Nothing Special   »   [go: up one dir, main page]

Skip to main content

Macro-element Hierarchical Riesz Bases

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8177))

Abstract

We show that a nested sequence of C r macro-element spline spaces on quasi-uniform triangulations gives rise to hierarchical Riesz bases of Sobolev spaces H s(Ω), \(1<s<r+\frac{3}{2}\), and \(H^s_0(\Omega)\), \(1<s<\sigma+\frac{3}{2}\), \(s\notin\mathbb{Z}+\frac{1}{2}\), as soon as there is a nested sequence of Lagrange interpolation sets with uniformly local and bounded basis functions, and, in case of \(H^s_0(\Omega)\), the nodal interpolation operators associated with the macro-element spaces are boundary conforming of order σ. In addition, we provide a brief review of the existing constructions of C 1 Largange type hierarchical bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, New York (1976)

    Book  MATH  Google Scholar 

  2. Bramble, J.: Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory. Math. Comp. 64, 1359–1365 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  4. Butzer, P.L.: Approximationsprozesse und Interpolationsmethoden. Bibliographisches Institut, Mannheim (1968)

    MATH  Google Scholar 

  5. Dahmen, W., Oswald, P., Shi, X.-Q.: C 1-hierarchical bases. J. Comput. Appl. Math. 51, 37–56 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dahmen, W.: Multiscale analysis, approximation and interpolation spaces. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII. Wavelets and Multilevel Approximation, vol. 2, pp. 47–88. World Scientific Publishing (1995)

    Google Scholar 

  7. Dahmen, W.: Stability of multiscale transformations. J. Fourier. Anal. Appl. 2, 341–361 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Davydov, O.: Stable local bases for multivariate spline spaces. J. Approx. Theory 111, 267–297 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davydov, O.: Locally stable spline bases on nested triangulations. In: Chui, C.K., Schumaker, L.L., Stöckler, J. (eds.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 231–240. Vanderbilt University Press (2002)

    Google Scholar 

  10. Davydov, O.: Smooth finite elements and stable splitting. Berichte “Reihe Mathematik” der Philipps-Universität Marburg, Marburg (April 2007); An adapted version of this article has appeared as Section 4.2.6 “Smooth FEs on polyhedral domains” of the book K. Böhmer, Numerical Methods for Nonlinear Elliptic Differential Equations: A Synopsis. Oxford University Press, Oxford, (2010)

    Google Scholar 

  11. Davydov, O., Petrushev, P.: Nonlinear approximation from differentiable piecewise polynomials. SIAM J. Math. Anal. 35, 708–758 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Davydov, O., Stevenson, R.: Hierarchical Riesz bases for H s(Ω), \(1<s<\frac{5}{2}\). Constr. Approx. 22, 365–394 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Davydov, O., Yeo, W.P.: Refinable C 2 piecewise quintic polynomials on Powell-Sabin-12 triangulations. J. Comput. Appl. Math. 240, 62–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davydov, O., Yeo, W.P.: C1 piecewise quadratic hierarchical bases (in preparation)

    Google Scholar 

  15. Goodman, T., Hardin, D.: Refinable multivariate spline functions. In: Jetter, K., et al. (eds.) Topics in Multivariate Approximation and Interpolation, pp. 55–83. Elsevier (2006)

    Google Scholar 

  16. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (1985)

    Google Scholar 

  17. Jia, R.Q., Liu, S.T.: C 1 Spline wavelets on triangulations. Math. Comp. 77, 287–312 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jia, R.Q., Zhao, W.: Riesz bases of wavelets and applications to numerical solutions of elliptic equations. Math. Comp. 80, 1525–1556 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)

    Book  Google Scholar 

  20. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  21. Lorentz, R., Oswald, P.: Multilevel finite element Riesz bases for Sobolev spaces. In: Bjorstad, P., et al. (eds.) Domain Decomposition Methods in Science and Engineering: 9th International Conference, pp. 178–187. Domain Decomposition Press, Bergen (1997)

    Google Scholar 

  22. Luther, U.: Representation, interpolation, and reiteration theorems for generalized approximation spaces. Annali di Matematica 182, 161–200 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maes, J., Bultheel, A.: C 1 hierarchical Riesz bases of Lagrange type on Powell-Sabin triangulations. J. Comp. Appl. Math. 196, 1–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nürnberger, G., Zeilfelder, F.: Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling. In: Haussmann, W., Jetter, K., Reimer, M. (eds.) Recent Progress in Multivariate Approximation, pp. 227–244. Birhäuser (2001)

    Google Scholar 

  25. Oswald, P.: On function spaces related to finite element approximation theory. Z. Anal. Anwendungen. 9, 43–64 (1990)

    MATH  MathSciNet  Google Scholar 

  26. Oswald, P.: Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer. Anal. 29, 1610–1625 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Oswald, P.: Multilevel Finite Element Approximation: Theory and Applications. B.G. Teubner, Stuttgart (1994)

    Book  MATH  Google Scholar 

  28. Oswald, P.: Frames and space splittings in Hilbert spaces (1997) (manuscript), http://www.faculty.jacobs-university.de/poswald/bonn1.pdf

  29. Oswald, P.: Multilevel frames and Riesz bases in Sobolev spaces (1998) (manuscript), http://www.faculty.jacobs-university.de/poswald/bonn2.pdf

  30. Vanraes, E., Windmolders, J., Bultheel, A., Dierckx, P.: Automatic construction of control triangles for subdivided Powell-Sabin splines. Computer Aided Geometric Design 21, 671–682 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Numer. Math. 49, 379–412 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zolesio, J.-L.: Interpolation d’espaces de Sobolev avec conditions aux limites de type mêlé. C. R. Acad. Sc. Paris, Série A 285, 621–624 (1977)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davydov, O., Yeo, W.P. (2014). Macro-element Hierarchical Riesz Bases. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54382-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54381-4

  • Online ISBN: 978-3-642-54382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics