Nothing Special   »   [go: up one dir, main page]

Skip to main content

Streaming Big Spatial Data

Encyclopedia of Big Data Technologies

Synonyms

Distributed spatial data streaming; Real-time big spatial data processing

Definitions

Recently, several big data stream management systems (DSMS, for short) have been developed to provide an infrastructure to process streamed big data. Big spatial DSMSs constitute a special class of big DSMSs that are optimized to process large amounts of spatial data streams. The main idea behind most big spatial DSMSs is to leverage the spatial properties of the incoming data stream to fairly distribute the workload across multiple distributed processes. When processing big spatial data streams, it is important to maintain high throughput and low latency.

Overview

Spatial data is ubiquitous. It is continuously being generated at a large scale. This is due to the popularity of GPS-enabled devices, e.g., smartphones, smart-watches, personal activity trackers, and GPS-navigation devices. Efficient processing of this streamed big spatial data requires higher computational resources than the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelhamid AS, Tang M, Aly AM, Mahmood AR, Qadah T, Aref WG, Basalamah S (2016) Cruncher: distributed in-memory processing for location-based services. In: IEEE 32nd international conference on data engineering (ICDE). IEEE, pp 1406–1409

    Google Scholar 

  • Apatche Hadoop (2017) Apatche Hadoop. http://hadoop.apache.org/

  • Aly AM, Sallam A, Gnanasekaran BM, Nguyen-Dinh LV, Aref WG, Ouzzani M, Ghafoor A (2012) M3: stream processing on main-memory mapreduce. In: ICDE, pp 1253–1256

    Google Scholar 

  • Chen Z, Cong G, Zhang Z, Fuz TZ, Chen L (2017) Distributed publish/subscribe query processing on the spatio-textual data stream. In: IEEE 33rd international conference on data engineering (ICDE). IEEE, pp 1095–1106

    Google Scholar 

  • Choi D, Song S, Kim B, Bae I (2015) Processing moving objects and traffic events based on spark streaming. In: 8th international conference on disaster recovery and business continuity (DRBC). IEEE, pp 4–7

    Google Scholar 

  • Gedik B, Liu L (2006) Mobieyes: a distributed location monitoring service using moving location queries. IEEE Trans Mobile Comput 5(10):1384–1402

    Article  Google Scholar 

  • Lee Y, Song S (2015) Distributed indexing methods for moving objects based on spark stream. Int J Contents 11(1):69–72

    Article  Google Scholar 

  • Mahmood AR, Aly AM, Qadah T, Rezig EK, Daghistani A, Madkour A, Abdelhamid AS, Hassan MS, Aref WG, Basalamah S (2015) Tornado: a distributed spatio-textual stream processing system. PVLDB 8(12): 2020–2023

    Google Scholar 

  • Mahmood AR, Daghistani A, Aly AM, Aref WG, Tang M, Basalamah S, Prabhakar S (2017) Adaptive processing of spatial-keyword data over a distributed streaming cluster. arXiv preprint, arXiv:170902533

    Google Scholar 

  • Mokbel MF, Aref WG (2005) Gpac: generic and progressive processing of mobile queries over mobile data. In: Proceedings of the 6th international conference on mobile data management. ACM, pp 155–163

    Google Scholar 

  • Mokbel MF, Aref WG (2008) Sole: scalable on-line execution of continuous queries on spatio-temporal data streams. VLDB J 17(5):971–995

    Article  Google Scholar 

  • Mokbel MF, Xiong X, Aref WG (2004a) Sina: Scalable incremental processing of continuous queries in spatio-temporal databases. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data. ACM, pp 623–634

    Google Scholar 

  • Mokbel MF, Xiong X, Aref WG, Hambrusch SE, Prabhakar S, Hammad MA (2004b) Place: a query processor for handling real-time spatio-temporal data streams. In: Proceedings of the thirtieth international conference on very large data bases, VLDB endowment, vol 30, pp 1377–1380

    Google Scholar 

  • Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: distributed stream computing platform. In: IEEE international conference on data mining workshops (ICDMW). IEEE, pp 170–177

    Google Scholar 

  • Ooi BC, McDonell KJ, Sacks-Davis R (1987) Spatial kd-tree: an indexing mechanism for spatial databases. In: IEEE COMPSAC, sn. vol 87, p 85

    Google Scholar 

  • Song G (2016) Parallel and continuous join processing for data stream. PhD thesis, Université Paris-Saclay

    Google Scholar 

  • Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J et al (2014) Storm@ twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 147–156

    Google Scholar 

  • Wang X, Zhang W, Zhang Y, Lin X, Huang Z (2017) Top-k spatial-keyword publish/subscribe over sliding window. VLDB J 26(3):301–326

    Article  Google Scholar 

  • Wu S, Kumar V, Wu KL, Ooi BC (2012) Parallelizing stateful operators in a distributed stream processing system: how, should you and how much? In: Proceedings of the 6th ACM international conference on distributed event-based systems. ACM, pp 278–289

    Google Scholar 

  • Xiong X, Mokbel MF, Aref WG (2005) SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: Proceedings of the 21st international conference on data engineering, ICDE 2005. IEEE, pp 643–654

    Google Scholar 

  • Xiong X, Elmongui HG, Chai X, Aref WG (2007) Place: a distributed spatio-temporal data stream management system for moving objects. In: International conference on mobile data management. IEEE, pp 44–51

    Google Scholar 

  • Yu Z, Liu Y, Yu X, Pu KQ (2015) Scalable distributed processing of k nearest neighbor queries over moving objects. IEEE Trans Knowl Data Eng 27(5):1383–1396

    Article  Google Scholar 

  • Zaharia M, Das T, Li H, Shenker S, Stoica I (2012) Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. HotCloud 12:10–10

    Google Scholar 

  • Zakhary V, Elmongui HG, Nagi MH (2013) Mobiplace*: a distributed framework for spatio-temporal data streams processing utilizing mobile clients processing power. In: International conference on mobile and ubiquitous systems: computing, networking, and services. Springer, pp 78–88

    Google Scholar 

  • Zhang F, Zheng Y, Xu D, Du Z, Wang Y, Liu R, Ye X (2016) Real-time spatial queries for moving objects using storm topology. ISPRS Int J Geo-Inf 5(10):178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid G. Aref .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahmood, A.R., Aref, W.G. (2018). Streaming Big Spatial Data. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_70-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Living Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Streaming Big Spatial Data
    Published:
    26 November 2022

    DOI: https://doi.org/10.1007/978-3-319-63962-8_70-3

  2. Streaming Big Spatial Data
    Published:
    22 February 2018

    DOI: https://doi.org/10.1007/978-3-319-63962-8_70-1

  3. Original

    Streaming Big Spatial Data
    Published:
    24 February 2012

    DOI: https://doi.org/10.1007/978-3-319-63962-8_70-2