Nothing Special   »   [go: up one dir, main page]

Skip to main content

Anisotropic Diffusion for Smoothing: A Comparative Study

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9972))

Included in the following conference series:

  • 1550 Accesses

Abstract

Anisotropic diffusion is a powerful image processing technique, which allows simultaneously to remove noise and to enhance sharp features in two and three dimensional images. Anisotropic diffusion filtering concentrates on preservation of important surface features, such as sharp edges and corners, by applying direction dependent smoothing. This feature is very important in image smoothing, edge detection, image segmentation and image enhancement. For instance, in the image segmentation case, it is necessary to smooth images as accurately as possible in order to use gradient-based segmentation methods. If image edges are seriously polluted by noise, these methods would not be able to detect them, so edge features cannot be retained. The aim of this paper is to present a comparative study of three methods that have been used for smoothing using anisotropic diffusion techniques. These methods have been compared using the root mean square error (RMSE) and the Nash-Sutcliffe error. Numerical results are presented for both artificial data and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fehrenbach, J., Mirebeau, J.-M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49, 1–25 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotrophic filtering of MRI data. IEEE Trans. Med. Imaging 11, 221–232 (1992)

    Article  Google Scholar 

  4. Gómez-Mora, M., Flórez-Valencia, L.: Surface reconstruction from three-dimensional segmentations using implicit functions. In: Computing Colombian Conference (10 CCC), pp. 317–323. IEEE (2015)

    Google Scholar 

  5. Hosssain, Z., Möller, T.: Edge aware anisotropic diffusion for 3D scalar data. IEEE Trans. Vis. Comput. Graph. 16, 1376–1385 (2010)

    Article  Google Scholar 

  6. Mirebeau, J.-M., Fehrenbach, J., Risser, L., Tobji, S.: Anisotropic diffusion in ITK. Insight J. 1–9 (2014)

    Google Scholar 

  7. Nordstrom, K.N.: Biased anisotropic diffusion - a unified regularization and diffusion approach to edge detection. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 18–27. Springer, Heidelberg (1990). 8, 318-327 (1990)

    Google Scholar 

  8. Olver, P.J., Sapiro, G., Tannenbaum, A.: Affine invariant detection: Edge maps, anisotropic diffusion and active contours. Acta Appl. Math. 59, 45–77 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pal, C., Chakrabarti, A., Ghosh, R.: A brief survey of recent edge-preserving smoothing algorithms on digital images. Procedia Comput. Sci. 1–40 (2015)

    Google Scholar 

  10. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  11. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipesin C: The Art of Scientific Computing. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Staggs, J.E.J.: Savitzky-Golay smoothing and numerical differentiation of cone calorimeter mass data. Fire Saf. J. 40, 493–505 (2005)

    Article  Google Scholar 

  13. ter Haar Romeny, B.M., Florack, L.M.J.: Front-end vision: a multiscale geometry engine. In: Bülthoff, H.H., Poggio, T.A., Lee, S.-W. (eds.) BMCV 2000. LNCS, vol. 1811, pp. 297–307. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46, 1369–1381 (2013)

    Article  Google Scholar 

  15. Weickert, J.: A review of nonlinear diffusion filtering. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 3–28. Springer, Heidelberg (1997)

    Google Scholar 

  16. Weickert, J.: Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  17. Whitaker, R.T., Xue, X.: Variable-conductance, level-set curvature for image denoising. In: Proceedings 2001 International Conference on Image Processing, pp. 142–145 (2001)

    Google Scholar 

  18. Witkin, A.P.: Scale-space filtering. Int. Jt. Conf. Artif. Intell. 2, 1019–1022 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Flórez-Valencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bustacara, C., Gómez-Mora, M., Flórez-Valencia, L. (2016). Anisotropic Diffusion for Smoothing: A Comparative Study. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46418-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46417-6

  • Online ISBN: 978-3-319-46418-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics