Abstract
Extracting keyphrases from documents helps to reduce the document information and further assist in information retrieval. In this paper, we construct a multi-relational graph by considering heterogeneous latent word relations (the co-occurrence and the semantic) in a document. Then we optimize the random walks on the multi-relational graph to determine the importance of each node to further generate keyphrases. Experimental results show that our method outperforms the previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boudin, F.: A comparison of centrality measures for graph-based keyphrase extraction. In: Sixth International Joint Conference on Natural Language Processing, IJCNLP 2013, Nagoya, Japan, 14–18 October 2013, pp. 834–838 (2013)
Hammouda, K.M., Matute, D.N., Kamel, M.S.: CorePhrase: keyphrase extraction for document clustering. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 265–274. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_26
Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, Sapporo, Japan, 11–12 July 2003 (2003)
Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts, pp. 404–411. UNT Scholarly Works (2004)
Ng, M.K., Li, X., Ye, Y.: Multirank: co-ranking for objects and relations in multi-relational data. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1217–1225 (2011). https://doi.org/10.1145/2020408.2020594
Over, P.: Introduction to DUC-2001: an intrinsic evaluation of generic news text summarization systems. In: DUC 2001 Workshop on Text Summarization (2001)
Page, L.: The PageRank citation ranking: bringing order to the web. Stanf. Digit. Libr. Work. Pap. 9(1), 1–14 (1998)
Shi, W., Liu, Z., Zheng, W., Yu, J.X.: Extracting keyphrases using heterogeneous word relations. In: Huang, Z., Xiao, X., Cao, X. (eds.) ADC 2017. LNCS, vol. 10538, pp. 165–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68155-9_13
Tsatsaronis, G., Varlamis, I., Nørvåg, K.: SemanticRank: ranking keywords and sentences using semantic graphs. In: 23rd International Conference on Computational Linguistics, Proceedings of the Conference, COLING 2010, 23–27 August 2010, Beijing, China, pp. 1074–1082 (2010)
Wan, X., Xiao, J.: Exploiting neighborhood knowledge for single document summarization and keyphrase extraction. ACM Trans. Inf. Syst. 28(2), 8:1–8:34 (2010). https://doi.org/10.1145/1740592.1740596
Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Conference on Digital Libraries, Berkeley, CA, USA, 11–14 August 1999, pp. 254–255 (1999). https://doi.org/10.1145/313238.313437
Yan, L., Dodier, R., Mozer, M.C., Wolniewicz, R.: Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In: Machine Learning, Proceedings of the Twentieth International Conference, pp. 848–855 (2003)
Youn, E., Jeong, M.K.: Class dependent feature scaling method using naive bayes classifier for text datamining. Pattern Recogn. Lett. 30(5), 477–485 (2009). https://doi.org/10.1016/j.patrec.2008.11.013
Acknowledgements
This work is supported in part by Jiangsu Provincial Natural Science Foundation of China under Grant BK20171447, Jiangsu Provincial University Natural Science Research of China under Grant 17KJB520024, and Nanjing University of Posts and Telecommunications under Grant No. NY215045.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Chen, W., Liu, Z., Shi, W., Yu, J.X. (2018). Keyphrase Extraction Based on Optimized Random Walks on Multiple Word Relations. In: Cai, Y., Ishikawa, Y., Xu, J. (eds) Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science(), vol 10988. Springer, Cham. https://doi.org/10.1007/978-3-319-96893-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-96893-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96892-6
Online ISBN: 978-3-319-96893-3
eBook Packages: Computer ScienceComputer Science (R0)