Nothing Special   »   [go: up one dir, main page]

Skip to main content

Keyphrase Extraction Based on Optimized Random Walks on Multiple Word Relations

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10988))

  • 1671 Accesses

Abstract

Extracting keyphrases from documents helps to reduce the document information and further assist in information retrieval. In this paper, we construct a multi-relational graph by considering heterogeneous latent word relations (the co-occurrence and the semantic) in a document. Then we optimize the random walks on the multi-relational graph to determine the importance of each node to further generate keyphrases. Experimental results show that our method outperforms the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boudin, F.: A comparison of centrality measures for graph-based keyphrase extraction. In: Sixth International Joint Conference on Natural Language Processing, IJCNLP 2013, Nagoya, Japan, 14–18 October 2013, pp. 834–838 (2013)

    Google Scholar 

  2. Hammouda, K.M., Matute, D.N., Kamel, M.S.: CorePhrase: keyphrase extraction for document clustering. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 265–274. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_26

    Chapter  Google Scholar 

  3. Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, Sapporo, Japan, 11–12 July 2003 (2003)

    Google Scholar 

  4. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts, pp. 404–411. UNT Scholarly Works (2004)

    Google Scholar 

  5. Ng, M.K., Li, X., Ye, Y.: Multirank: co-ranking for objects and relations in multi-relational data. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1217–1225 (2011). https://doi.org/10.1145/2020408.2020594

  6. Over, P.: Introduction to DUC-2001: an intrinsic evaluation of generic news text summarization systems. In: DUC 2001 Workshop on Text Summarization (2001)

    Google Scholar 

  7. Page, L.: The PageRank citation ranking: bringing order to the web. Stanf. Digit. Libr. Work. Pap. 9(1), 1–14 (1998)

    Google Scholar 

  8. Shi, W., Liu, Z., Zheng, W., Yu, J.X.: Extracting keyphrases using heterogeneous word relations. In: Huang, Z., Xiao, X., Cao, X. (eds.) ADC 2017. LNCS, vol. 10538, pp. 165–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68155-9_13

    Chapter  Google Scholar 

  9. Tsatsaronis, G., Varlamis, I., Nørvåg, K.: SemanticRank: ranking keywords and sentences using semantic graphs. In: 23rd International Conference on Computational Linguistics, Proceedings of the Conference, COLING 2010, 23–27 August 2010, Beijing, China, pp. 1074–1082 (2010)

    Google Scholar 

  10. Wan, X., Xiao, J.: Exploiting neighborhood knowledge for single document summarization and keyphrase extraction. ACM Trans. Inf. Syst. 28(2), 8:1–8:34 (2010). https://doi.org/10.1145/1740592.1740596

    Article  Google Scholar 

  11. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Conference on Digital Libraries, Berkeley, CA, USA, 11–14 August 1999, pp. 254–255 (1999). https://doi.org/10.1145/313238.313437

  12. Yan, L., Dodier, R., Mozer, M.C., Wolniewicz, R.: Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In: Machine Learning, Proceedings of the Twentieth International Conference, pp. 848–855 (2003)

    Google Scholar 

  13. Youn, E., Jeong, M.K.: Class dependent feature scaling method using naive bayes classifier for text datamining. Pattern Recogn. Lett. 30(5), 477–485 (2009). https://doi.org/10.1016/j.patrec.2008.11.013

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Jiangsu Provincial Natural Science Foundation of China under Grant BK20171447, Jiangsu Provincial University Natural Science Research of China under Grant 17KJB520024, and Nanjing University of Posts and Telecommunications under Grant No. NY215045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Liu, Z., Shi, W., Yu, J.X. (2018). Keyphrase Extraction Based on Optimized Random Walks on Multiple Word Relations. In: Cai, Y., Ishikawa, Y., Xu, J. (eds) Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science(), vol 10988. Springer, Cham. https://doi.org/10.1007/978-3-319-96893-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96893-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96892-6

  • Online ISBN: 978-3-319-96893-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics