Abstract
Bayesian diagnosis tracing model (BDT) replaces the generic “wrong” response in the classical Bayesian knowledge tracing model (BKT) with a vector of procedure misconceptions. Using a novel dataset with actual student responses, this paper shows the BDT model has better interpretability of the latent factor and minor improvement in out-sample predictability in some specification than the BKT model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User Adapt. Interact. 4(4), 253–278 (1994)
Pelánek, R.: Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques. User Model. User Adapt. Interact. 27(3–5), 313–350 (2017)
Desmarais, M.C., Baker, R.S.: A review of recent advances in learner and skill modeling in intelligent learning environments. User Model. User Adapt. Interact. 22(1–2), 9–38 (2012)
Feng, J.: Essays on learning through practice. Doctoral dissertation, The University of Chicago (2017)
Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18
Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24
Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)
VanLehn, K.: Mind Bugs: The Origins of Procedural Misconceptions. MIT Press, Cambridge (1990)
Liu, R., Patel, R., Koedinger, K.R.: Modeling common misconceptions in learning process data. In: Proceedings of the Sixth International Conference on Learning Analytics and Knowledge, pp. 369–377. ACM (2016)
Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)
Käser, T., Klingler, S., Schwing, A.G., Gross, M.: Beyond knowledge tracing: modeling skill topologies with Bayesian networks. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 188–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_23
Ghahramani, Z.: An introduction to hidden Markov models and Bayesian networks. In: Hidden Markov Models: Applications in Computer Vision, pp. 9–41 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Feng, J., Zhang, B., Li, Y., Xu, Q. (2019). Bayesian Diagnosis Tracing: Application of Procedural Misconceptions in Knowledge Tracing. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11626. Springer, Cham. https://doi.org/10.1007/978-3-030-23207-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-23207-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23206-1
Online ISBN: 978-3-030-23207-8
eBook Packages: Computer ScienceComputer Science (R0)