Nothing Special   »   [go: up one dir, main page]

Skip to main content

Motion Correction in Low SNR MRI Using an Approximate Rician Log-Likelihood

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13386))

Included in the following conference series:

  • 742 Accesses

Abstract

Certain MRI acquisitions, such as Sodium imaging, produce data with very low signal-to-noise ratio (SNR). One approach to improve SNR is to acquire several images, each of which takes may take more than a minute, and then average these measurements. A consequence of such a lengthy acquisition procedure is subject motion between each image. This work investigates a solution for retrospective motion correction in this scenario, where the high level of Rician noise renders standard registration tools less effective. We employ a simple generative model for the data based on tissue segmentation maps, and provide a differentiable approximation of the Rician log-likelihood to fit the model to the observations. We find that this approach substantially outperforms a Gaussian log-likelihood baseline on synthetic data that has been corrupted by Rician noise of varying degrees. We also provide results of our approach on real Sodium MRI data, and demonstrate that we can reduce the effects of substantial motion compared to a general purpose registration tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ivorsimpson/sodium-mri-inference.

References

  1. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)

    Article  Google Scholar 

  2. Ashburner, J., Neelin, P., Collins, D., Evans, A., Friston, K.: Incorporating prior knowledge into image registration. Neuroimage 6(4), 344–352 (1997)

    Article  Google Scholar 

  3. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight j 2(365), 1–35 (2009)

    Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  7. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14(40), 1303–1347 (2013). https://jmlr.org/papers/v14/hoffman13a.bib

  8. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  11. Madelin, G., Regatte, R.R.: Biomedical applications of sodium MRI in vivo. J. Magn. Reson. Imaging 38(3), 511–529 (2013)

    Article  Google Scholar 

  12. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008)

    Article  Google Scholar 

  13. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19(1–2), 25–31 (2001)

    Article  Google Scholar 

  14. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  15. Pipe, J.G., Zwart, N.R., Aboussouan, E.A., Robison, R.K., Devaraj, A., Johnson, K.O.: A new design and rationale for 3D orthogonally oversampled k-space trajectories. Magn. Reson. Med. 66(5), 1303–1311 (2011)

    Article  Google Scholar 

  16. Ramos-Llordén, G., Arnold, J., Van Steenkiste, G., Van Audekerke, J., Verhoye, M., Sijbers, J.: Simultaneous motion correction and t1 estimation in quantitative t1 mapping: an ml restoration approach. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3160–3164. IEEE (2015)

    Google Scholar 

  17. Reuter, M., Rosas, H.D., Fischl, B.: Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4), 1181–1196 (2010)

    Article  Google Scholar 

  18. Riemer, F., Solanky, B.S., Stehning, C., Clemence, M., Wheeler-Kingshott, C.A., Golay, X.: Sodium (23Na) ultra-short echo time imaging in the human brain using a 3D-cones trajectory. Magn. Reson. Mater. Phys., Biol. Med. 27(1), 35–46 (2014)

    Article  Google Scholar 

  19. Rose, A.M., Valdes, R., Jr.: Understanding the sodium pump and its relevance to disease. Clin. Chem. 40(9), 1674–1685 (1994)

    Article  Google Scholar 

  20. Wolfram Mathworld: Modified Bessel function of the first kind. https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html

  21. Woolrich, M.W., Jenkinson, M., Brady, J.M., Smith, S.M.: Fully Bayesian spatio-temporal modeling of fMRI data. IEEE Trans. Med. Imaging 23(2), 213–231 (2004)

    Article  Google Scholar 

  22. Zwart, N.R., Johnson, K.O., Pipe, J.G.: Efficient sample density estimation by combining gridding and an optimized kernel. Magn. Reson. Med. 67(3), 701–710 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the University of Sussex used in the data acquisition. We thank Guillaume Madelin for providing the Sodium MRI sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivor J. A. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simpson, I.J.A., Örzsik, B., Harrison, N., Asllani, I., Cercignani, M. (2022). Motion Correction in Low SNR MRI Using an Approximate Rician Log-Likelihood. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics