Abstract
Anisotropic diffusion is a powerful image processing technique, which allows simultaneously to remove noise and to enhance sharp features in two and three dimensional images. Anisotropic diffusion filtering concentrates on preservation of important surface features, such as sharp edges and corners, by applying direction dependent smoothing. This feature is very important in image smoothing, edge detection, image segmentation and image enhancement. For instance, in the image segmentation case, it is necessary to smooth images as accurately as possible in order to use gradient-based segmentation methods. If image edges are seriously polluted by noise, these methods would not be able to detect them, so edge features cannot be retained. The aim of this paper is to present a comparative study of three methods that have been used for smoothing using anisotropic diffusion techniques. These methods have been compared using the root mean square error (RMSE) and the Nash-Sutcliffe error. Numerical results are presented for both artificial data and real data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Numer. Anal. 29, 845–866 (1992)
Fehrenbach, J., Mirebeau, J.-M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49, 1–25 (2013)
Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotrophic filtering of MRI data. IEEE Trans. Med. Imaging 11, 221–232 (1992)
Gómez-Mora, M., Flórez-Valencia, L.: Surface reconstruction from three-dimensional segmentations using implicit functions. In: Computing Colombian Conference (10 CCC), pp. 317–323. IEEE (2015)
Hosssain, Z., Möller, T.: Edge aware anisotropic diffusion for 3D scalar data. IEEE Trans. Vis. Comput. Graph. 16, 1376–1385 (2010)
Mirebeau, J.-M., Fehrenbach, J., Risser, L., Tobji, S.: Anisotropic diffusion in ITK. Insight J. 1–9 (2014)
Nordstrom, K.N.: Biased anisotropic diffusion - a unified regularization and diffusion approach to edge detection. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 18–27. Springer, Heidelberg (1990). 8, 318-327 (1990)
Olver, P.J., Sapiro, G., Tannenbaum, A.: Affine invariant detection: Edge maps, anisotropic diffusion and active contours. Acta Appl. Math. 59, 45–77 (1999)
Pal, C., Chakrabarti, A., Ghosh, R.: A brief survey of recent edge-preserving smoothing algorithms on digital images. Procedia Comput. Sci. 1–40 (2015)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipesin C: The Art of Scientific Computing. Cambridge University Press, Cambridge (2002)
Staggs, J.E.J.: Savitzky-Golay smoothing and numerical differentiation of cone calorimeter mass data. Fire Saf. J. 40, 493–505 (2005)
ter Haar Romeny, B.M., Florack, L.M.J.: Front-end vision: a multiscale geometry engine. In: Bülthoff, H.H., Poggio, T.A., Lee, S.-W. (eds.) BMCV 2000. LNCS, vol. 1811, pp. 297–307. Springer, Heidelberg (2000)
Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46, 1369–1381 (2013)
Weickert, J.: A review of nonlinear diffusion filtering. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 3–28. Springer, Heidelberg (1997)
Weickert, J.: Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgart (1998)
Whitaker, R.T., Xue, X.: Variable-conductance, level-set curvature for image denoising. In: Proceedings 2001 International Conference on Image Processing, pp. 142–145 (2001)
Witkin, A.P.: Scale-space filtering. Int. Jt. Conf. Artif. Intell. 2, 1019–1022 (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Bustacara, C., Gómez-Mora, M., Flórez-Valencia, L. (2016). Anisotropic Diffusion for Smoothing: A Comparative Study. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-46418-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46417-6
Online ISBN: 978-3-319-46418-3
eBook Packages: Computer ScienceComputer Science (R0)