Nothing Special   »   [go: up one dir, main page]

Skip to main content

Study the Quantum Transport Process: Machine Learning Simulates Quantum Conditional Master Equation

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12736))

Included in the following conference series:

  • 1939 Accesses

Abstract

Quantum transport is a significant phenomenon in the mesoscopic system which is widely studied in recent years. In physical experiments, the fluctuation noise can reflect the microscopic properties of the quantum transport system easier than the transport current. In theory, the quantum conditional master equation (QCME) is a very effective method for studying quantum transport process of charge qubits. But, the QCME is an infinite recursive differential equation system that is difficult to solve theoretically. So, we try to solve this problem by combining the requirements of the solution and some advantages of the machine learning algorithms. Firstly, compared the calculation diagram of QCME and recurrent neural network (RNN), the relationship between them was found. Long Short-Term Memory (LSTM) has great advantages in processing time-series data as a typical network of RNN. Secondly, the behavior of parameters transfers from time \(t\) to \(t+\Delta t\) in QCME is consistent with the behavior of parameter transfer in LSTM. Based on the above two reasons, the LSTM is used to simulate QCME. In the numerical experiment, an effective method is proposed to truncate QCME, and then the fluctuation noise spectrum data from a two-level quantum transport system is used to train the LSTM network and calculate the transition probability of electron with the parameters of LSTM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, D., Shi, D.D., Pan, G.J.: Correlation between the electrical transport performance and the communicability sequence entropy in complex networks. Acta Phys. Sinica 68, 11 (2019)

    Google Scholar 

  2. Szpunar, B., Ranasinghe, J.: First-principles investigation of thermal transport of uranium mononitride. J. Phys. Chem. Solids 146, 109636 (2020)

    Google Scholar 

  3. Moussa, O., Baugh, J., et al.: Demonstration of sufficient control for two rounds of quantum error correction in a solid-state ensemble quantum information processor. Phys. Rev. Lett 107, 160501 (2011)

    Article  Google Scholar 

  4. Blanter, Y.M., Buttiker, M.: Shot noise in mesoscopic conductors. Phys. Reports 336, 1–166 (2000)

    Google Scholar 

  5. Gurvitz, S.A.: Measurements with a noninvasive detector and dephasing mechanism. Phys. Rev. B. 56, 15215 (1997)

    Article  Google Scholar 

  6. Mozyrsky, D., Martin, I.: Efficiency of mesoscopic detectors. Phys. Rev. Lett. 89, 200401 (2002)

    Article  Google Scholar 

  7. Gurvitz, S.A., Fedichkin, L., Mozyrsky, D., Berman, G.P.: Relaxation and the Zeno effect in qubit measurements. Phys. Rev. Lett. 91, 066801 (2003)

    Article  Google Scholar 

  8. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  9. Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996)

    Google Scholar 

  10. Glazman, L.I., Matveev, K.A.: JETP Lett. 48, 445 (1988). D.V. Averin and A. N. Korotkov, Sov, Phys. JETP 70, 937 s1990d; C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991)

    Google Scholar 

  11. Davies, J.H., Hershfield, S., Hyldgaard, P., Wilkins, J.W.: Phys. Rev. B 47, 4603 (1993). S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, Mod. Phys. Lett. B 8, 1377 (1994)

    Google Scholar 

  12. Nazarov, Y.V.: Quantum interference, tunnel junctions and resonant tunneling interferometer. Physica B 189, 57 (1993)

    Google Scholar 

  13. Gurvitz, S.A., Lipkin, H.J., Ya, S.P.: Interference effects in resonant tunneling and the Pauli principle. Phys. Lett. A 212, 91 (1996)

    Google Scholar 

  14. Gurvitz, S.A., Prager, Y.S.: Microscopic derivation of rate equations for quantum transport. Phys. Rev. B 53, 15932 (1996)

    Google Scholar 

  15. Gurvitz, S.A., Prager, Y.S.: Microscopic derivation of rate equations for quantum transport. Phys. Rev. B 53, 23 (1995)

    Google Scholar 

  16. Xin-Qi, L., Jun, Y.L., Yong-Gang, Y.: Quantum master equation approach to quantum transport through mesoscopic systems. Phys. Rev. B 71, 205304 (2005)

    Google Scholar 

  17. Torlai, G., Mazzola, G., Carrasquilla, J., et al.: Neural-network quantum state tomography. Nat. Phys. 14, 447 (2018)

    Article  Google Scholar 

  18. Zhang, Y., Kim, E.A.: Quantum loop topography for machine learning. Phys. Rev. Lett 188, 21 (2017)

    MathSciNet  Google Scholar 

  19. Qu, Z.G., Chen, S.Y., Wang, X.J.: A secure controlled quantum image steganography algorithm. Quantum Inf. Process. 19(380), 1–25 (2020)

    MathSciNet  Google Scholar 

  20. Qu, Z.G., Wu, S.Y., Liu, W.J., Wang, X.J.: Analysis and improvement of steganography protocol based on bell states in noise environment. Comput. Mater. Continua 59(2), 607–624 (2019)

    Article  Google Scholar 

  21. Li, X.-Y., Zhu, Q.-S., Zhu, M.-Z., Huang, Y.-M., Hao, W., Shao-Yi, W.: Machine learning study of the relationship between the geometric and entropy discord. EPL 127, 20009 (2019)

    Article  Google Scholar 

  22. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355(6325), 602–605 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yan, Y.J.: Quantum Fokker-Planck theory in a non-Gaussian-Markovian medium. Phys. Rev. A 58, 2721 (1998)

    Article  Google Scholar 

  24. Clark, L.A., Huang, W., Barlow, T.M., Beige, A.: Hidden quantum Markov models and open quantum systems with instantaneous feedback,arXiv:1406.5847v2 [quant-ph], 5 July 2014

  25. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  26. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS 2008, pp. 545–552 (2009)

    Google Scholar 

  27. Graves, A.: Generating sequences with recurrent neural networks, Technical report, arXiv: 1308.0850

    Google Scholar 

  28. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: ICML (2014)

    Google Scholar 

  29. Kiros, R., Salakhutdinov, R., Zemel, R.: Unifying visual-semantic embeddings with multimodal neural language models, arXiv: 1411.2539 (2014)

    Google Scholar 

  30. Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language, arXiv: 1411.4555 (2014)

    Google Scholar 

  31. Xu, K., Ba, J.L., Kiros, R., Cho, K., Courville, A., et al.: Show, attend and tell: Neural image caption generation with visual attention, arXiv: 1502.03044 (2015)

    Google Scholar 

  32. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks, arXiv: 1409.3215 (2014)

    Google Scholar 

  33. Luchnikov, I.A., Vintskevich, S.V., Grigoriev, D.A., Filippov, S.N.: Machine learning non-Markovian quantum dynamics. Phys. Rev. Lett 124, 140502 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

Project supported by the National Key R&D Program of China, Grant No. 2018YFĂ703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-Sheng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Li, XY., Zhu, QS. (2021). Study the Quantum Transport Process: Machine Learning Simulates Quantum Conditional Master Equation. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12736. Springer, Cham. https://doi.org/10.1007/978-3-030-78609-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78609-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78608-3

  • Online ISBN: 978-3-030-78609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics