies on the DBMS, processing of each single alert entails interac-
tion with the DBMS, which introduces significant performance penalty.

In this paper, we address this problem by performing alert correlation en-
tirely in main memory, while only using the DBMS as the storage of intrusion
alerts. We study several main memory index structures, including Array Binary
Search [2], AVL Trees [1], B Trees [3], Chained Bucket Hashing [§], Linear
Hashing [10], and T Trees [9], as well as some database query optimization
techniques such as nested loop join and sort join [7] to facilitate timely corre-
lation of intrusion alerts. By taking advantage of the characteristics of the alert
correlation process, we develop three techniques named hyper-alert container,
two-level index, and sort correlation, which further reduce the execution time
required by alert correlation.

We performed a series of experiments to evaluate these techniques with
the DEF CON 8 CTF data set. The experimental results demonstrate that (1)
hyper-alert containers improve the efficiency of index structures with which an
insertion operation involves search (e.g., B Trees, T Trees), (2) two-level index
improves the efficiency of all index structures, (3) a two-level index structure
combining Chained Bucket Hashing and Linear Hashing is most efficient for

Adapting Query Optimization Techniques for Efficient Alert Correlation 77

correlating streamed alerts with and without memory constraint, and (4) sort
correlation with heap sort algorithm is most efficient for alert correlation in
batch. With the most efficient method, the execution time for correlating the
alerts generated from the DEF CON 8 CTF data set is reduced from over four
minutes to less than one second.

The remainder of this paper is organized as follows. To be self contained, the
next section briefly describes our alert correlation method. Section 3 presents
our adaptations of the main memory index structures and some join methods.
Section 4 reports our implementation and experimental results. Section 5 dis-
cusses the related work, and Section 6 concludes this paper and points out
some future research directions.

2. An Overview of Alert Correlation

This section briefly describes our model for correlating alerts using prereq-
uisites and consequences of intrusions. Further details can be found in [11].

The alert correlation model is based on the observation that in series of
attacks, the component attacks are usually not isolated, but related as differ-
ent stages of the attacks, with the early ones preparing for the later ones. To
take advantage of this observation, we correlate alerts using prerequisites and
consequences of the corresponding attacks. Intuitively, the prerequisite of an
attack is the necessary condition for the attack to be successful, while the con-
sequence of an attack is the possible outcome of the attack if it is successful.
We identify the prerequisites (e.g., existence of vulnerable services) and the
consequences (e.g., discovery of vulnerable services) of each type of attacks
and correlate detected attacks (i.e., alerts) by matching the consequences of
previous alerts and the prerequisites of later ones.

We use predicates as basic constructs to represent prerequisites and conse-
quences of attacks. For example, we may use the predicate UDPVulnerable-
ToBOF (VictimIP, VictimPort)to represent the discovery of a vulnerable UDP
service. We use a hyper-alert type to encode our knowledge about each type of
attacks. A hyper-alert type Tis atriple (fact, prerequisite, consequence) where
(D fact is a set of attribute names, each with an associated domain of values,
(2) prerequisite is a logical formula whose free variables are all in fact, and (3)
consequence is a set of logical formulas such that all the free variables in con-
sequence are in fact. Intuitively, the fact component of a hyper-alert type gives
the information associated with the alert, prerequisite specifies what must be
true for the attack to be successful, and consequence describes what could be
true if the attack indeed happens. For brevity, we omit the domains associated
with attribute names when they are clear from context.

Given a hyper-alert type T= (fact, prerequisite, consequence), a hyper-alert
(instance) h of type T is a finite set of tuples on fact, where each tuple is associ-

78 DATA AND APPLICATIONS SECURITY XVII

ated with an interval-based timestamp [begin_time, end_time]. The hyper-alert
h implies that prerequisite must evaluate to True and all the logical formulas
in consequence might evaluate to True for each tuple. The fact component of a
hyper-alert type is essentially a relation schema (as in relational databases), and
a hyper-alert is a relation instance of this schema. A hyper-alert instantiates
its prerequisite and consequence by replacing the free variables in prerequisite
and consequence with its specific values. Note that prerequisite and conse-
quence can be instantiated multiple times if fact consists of multiple tuples.

To correlate hyper-alerts, we check if an earlier hyper-alert contributes to
the prerequisite of a later one. Specifically, we decompose the prerequisite of
a hyper-alert into parts of predicates and test whether the consequence of an
earlier hyper-alert makes some parts of the prerequisite True (i.e., makes the
prerequisite easier to satisfy). If the result is positive, then we correlate the
hyper-alerts. In our formal model, given an instance A of the hyper-alert type
T = (fact, prerequisite, consequence), the prerequisite set (or consequence set,
resp.) of h, denoted P(h) (or C(h), resp.), is the set of all such predicates that
appear in prerequisite (or consequence, resp.) whose arguments are replaced
with the corresponding attribute values of each tuple in h. Each element in
P(h) (or C(h), resp.) is associated with the timestamp of the corresponding
tuple in A. We say that hyper-alert hy prepares for hyper-alert hg if there
exist p € P(hg) and C C C(hy) such that forall ¢ € C, c.end_time <
p.begin_time and the conjunction of all the logical formulas in C implies p.

We use a hyper-alert correlation graph to represent a set of correlated hyper-
alerts. Specifically, a hyper-alert correlation graph CG = (N, E) is a con-
nected graph, where N is a set of hyper-alerts and for each pair nj,ng € N,
there is a directed edge from 71 to n2 in E if and only if n; prepares for na.
Figure 1 shows one of the hyper-alert correlation graphs discovered in our ex-
periments with the 2000 DARPA intrusion detection evaluation data sets [11].
Each node in Figure 1 represents a hyper-alert. The numbers inside the nodes
are the alert ID’s generated by the IDSs.

Attacking Host: 202.77.162.213
Victim Host: 172.16.112.50

Mstream_Zombie

Sadmind_Amslverify_Overflow
Figure 1. A hyper-alert correlation graph

We have implemented an intrusion alert correlator using our method [11],
which is a Java application that interacts with the DBMS via JDBC. In this
implementation, we expand the consequence set of each hyper-alert by includ-

Adapting Query Optimization Techniques for Efficient Alert Correlation 79

ing all the predicates implied by the consequence set. We call the result the
expanded consequence set of the hyper-alert. The predicates in both prerequi-
site and expanded consequence sets of the hyper-alerts are then encoded into
strings called Encoded Predicate and stored in two tables, PreregSet and Ex-
pandedConseqgSet, along with the corresponding hyper-alert ID and timestamp.
Both tables have attributes HyperAlertID, EncodedPredicate, begin_time, and
end_time, with meanings as indicated by their names. As a result, alert corre-
lation can be performed using the following SQL statement:

SELECT DISTINCT c.HyperAlertID, p.HyperAlertID
FROM PreregSet p, ExpandedConseqSet ¢
WHERE p.EncodedPredicate = c.EncodedPredicate AND c.end_time < p.begin_time

As discussed earlier, one problem of the intrusion alert correlator is its effi-
ciency because of its dependence on, and intensive interaction with the DBMS.
In this paper, we address this problem by performing alert correlation entirely
in main memory, while only using the DBMS as the storage of intrusion alerts.
In the following, we study how to improve performance of alert correlation
by adapting database query optimization techniques, including various main
memory index structures.

3. Adapting Query Optimization Techniques

The essential problem in this work is how to perform the SQL query in the
previous section efficiently. One option is to use database query optimization
techniques, which have been studied extensively for both disk based and main
memory databases. However, alert correlation has a different access pattern
than typical database applications, which may lead to different performance
than traditional database applications. In addition, the unique characteristics in
alert correlation give us an opportunity for further improvement. Thus, in this
section, we seek ways to improve alert correlation by adapting existing query
optimization techniques.

In our study, we study the suitability of the following main memory in-
dex structures: Array Binary Search [2], AVL Trees [1], B Trees [3], Chained
Bucket Hashing [8], Linear Hashing [10], and T Trees [9]. We do not de-
scribe them here, since the related information can be found in the references.
For comparison purpose, we also implement a naive, sequential scan method,
which simply scans in an (unordered) array for the desired data item.

3.1. Correlating Streamed Intrusion Alerts

We first study alert correlation methods that deal with intrusion alert streams
continuously generated by IDSs. With such methods, an alert correlation sys-
tem can be pipelined with IDSs and produce correlation result in a timely man-
ner.

80 DATA AND APPLICATIONS SECURITY XVII

Figure 2 presents a nested loop method that can accommodate streamed
alerts. (As the name suggests, nested loop correlation is adapted from nested
loop join [7].) It assumes that the input hyper-alerts are ordered ascendingly in
terms of their beginning time. The nested loop method takes advantage of main
memory index structures such as Linear Hashing. While processing the hyper-
alerts, it maintains an index structure Z for the instantiated predicates in the
expanded consequence sets along with the corresponding hyper-alerts. Each
time when a hyper-alert h is processed, the algorithm searches in Z for each
instantiated predicate p that appears in h’s prerequisite set. A match of a hyper-
alert A’ implies that A’ has the same instantiated predicate p in its expanded
consequent set. If A'.EndTime is before h.BeginTime, then A’ prepares for
h. If the method processes all the hyper-alerts in the ascending order of their
beginning time, it is easy to see that the nested loop method can find all and
only the prepare-for relations between the input hyper-alerts.

Outline of Nested Loop Correlation
Input: A list H of hyper-alerts ordered ascendingly in their beginning times.
Output: All pairs of (h’, h) such that both k and k' are in H and k' prepares for h.
Method:
Maintain an index structure Z for instantiated predicates in the expanded consequence
sets of hyper-alerts. Each instantiated predicate is associated with the corresponding
hyper-alert. Initially, 7 is empty.
1. for each hyper-alert h in H (accessed in the given order)

2. for each instantiated predicate p in the prerequisite set of A

3. Search the set of hyper-alerts with index key p in Z. Let H' be the result.
4, for each A’ in H'

5. if (h'.EndTime< h.BeginTime) then output (h', k).

6. for each p in the expanded consequence set of h

7. Insert p along with h into Z.

end

Figure 2. Outline of the nested loop alert correlation methods

The nested loop correlation method has different performance if different in-
dex structures are used. Thus, one of our tasks is to identify the index structure
most suitable for this method. In addition, we further develop two adaptations
to improve the performance of these index structures. Our first adaptation is
based on the following observation.

Observation 1 Multiple hyper-alerts may share the same instantiated predi-
cate in their expanded consequence sets. Almost all of them prepare for a later
hyper-alert that has the same instantiated predicate in its prerequisite set.

Observation 1 implies that we can associate hyper-alerts with an instanti-
ated predicate p if p appears in the expanded consequence sets of all these
hyper-alerts. As a result, locating an instantiated predicate directly leads to
the locations of all the hyper-alerts that share the instantiated predicate in their

Adapting Query Optimization Techniques for Efficient Alert Correlation 81

expanded consequence sets. We call the set of hyper-alerts associated with an
instantiated predicate a hyper-alert container.

Using hyper-alert containers does not always result in better performance.
There are two types of accesses to the index structure in the nested loop cor-
relation method: insertion and search. For the index structures that preserve
the order of data items, insertion implies search, since each time when an ele-
ment is inserted into the index structure, it has to be placed in the “right” place.
Using hyper-alert container does not increase the insertion cost significantly,
while at the same time reduces the search cost. However, for the non-order
preserving index structures such as Linear Hashing, insertion does not involve
search. Using hyper-alert containers would force to perform a search, since
the hyper-alerts have to be put into the right container. In this case, hyper-alert
container decreases the search cost but increases the insertion cost, and it is not
straightforward to determine whether the overall cost is decreased or not. We
study this through experiments later.

Observation 2 There is a small, static, and finite set of predicates. Two in-
stantiated predicates are the same only if they are instantiated from the same
predicate.

Observation 2 leads to a two-level index structure. Each instantiated pred-
icate can be split into two parts, the .predicate name and the arguments. The
top-level index is built on the predicate names. Since we usually have a static
and small set of predicate names, we use Chained Bucket Hashing for this
purpose. Each element in the top-level index further points to a second-level
index structure. The second-level index is built on the arguments of the instan-
tiated predicates. When an instantiated predicate is inserted into a two-level
index structure, we first locate the right hash bucket based on the predicate
name, then locate the second-level index structure within the hash bucket (by
scanning the bucket elements), and finally insert it into the second-level index
structure using the arguments.

3.2 Correlating Intrusion Alerts in Batch

Some applications allow alerts to be processed in batch (e.g., forensic anal-
ysis with an alert database). Though the nested loop method discussed earlier
is still applicable, there are more efficient ways for alert correlation in batch.

Figure 3 presents a sort correlation method, which is adapted from sort join
[7]. The sort correlation method achieves good performance by taking advan-
tage of efficient main memory sorting algorithms. Specifically, it uses two ar-
rays, Apre and Acon. Apre stores the instantiated predicates in the prerequisite
sets of the hyper-alerts (along with the corresponding hyper-alerts), and A con
stores the instantiated predicates in the expanded consequence sets (along with

82 DATA AND APPLICATIONS SECURITY XVII

Outline of Sort Correlation
Input: A set H of hyper-alerts.
Output: All pairs of (h', h) such that both h and k' are in H and h' prepares for h.
Method:
Prepare two arrays Apre and Acon, each entry of which is a hyper-alert associated with
a key field. Each array is initialized with a reasonable size, and reallocated with doubled
sizes if out of space. Existing content is copied to the new buffer if reallocation happens.
1. for each h in H
2 for each p in the prerequisite set of h
3 Append h to Ap,.. with key = p.
4 for each p in the expanded consequence set of h
5, Append h to Acon with key = p.
6. Sort Apre and Aeon ascendingly in terms of the key field (with, e.g., heap sort).
7. Partition the entries in Apre and Agon into maximal blocks that share the same
instantiated predicate. Assume Apre and Acon have Bpre and Beon blocks, resp.
8.i=0,j=0.
9. while (i < Bpe and j < Bcon) do
10. if (Apre.Bi.Predicate < Acon.B;.Predicate) then
1. i=i+1,
12. elseif (Apre.Bi.Predicate > Acon.B;.Predicate) then
13. J=ji+1L
14. else for each h in Apre.B; and each b in Acon.Bj

15. if h'.EndTime < h.BeginTime then output (h', h).
16. i=i+l,j=j+1
end

Figure 3. The sort correlation method

the corresponding hyper-alerts). This method then sorts both arrays in terms of
the instantiated predicate with an efficient sorting algorithm (e.g., heap sort).

Assume both arrays are sorted ascendingly in terms of instantiated predi-
cate. The sort correlation method partitions both arrays into blocks that share
the same instantiated predicate, and scans both arrays simultaneously. It main-
tains two indices, ¢ and j, that references to the current blocks in Apre and
Acon, tespectively. The method compares the instantiated predicates in the
two current blocks. If the instantiated predicate in the current block of Ay
is smaller, it advances the index ¢; if the instantiated predicate in the current
block Acorn is smaller, it advances the index j; otherwise, the current blocks of
Apre and Acon share the same instantiated predicate. The method then exam-
ines each pair of hyper-alerts &’ and A, where h’ and h are in the current block
of Acon and Apye, respectively. If the end time of A’ is before the beginning
time of h, then A’ prepares for h.

It is easy to see that the sort correlation method can find all pairs of hyper-
alerts such that the first prepares for the second. Consider two hyper-alerts A
and h’ where R’ prepares for h. There must exist an instantiated predicate pin
both the expanded consequence set of A’ and the prerequisite set of h. Thus,

Adapting Query Optimization Techniques for Efficient Alert Correlation 83

p along with B’ must be placed in the array Acon, and p along with h must be
placed in the array Apre. The scanning method (lines 9-16) will eventually
point % to p's block in Apre and J to p’s block in Agon at the same time, and
output b’ prepares for h. Therefore, the sort correlation can discover all and
only pairs of hyper-alerts such that the first prepares for the second.

We also study the possibility of adapting two-index join and hash join meth-
ods [7] to improve the performance of batch alert correlation. However, our
analysis indicates they cannot outperform nested loop correlation due to the
fact that alert correlation is performed entirely in main memory.

A naive adaptation of two-index join leads to the following method: Build
two index structures for the instantiated predicates in the prerequisite sets and
the expanded consequence sets, respectively. For each instantiated predicate p,
locate the hyper-alerts related to p in both index structures, and compare the
corresponding timestamps. However, this method cannot perform better than
the nested loop method. The nested loop method only involves insertion of
instantiated predicates in the expanded consequence sets and search of those
in the prerequisite sets. In contrast, the above adaptation requires insertion
of instantiated predicates in both prerequisite and expanded consequence sets,
and search of instantiated predicates in at least one of the index structures.

A possible improvement over the naive adaptation is to merge the two in-
dex structures. We can associate two sets of hyper-alerts with each instantiated
predicate p, denoted Hpre(p) and Heon (), and build one index structure for the
instantiated predicates. Hpre(p) and Heon(p) consist of the hyper-alerts that
have p in their prerequisite sets and expanded consequence sets, respectively.
After all the instantiated predicates in the prerequisite or the consequence set
of the hyper-alerts are inserted into the index structure, we can simply scan all
the instantiated predicates, and compare the corresponding timestamps of the
hyper-alerts in Hpre(p) and Heon(p) for each instantiated predicate p. How-
ever, each insertion of an instantiated predicate entails a search operation, since
the corresponding hyper-alert has to be inserted into either Hppe(p) or Heon (p).
Thus, this method cannot outperform the nested loop method, which involves
one insertion for each instantiated predicate in the expanded consequence sets,
and one search for each instantiated predicate in the prerequisite sets. A similar
conclusion can be drawn for hash join.

Another possibility to have a faster batch correlation is to use Chained
Bucket Hashing. Since the number of alerts is known beforehand, we may
be able to decide a relatively accurate hash table size, and thus have a better
performance than its counter part for streamed alerts. We study this through
experiments later.

84 DATA AND APPLICATIONS SECURITY XVII

3.3. Correlating Intrusion Alerts with Limited Memory

The previous approaches to in-memory alert correlation have assumed that
all index structures fit in memory during the alert correlation process. This may
be true for analyzing intrusion alerts collected during several days or weeks;
however, in typical operational scenarios, the IDSs produce intrusion alerts
continuously and the memory of the alert correlation system will eventually
be exhausted. A typical solution is to use a “sliding window” to focus on
alerts that are close to each other; at any given point in time, only alerts after a
previous time point are considered for correlation.

We adopt a sliding window which can accommodate up to ¢ intrusion alerts.
The parameter ¢ is determined by the amount of memory available to the intru-
sion alert correlation system. Since our goal is to optimize the intrusion alert
correlation process, we do not discuss how to choose the appropriate value of
t in this paper. Each time when a new intrusion alert is coming, we check if
inserting this new alert will result in more than ¢ alerts in the index structure.
If yes, we remove the oldest alert from the index structure. In either case, we
will perform the same correlation process as in Section 3.2. It is also possible
to add multiple intrusion alerts in batch. In this case, multiple old alerts may
be removed from the index structure. Note that though choosing a sliding time
window is another option, it doesn’t reflect the memory constraint we have to
face in this application.

Using a sliding window in our application essentially implies deleting old
intrusion alerts when there are more than ¢ alerts in the memory. This problem
appeared to be trivial at the first glance, since all the data structures have known
deletion algorithms. However, we soon realized that we had to go through a
little trouble to make the deletion efficient. The challenge is that the index
structures we build in all the previous approaches are in terms of instantiated
predicates to facilitate correlation. However, to remove the oldest intrusion
alerts, we need to locate and remove alerts in terms of their timestamps. Thus,
the previous index structures cannot be used to perform the deletion operation
efficiently. Indeed, each deletion implies a scan of all the alerts in the index
structures.

To address this problem, we add a secondary data structure to facilitate
locating the oldest intrusion alerts. Since the intrusion alerts are inserted as
well as removed in terms of their time order, we use a queue (simulated with
a circular buffer) for this purpose. Each newly inserted intrusion alert also has
an entry added into this queue, which points to its location in the primary index
structure in terms of the instantiated predicates. Thus, when we need to remove
the oldest intrusion alert, we can simply dequeue an alert, find its location in
the primary index structure, and delete it directly. Indeed, this is more efficient

Adapting Query Optimization Techniques for Efficient Alert Correlation 85

than the generic deletion method of the order preserving index structures (e.g.,
AVL Trees), since deletion usually implies search in those index structures.

4. Experimental Results

We have implemented all the techniques discussed in Section 3 in Java,
with JDBC to connect to the DBMS. We performed a series of experiments to
compare these techniques. All the experiments were run on a DELL Precision
Workstation with 1.8GHz Pentium 4 CPU and 512M bytes memory. The alerts
used in our experiments were generated by a RealSecure Network Sensor 6.0
(http://www. iss . net), which monitors an isolated network in which we
replayed the network traffic collected at the DEF CON 8 CTF event. We sum-
marize the results in this section; further details can be found in [12].
Nested-Loop Correlation without Memory Constraint. Our first set of
experiments is intended to evaluate the effectiveness of hyper-alert container
in nested loop correlation. According to our analysis, hyper-alert container
may reduce the execution time if we use the order-preserving index structures.
We compared the execution time for Sequential Scan, Array Binary Search,
and Linear Hashing, with or without hyper-alert container. Our results show
that hyper-alert containers reduce the execution time for Array Binary Search,
but increases the execution time for Sequential Scan significantly, and Linear
Hashing slightly. Figure 4(a) shows some results obtained in the experiments.

Our second set of experiments is to evaluate the effectiveness of two-level
index structure in the nested loop correlation method. Our results indicate that
two-level indexes reduce execution time for all index structures. Figure 4(b)
shows the improvement of two-level index for B Tree and Linear Hash.

Our next goal is to find out which index structure (with or without the two

adaptations) has the best performance for nested loop correlation. Our results
show that two-level Linear Hashing (without hyper-alert container) achieves
the best performance. Figure 4(c) shows the top three fastest methods, two-
level Array Binary Search with hyper-alert container, two-level AVL Tree, and
two-level Linear Hashing.
Batch Correlation without Memory Constraint. Our evaluation here is
to determine whether any method can achieve better performance than nested
loop correlation with two-level Linear Hashing, the best method for correlating
streamed alerts. Besides two-level Linear Hashing, we tested Chained Bucket
Hashing and the sort correlation methods because of their potential to outper-
form two-level Linear Hashing. To further examine the impact of the time
order of input hyper-alerts, we examined the timing results with ordered and
unordered input (in terms of their timestamps). With unordered input, an algo-
rithm must insert all of the instantiated predicates in the expanded consequence
sets before it processes any instantiated predicate in the prerequisite sets.

86 DATA AND APPLICATIONS SECURITY XVII

—+— BinarySearch
—a— Sequantial Scan
250000 -

ContainarBinarySearch —s—BTran —=—~ BTres2L
—&— LinsarHash —+— LinearHashaL

Container:

Scan

200
a ~ £
a 10000 20000 30000 40000 S0000 GOO0DO o o
Number of Hyper-alerts OO0 e PP er Hane 50000 60ada
(a) Hyper-alert containers (b) Two-level indices
—w— AVLTrea2l —e— LinearHash2L | [T ——HeapSonCorrelation —&—LinearHash2L (U)
—Q—CnnlalnalalnagzL —n—léahr:juHuPﬂL [(s}] i ChainedBacketHash (U)
1 =
1200 4
e 1000
£ soo
£ eo0
i
400
200 4
o = ;
0 o 10000 20000 30000 40000 50000 60000
o 10000 20000 30000 4000 0000 BOD0O Number of Hyper-alsris
Numbar of Hyper-alers
(c) Efficient two-level indices (d) Efficient batch correlation

| [—+—vinearkiash —s-- LinsarHasheL - BTres —a—BTroo2L

o 10000 20000 30000 40000 S5S0000 60000
Mumber of Hyper-alens

(e) Impact of sorting algorithms (f) With memory constraint

Figure 4. Experimental results

Figure 4(d) shows the timing results of these methods. Surprisingly, Chained
Bucket Hashing has the worst performance. Our further investigation reveals
that there is a highly uneven distribution of hyper-alerts in the buckets, which
lead to this bad performance. Having ordered input only reduces the execution
time slightly for nested loop correlation with both two-level Linear Hashing
and Chained Bucket Hashing. Finally, sort correlation with heap sort achieves
the best performance among these methods.

Adapting Query Optimization Techniques for Efficient Alert Correlation 87

We also study the impact of different sorting algorithms on the execution

time of sort correlation. We compare two sorting algorithms, heap sort and
quick sort. Heap sort has the least complexity in the worst case scenarios,
while quick sort is considered the best practical choice among all the sorting
algorithms [4]. Figure 4(e) shows the timing results of both algorithms: Sort
correlation with quick sort performs significantly worse (and most unstable)
than the heap sort case.
Nested-Loop Correlation with Memory Constraint. Our last set of exper-
iments is focused on evaluating the efficiency of different indexing structures
when there is memory constraint. The results indicate that two-level Linear
Hashing is the most efficient and the two level index structure improves the
performance for all four methods. Figure 4(f) shows some timing results ob-
tained with varying sliding window sizes.

s. Related Work

The result in this paper is a continuance of our previous work [11], which
has been described earlier. Our method was initially developed to address the
limitations of JIGSAW [14]. Our method has several features beyond JIGSAW,
including the ability to deal with missing detections and alert aggregation. The
work closest to ours is the alert correlation method by Cuppens and Miege
[5]. This approach also correlates alerts using partial match of prerequisites
(pre-conditions) and consequences (post-conditions) of attacks. However, our
method allows alert aggregation during and after correlation, while their ap-
proach treats alert aggregation as an individual stage before alert correlation.

Several other alert correlation methods have been proposed. Spice [13] and
the probabilistic alert correlation method [15] correlate alerts based on the sim-
ilarities between alert attributes. Though they are effective in correlating some
alerts (e.g., alerts with the same source and destination IP addresses), they can-
not fully discover the causal relationships between alerts. Another type of alert
correlation methods (e.g., the data mining approach [6]) bases alert correlation
on attack scenarios specified by human users or learned through training data
sets. These methods are restricted to known attack scenarios. We consider
these results complementary to ours.

6. Conclusions and Future Work

In this paper, we studied main memory index structures and database query
optimization techniques to facilitate timely correlation of intensive alerts. We
developed three techniques named hyper-alert container, two-level index, and
sort correlation by taking advantage of the characteristics of the alert cor-
relation process. The experimental study demonstrated that (1) hyper-alert
containers improve the efficiency of order-preserving index structures, with

88 DATA AND APPLICATIONS SECURITY XVII

which an insertion operation involves search, (2) two-level index improves the
efficiency of all index structures, (3) a two-level index structure combining
Chained Bucket Hashing and Linear Hashing is most efficient for streamed
alerts with and without memory constraint, and (4) sort correlation with heap
sort algorithm is the most efficient for alert correlation in batch. Our future
work includes incorporating the efficient methods in this paper into the in-
trusion alert correlation toolkit and developing more techniques to facilitate
timely interactive analysis of intrusion alerts.

References

[11 A. Aho, J. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] A. Ammann, M. Hanrahan, and R. Krishnamurthy. Design of a memory resident DBMS.
In Proc. of IEEE COMPCON, February 1985.

[3] D. Comer. The ubiquitous B-Tree. ACM Computeing Surveys, 11(2): 121-137, 1979.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1989.

[5] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection framework.
In Proc. of the 2002 IEEE Symposium on Security and Privacy, May 2002.

[6] O. Dain and R.K. Cunningham. Fusing a heterogeneous alert stream into scenarios. In
Proc. of the ACM Workshop on Data Mining for Security Applications, November 2001.

[7]1 H. Garcia-Molina and J. Widom J. D. Ullman. Database System Implementation. Prentice
Hall, 2000.

[8] D. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

[9] T. J. Lehman and M. J. Carey. A study of index structure for main memory database
management systems. In Proc. ofthe 12th Int’l Conf. on Very Large Databases, pages
294-303, August 1986.

[10] W. Litwin. Linear hashing: A new tool for file and table addressing. In Proc. ofthe 6th
Conf. on Very Large Data Bases, pages 212-223, Montreal, Canada, October 1980.

[11] P. Ning, Y. Cui, and D. S Reeves. Constructing attack scenarios through correlation of
intrusion alerts. In Proc. of the 9th ACM Conf. on Computer and Communications Security,
pages 245-254, November 2002.

[12] P. Ning and D. Xu. Adapting query optimization techniques for efficient intrusion alert
correlation. Technical Report TR-2002-13, NCSU Computer Science, August 2002.

[13] S. Stamford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection of
stealthy portscans. Journal of Computer Security, 10(1/2):105-136, 2002.

[14] S. Templeton and K. Levitt. A requires/provides model for computer attacks. In Proc. of
New Security Paradigms Workshop, pages 31-38, September 2000.

[15] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proc. of the 4th International
Symposium on Recent Advances in Intrusion Detection (RAID 2001), pages 54-68, 2001.

