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Abstract. We present novel face landmark detection and tracking
methods which are independent of user facial differences in a scenario
of Spatial Augmented Reality (SAR) interaction. The proposed meth-
ods do not require a preliminary general face model to detect or track
landmarks. Our contributions include: (i) fast face landmark detection,
which is achieved based on our modified Latent Regression Forest (LRF)
and (ii) model-independent facial landmark tracking by revising outliers
based on a direction and displacement of neighboring landmarks. We also
discuss (iii) feature enhancements based on RGB and depth images for
supporting several interaction scenarios in SAR environments. We antic-
ipate that the proposed methods promise several interesting scenarios,
even under severe head orientation in SAR interaction without wearing
any wearable devices.

Keywords: Face landmark detection · Face landmark tracking ·
Random forest · Virtual reality · Computer vision

1 Introduction

Spatial Augmented Reality (SAR), such as IllumiRoom [9] and RoomAlive [8],
provides immersive user experiences by projecting a VR scene onto the room
space and expanding an interactive space. However, a user is required to touch
a point of the wall in order to interact with the projected virtual object in the
SAR environments. Because it is hard to estimate head position and orienta-
tion without wearing HMD, estimating head pose, detecting and tracking facial
landmarks provides various interactive clues which are available for supporting
a more intuitive interaction in SAR environment. Herein, head orientation indi-
cates the direction of the user’s view. Moreover, user-independent face landmark
detection and tracking is the first step for supporting different users of SAR envi-
ronment. Thus, without wearing a cumbersome Head-Mounted-Display (HMD),
such as HoloLens [1] and Oculus [2], an immersive experience is achievable based
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Fig. 1. Block diagram of the proposed framework.

on the User-independent face landmark detection and tracking in an indoor envi-
ronment.

Main contributions of our proposed method include:

(1) Fast head orientation estimation: Our modified Latent Regression For-
est for face landmark detection guarantees very fast detection performance.
Moreover, the proposed method detects face landmarks independent of user facial
differences.

(2) Model-independent facial landmark tracking: Based on the detected
landmarks as an input, the proposed method could track the landmarks along
the video sequences, which is independent of user’s facial expression changes.
Because the proposed method does not require a preliminary model for a general
face, it provides more accurate tracking performance.

(3) Discussions of novel feature enhancement based on RGB-D images:
For improving the accuracies of landmark detection and tracking, we discuss a
novel type of feature configuration which utilizes the concept of Local Angle
Pattern [7].

2 Methodology

2.1 Overview

The proposed method is as shown in Fig. 1. At first, RGB-D camera captures a
pair of images including synchronized color and depth images. Based on a depth
image, then, our method detects the face region of interests. After that, the center
coordinate of the detected face region is transformed into the coordinate of the
color image. Then, by utilizing a cropped face image as an input, our proposed
method detects multiple dominant facial landmarks in a coarse manner. For
that, we adopted and modified the Latent Regression Forest [13] for targeting
face modality. The coarsely detected dominant landmarks work to specify the
searching space for specifically aligned landmark detection. Finally, our proposed
method tracks the landmarks based on the proposed outlier rejection methods.

2.2 Region of Faces Detection

Our face detection is achieved by utilizing J. Shotton [12]’s body joint estima-
tion method. By taking the two pixel test, which is based on the normalized
offsets to be calculated, we only trained face and background classes. Based on
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the coarsely detected region, we redefine a searching space and then did per-
pixel classification for more precise face region detection. Based on the detected
face region, a cropped and normal-sized face image is used as an input for face
landmark detection.

2.3 Dominant Landmark Detection

We use Latent Random Forest (LRF) [13] for face dominant landmarks. The
LRF utilizes a face landmark topology to keep a relative position structure of
landmarks. We designed a face landmark topology to guide landmark detec-
tion (Sect. 2.3-A), built LRF following the designed topology (Sect. 2.3-B), and
designed testing procedure using learnt LRF (Sect. 2.3-C)

A. Face Landmark Topology. To enhance the landmark detection process,
we utilize a hierarchical context of dominant landmarks based on a topology
of face landmarks. Given ten dominant landmarks in Fig. 2, a face landmark
topology has a binary tree structure. From the center position of the face image
represented as a root node, we could reach to every landmark stored at the leaf
nodes of topology. Each node in the topology has its two children which have
the subset of its parents’ landmark set, respectively. When it reaches the node
that has only one dominant landmark in the subset, we define the node as a leaf
node (See Fig. 2).

Fig. 2. Face landmark topology model.
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Fig. 3. Latent regression tree.

B. Learning Latent Regression Forest (LRF). A Latent Regression Forest
(LRF) [13] is an ensemble of random decision trees, which is originally proposed
to estimate articulated hand posture. In this paper, we adopted the LRF to
estimate the facial landmarks, searching from coarse level to fine level based
on the designed face topology model. Learning LRF is performed in a divide-
and-conquer way by taking the whole face image and ground-truth landmarks
as input and ending with each landmark detected as output. Each node of a
decision tree in LRF is set by one of three types: split, division, and leaf. Split
nodes function to split the training dataset to two subsets by the split function.
Division nodes divide the scope of facial landmark set according to the face
topology. When the scope of facial landmark includes only one landmark, it
terminates by storing the relative landmark position at the leaf node.

Given our face topology model M , for each node i ∈ M, i = 0, · · · , |M |, it
has parent node p(i) and its child nodes l(i) and r(i). For each training RGB
face image I, we define ρi

I , the center position of a landmark set corresponded
with each topology node i. Each latent regression tree is trained corresponding
with each topology stage. A root node of LRT takes the whole scope of facial
landmarks according to a root node i = 0 of the topology model. As the tree
grows, it separates the scope of landmarks according to l(i) and r(i) until the
topology reaches the leaf node. At each node, we split the training data S into two
subsets Sl and Sr by the split function fi and threshold τi randomly generated.
The learning is proceeded under the context of a topology node i. A split function
fi and the subsets are defined as:

fi = I(ρiI + u) − I(ρiI + v), (1)
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Sl = {I|fi(I) < τi}, Sr = S\Sl, (2)

where I(·) is the pixel value of certain location, vectors u and v are random nor-
malized offsets. We set the split function fi which shows the largest information
gain value, while if the information gain value could not improve from the pre-
vious node step, the learning process enters the division step. The information
gain under the context of a topology node i is defined like [13] as:
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where
∑

im χ is the sample covariance matrix of the set of offset vectors {(ρIm −
ρIi )|I ∈ χ}. The offset vectors are the offsets from the current center position to
each center of two subsets.

Given the training data which are face images, at division step, each data is
divided by the center of the selected offset vectors. Its children nodes process its
own learning on a finer scope of the training data. (See Fig. 3) The offset vectors
θm = (ρIm − ρIi ),m ∈ {l(i), r(i)} are stored in the division node.

Split and division process are repeated until a corresponding topology node
is the leaf node of the topology which represents one final landmark. At each
leaf node, we save the offset vectors from the center of its parent node to the
landmark.

C. Testing. Given a detected face image as an input, it goes into each Latent
Regression Tree in LRF, starting from the center of the face image with the root
node of a topology. At each split node, the test image is checked with the split
function saved in the node, traversing to the left side or the right side and repeats
the process until reaching at division node. At each division node, the face image
is divided into two sub-regions according to the children nodes of the current
node in the topology and the landmark position is accumulated with the offset
vectors saved in the division node. When reaching a leaf node and accumulating
the offset vectors, all dominant landmark positions can be estimated.

2.4 Model-Independent Landmark Tracking

In this section, we present a model-independent landmark tracking method.
Recently, model-based methods [4,11,15] have been popularly used for landmark
tracking and have achieved promising tracking results. However, these methods
are not suitable for tracking various face appearances, and their tracking perfor-
mances heavily rely on a number of training samples and optimization methods.
To overcome these problem, we propose a model-independent landmark track-
ing method which is based on dense optical flow [15] and the displacement of
neighborhood landmark information. Specifically, after detecting the dominant
landmarks, each detected landmark plt = (xl

t, y
l
t) at frame t is tracked to the

next frame t+1 using the median filtering kernel M in a dense optical flow field
G = (ut, vt).



User-Independent Face Landmark Detection and Tracking 215

plt+1 = (xl
t+1, y

l
t+1) = (xl

t, y
l
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t, ȳ
l
t), (4)

where · is the convolution operator, and (x̄l
t, ȳ

l
t) is the rounded position of (xl

t, y
l
t).

During landmark tracking, landmarks tend to drift from their previous loca-
tions due to the abrupt fast motions of the face. To revise such outlier landmarks,
we use displacement information of neighboring landmarks, which is illustrated
in Fig. 4. In detail, we first define the neighboring landmarks by considering their
geometric information and the partial components of the face. Then, the out-
lier landmarks are modified by their neighboring displacements and the mean of
their directions.

Fig. 4. Process of revision of outlier landmarks.

When an overall landmark tracking error is larger than a threshold, we reini-
tialize the landmarks positions using the proposed dominant landmark detection
method.

3 Implementation

3.1 LRF-Based Landmark Detection

To perform the dominant landmark detection method, each training sample con-
sists of a cropped face image and a ground truth of ten dominant facial land-
marks. Because a LRF is trained based on pixel value of the face image, we
normalize each face image to a fixed-size image (30 × 30 pixels in our imple-
mentation) and make a feature vector which is 900 pixel values of a normalized
image. At the division step, we mark invalid pixel values as −1 in each feature
vector as the facial landmarks are divided to two subsets. A two-pixel difference
test proceeds on valid elements of feature vectors. For testing landmarks, when
traversing the trees and accumulating the offset vectors which are saved in divi-
sion nodes, we calculate the offset values by using the voting mechanism. This
is found to be more accurate than averaging all offset values.
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(a) (b)

Fig. 5. Results of face landmark tracking: (a) tracking result of KLT tracker (b) track-
ing result of our proposed method.

3.2 Model-Independent Landmark Tracking

For testing the proposed tracking method, we first capture face motion clips
which contain in-plane rotation of face from a commodity RGB camera. Then,
we conduct an experiment using the proposed method and the other model-
independent landmark tracking method (namely KLT tracker) [11] which is
based on sparse optical flow information. Figure 5 shows their tracking results.

As shown in Fig. 5, our proposed method (Fig. 5(b)) outperforms KTL land-
mark tracker (Fig. 5(a)) with respect to the in-plane rotation of face situation.
From the experiment, we confirm the feasibility of the proposed landmark track-
ing method which does not use a learned face model.

4 Discussion

So far, we have tackled user-independent landmark detection and tracking meth-
ods. However, it is still processed based on the images captured from frontal view-
point cameras. Thus, in order to enhance the features, which can be used for the
scenarios of face rotation in SAR environment, we discuss feature enhancement
method in this section.

Defining RGB-D feature is completed as shown in Fig. 6. The color and depth
image acquired from a camera is processed parallely into local binary pattern
(LBP) image and surface normal image. The color image is perceived as a matrix
of RGB pixels by a camera in order to apply Local Binary Pattern (LBP) [3].
LBP operator is one of the most efficient and effective image features, frequently
used in face recognition and detection. Despite its advantages, however, LBP
features still suffer in terms of robustness in situations where instant change of
luminosity or face orientation occurs. To overcome this challenge, the proposed
feature integrates LBP feature with depth data.
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Fig. 6. RGB-D feature definition flow diagram.

Fig. 7. Acquiring transformation matrix between local/face coordinate and camera
coordinate based on dominant facial landmarks.

Along with color images, a stream of depth images is captured from TOF
camera simultaneously, and these depth images represent the distance between
objects and the camera. The proposed method utilizes the depth images by
calculating the surface normal of each pixel by finding a vector for each pixels
which is orthogonal to the plane.

In the process of generating our proposed Local Angle Pattern, a coordinate
transformation is done in order to justify the orientation difference between
camera and local/face surface normal. The original surface normal vectors are
adjusted by applying a transformation matrix resolved from the relationship of
four dominant facial landmarks in camera coordinate and local/face coordinate,
as shown in Fig. 7.

Transformation Matrix Tr used in coordinate adjustment is defined by the
rotation and translation, and it is referenced to transform 3D vectors from cam-
era coordinates L to local coordinates L′, as shown in Eq. 5.

⎛

⎜⎜⎝

L
′
1x L

′
1y L

′
1z

L
′
2x L

′
2y L

′
2z

L
′
3x L

′
3y L

′
3z

L
′
4x L

′
4y L

′
4z

⎞

⎟⎟⎠ = Tr

⎛

⎜⎜⎝

L1x L1y L1z

L2x L2y L2z

L3x L3y L3z

L4x L4y L4z

⎞

⎟⎟⎠ , (5)

Transformation Matrix Tr consists of 3 variables: internal calibration
matrix A, rotation matrix R, and translation vector T as shown in Eq. 6. The
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inverse matrix of rotation matrix R inside of transformation matrix Tr is applied
on camera coordinates surface normal SN , such that consistent local surface nor-
mal SN ′ image is generated under various face rotation, as shown in Eq. 7.

Tr = A[R|T ], (6)

⎛
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...
SNnx SNny SNnz

⎞

⎟⎠ [R]−1 =

⎛

⎜⎝
SN

′
1x SN

′
1y SN

′
1z

...
SN

′
nx SN

′
ny SN

′
nz

⎞

⎟⎠ , (7)

Before integrating with the LBP feature to form a RGB-D feature, the trans-
formed surface normal are encoded in 8-bit code by applying locality principle
[6], as shown in Fig. 8.

Fig. 8. Applying locality principle to surface normal image.

For each pixel, the inner product of pivot and its neighboring surface nor-
mal vector are calculated. If the inner product of two vectors is greater than
the threshold, the feature concatenates 1 and if not, 0. As a result, each pixel
produces an 8-byte local angular pattern (LAP), as defined by the following
equation:

θi = cos−1
( dot(vpivot, vi)

‖vpivot‖ · ‖vi‖
)
, (8)

lap[i] =

{
0, if θi < threshold.

1, if θi ≥ threshold.
, (9)

LAP (x, y) = (lap[0], lap[1], · · · , lap[7]), (10)

The LAP feature defined here is integrated with LBP to form RGB-D feature,
and it is used for both holistic and patch-based face detection and tracking.

The proposed RGB-D feature has the merit of supplementing the limitations
of color-based features, such as SIFT [10], HOG [5], Viola-Jones [14], or LBP [10]
itself. Many of the above methods showed that they rely on edge/corner extrac-
tion for detecting faces, which becomes easily vulnerable in rotation, translation,
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or slight deformation. Also, upon immediate centralization of image contrast,
losses of feature detection occur, thus being unstable for SAR interaction.

Our proposed RGB-D feature, on the other hand, utilizes both color and
depth data and proved to be more robust under rapid change of light conditions
and face rotation. The fact that LAP [7] is not affected by light conditions
not only improves the detection accuracy in various light conditions, but also
stabilizes the tracking in dynamic head orientation by generating features based
on face/local coordinates. Therefore, even under conditions where color images
are suddenly saturated such that no RGB features are extractable, the LAP
becomes the reference to where the facial landmarks are located.

5 Conclusions

This paper presents user-independent face landmark detection and tracking
methods for spatial AR interaction scenarios. In spatial AR interaction envi-
ronments, a user has to approach and touch the projected object on the wall in
order to interact with virtual objects, which is cumbersome. To detect the facial
landmarks, we adopted and modified Latent Regression Forest (LRF), specifi-
cally for face modality. Because it utilizes a face image to detect all the landmarks
of a face, it is fast and invariant to users’ facial differences. In addition, to track
the landmarks, we proposed a model-independent tracking method. Finally, we
discussed feature enhancement method, which could be used for both detection
and tracking. We expect our proposed user-independent facial landmark detec-
tion and tracking methods would be useful in SAR interaction scenario.
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