
Scalable Multiparty Computation with
Nearly Optimal Work and Resilience

Ivan Damg̊ard1, Yuval Ishai2,�, Mikkel Krøigaard1,
Jesper Buus Nielsen1, and Adam Smith3

1 University of Aarhus, Denmark
{ivan,mk,buus}@daimi.au.dk

2 Technion and UCLA
yuvali@cs.technion.ac.il

3 Pennsylvania State University, USA
asmith@cse.psu.edu

Abstract. We present the first general protocol for secure multiparty
computation in which the total amount of work required by n players to
compute a function f grows only polylogarithmically with n (ignoring an
additive term that depends on n but not on the complexity of f). More-
over, the protocol is also nearly optimal in terms of resilience, providing
computational security against an active, adaptive adversary corrupting
a (1/2 − ε) fraction of the players, for an arbitrary ε > 0.

1 Introduction

Secure multiparty computation (MPC) allows n mutually distrustful players to
perform a joint computation without compromising the privacy of their inputs
or the correctness of the outputs. Following the seminal works of the 1980s
which established the feasibility of MPC [4, 9, 22, 35], significant efforts have
been invested into studying the complexity of MPC. When studying how well
MPC scales to a large network, the most relevant goal minimizing the growth
of complexity with the number of players, n. This is motivated not only by
distributed computations involving inputs from many participants, but also by
scenarios in which a (possibly small) number of “clients” wish to distribute a
joint computation between a large number of untrusted “servers”.

The above question has been the subject of a large body of work [2, 3, 11, 12,
14, 15, 19, 20, 21, 24, 26, 27, 28, 29]. In most of these works, the improvement
over the previous state of the art consisted of either reducing the multiplicative
overhead depending on n (say, from cubic to quadratic) or, alternatively, main-
taining the same asymptotic overhead while increasing the fraction of players
that can be corrupted (say, from one third to one half).

The current work completes this long sequence of works, at least from a crude
asymptotic point of view: We present a general MPC protocol which is simul-
taneously optimal, up to lower-order terms, with respect to both efficiency and
� Supported in part by ISF grant 1310/06, BSF grant 2004361, and NSF grants

0430254, 0456717, 0627781.

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 241–261, 2008.
c© International Association for Cryptologic Research 2008

242 I. Damg̊ard et al.

resilience. More concretely, our protocol allows n players to evaluate an arbitrary
circuit C on their joint inputs, with the following efficiency and security features.
Computation. The total amount of time spent by all players throughout the
execution of the protocol is poly(k, log n, log |C|) · |C| + poly(k, n), where |C| is
the size of C and k is a cryptographic security parameter. Thus, the protocol
is strongly scalable in the sense that the amount of work involving each player
(amortized over the computation of a large circuit C) vanishes with the num-
ber of players. We write the above complexity as ˜O(|C|), hiding the low-order
multiplicative poly(k, log n, log |C|) and additive poly(k, n) terms.1

Communication. As follows from the bound on computation, the total number
of bits communicated by all n players is also bounded by ˜O(|C|). This holds
even in a communication model that includes only point-to-point channels and
no broadcast. Barring a major breakthrough in the theory of secure computa-
tion, this is essentially the best one could hope for. However, unlike the case of
computation, here a significant improvement cannot be completely ruled out.

Resilience. Our protocol is computationally UC-secure [6] against an active,
adaptive adversary corrupting at most a (1/2 − ε) fraction of the players, for an
arbitrarily small constant ε > 0. This parameter too is essentially optimal since
robust protocols that guarantee output delivery require honest majority.
Rounds. The round complexity of the basic version of the protocol is poly(k, n).
Using a pseudorandom generator that is “computationally simple” (e.g., com-
putable in NC1), the protocol can be modified to run in a constant number of
rounds. Such a pseudorandom generator is implied by most standard concrete
intractability assumptions in cryptography [1]. Unlike our main protocol, the
constant-round variant only applies to functionalities that deliver outputs to a
small (say, constant) number of players. Alternatively, it may apply to arbitrary
functionalities but provide the weaker guarantee of “security with abort”.

The most efficient previous MPC protocols from the literature [3, 12, 15, 28]
have communication complexity of ˜O(n · |C|), and no better complexity even in
the semi-honest model. The protocols of Damg̊ard and Nielsen [15] and Beerliova
and Hirt [3] achieve this complexity with unconditional security. It should be
noted that the protocol of Damg̊ard and Ishai [12] has a variant that matches
the asymptotic complexity of our protocol. However, this variant applies only to
functionalities that receive inputs from and distribute outputs to a small number
of players. Furthermore, it only tolerates a small fraction of corrupted players.

Techniques. Our protocol borrows ideas and techniques from several previous
works in the area, especially [3, 12, 15, 28]. Similarly to [12], we combine the
1 Such terms are to some extent unavoidable, and have also been ignored in previ-

ous works along this line. Note that the additive term becomes insignificant when
considering complex computations (or even simple computations on large inputs),
whereas the multiplicative term can be viewed as polylogarithmic under exponential
security assumptions. The question of minimizing these lower order terms, which are
significant in practice, is left for further study.

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 243

efficient secret sharing scheme of Franklin and Yung [20] with Yao’s garbled
circuit technique [35]. The scheme of Franklin and Yung generalizes Shamir’s
secret sharing scheme [33] to efficiently distribute a whole block of � secrets,
at the price of decreasing the security threshold. Yao’s technique can be used
to transform the circuit C into an equivalent, but very shallow, randomized
circuit CYao of comparable size. The latter, in turn, can be evaluated “in parallel”
on blocks of inputs and randomness that are secret-shared using the scheme
of [20].

The main efficiency bottleneck in [12] is the need to distribute the blocks of
randomness that serve as inputs for CYao. The difficulty stems from the fact that
these blocks should be arranged in a way that reflects the structure of C. That
is, each random secret bit may appear in several blocks according to a pattern
determined by C. These blocks were generated in [12] by adding contributions
from different players, which is not efficient enough for our purposes. More ef-
ficient methods for distributing many random secrets were used in [3, 15, 28].
However, while these methods can be applied to cheaply generate many blocks
of the same pattern, the blocks we need to generate may have arbitrary patterns.

To get around this difficulty, we use a pseudorandom function (PRF) for
reducing the problem of generating blocks of an arbitrary structure to the prob-
lem of generating independent random blocks. This is done by applying the PRF
(with a key that is secret-shared between the servers) to a sequence of public
labels that specifies the required replication pattern, where identical labels are
used to generate copies of the same secret.

Another efficiency bottleneck we need to address is the cost of delivering the
outputs. If many players should receive an output, we cannot afford to send the
entire output of CYao to these players. To get around this difficulty, we propose
a procedure for securely distributing the decoding process between the players
without incurring too much extra work. This also has the desirable effect of
dividing the work equally between the players.

Finally, to boost the fractional security threshold of our protocol from a small
constant δ to a nearly optimal constant of (1/2 − ε), we adapt to our setting a
technique that was introduced by Bracha [5] in the context of Byzantine Agree-
ment. The idea is to compose our original protocol πout, which is efficient but has
a low security threshold (t < n/c), with another known protocol πin, which is
inefficient but has an optimal security threshold (t < n/2) in a way that will give
us essentially the best of both worlds. The composition uses πin to distribute
the local computations of each player in πout among a corresponding committee
that includes a constant number of players. The committees are chosen such that
any set including at most 1/2 − ε of the players forms a majority in less than δn
of the committees. Bracha’s technique has been recently applied in the crypto-
graphic contexts of secure message transmission [17] and establishing a network
of OT channels [23]. We extend the generality of the technique by applying it
as a method for boosting the security threshold of general MPC protocols with
only a minor loss of efficiency.

244 I. Damg̊ard et al.

2 Preliminaries

In this section we present some useful conventions.

Client-server model. Similarly to previous works, it will be convenient to
slightly refine the usual MPC model as follows. We assume that the set of players
consists of a set of input clients that hold the inputs to the desired computation,
a set of n servers, S = {S1, . . . , Sn}, that execute the computation, and a set of
output clients that receive outputs. Since one player can play the role of both
client(s) and a server, this is a generalization of the standard model. The number
of clients is assumed to be at most linear in n, which allows us to ignore the exact
number of clients when analyzing the asymptotic complexity of our protocols.

Complexity conventions. We will represent the functionality which we want
to securely realize by a boolean circuit C with bounded fan-in, and denote by |C|
the number of gates in C. We adopt the convention that every input gate in C is
labeled by the input client who should provide this input (alternatively, labeled
by “random” in the case of a randomized functionality) and every output gate in
C is labeled by a name of a single output client who should receive this output.
In particular, distributing an output to several clients must be “paid for” by
having a larger circuit. Without this rule, we could be asked to distribute the
entire output C(x) to all output clients, forcing the communication complexity to
be more than we can afford. We denote by k a cryptographic security parameter,
which is thought of as being much smaller than n (e.g., k = O(nε) for a small
constant ε > 0, or even k = polylog(n)).

Security conventions. By default, when we say that a protocol is “secure” we
mean that it realizes in the UC model [6] the corresponding functionality with
computational t-security against an active (malicious) and adaptive adversary,
using synchronous communication over secure point-to-point secure channels.
Here t denotes the maximal number of corrupted server; there is no restriction
on the number of corrupted clients. (The threshold t will typically be of the
form δn for some constant 0 < δ < 1/2.) The results can be extended to require
only authenticated channels assuming the existence of public key encryption
(even for adaptive corruptions, cf. [7]). We will sometimes make the simplifying
assumption that outputs do not need to be kept private. This is formally captured
by letting the ideal functionality leak C(x) to the adversary. Privacy of outputs
can be achieved in a standard way by having the functionality mask the output
of each client with a corresponding input string picked randomly by this client.

3 Building Blocks

In this section, we will present some subprotocols that will later be put together
in a protocol implementing a functionality FCP , which allows to evaluate the
same circuit in parallel on multiple inputs. We will argue that each subprotocol
is correct: every secret-shared value that is produced as output is consistently

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 245

shared, and private: the adversary learns nothing about secrets shared by uncor-
rupted parties. While correctness and privacy alone do not imply UC-security,
when combined with standard simulation techniques for honest-majority MPC
protocols they will imply that our implementation of FCP is UC-secure.

Packed Secret-Sharing. We use a variant of the packed secret-sharing tech-
nique by Franklin and Yung [20]. We fix a finite field F of size O(log(n)) = ˜O(1)
and share together a vector of field elements from F

�, where � is a constant
fraction of n. We call s = (s1, . . . , s�) ∈ F

� a block. Fix a generator α of the
multiplicative group of F and let β = α−1. We assume that |F| > 2n such that
β0, . . . , βc−1 and α1, . . . , αn are distinct elements. Given x = (x0, . . . , xc−1) ∈ F

c,
compute the unique polynomial f(X) ∈ F[X] of degree ≤ c−1 for which f(βi) = xi

for i = 0, . . . , c − 1, and let Mc→n(x) = (y1, . . . , yn) = (f(α1), . . . , f(αn)). This
map is clearly linear, and we use Mc→n to denote both the mapping and its
matrix. Let Mc→r consist of the top r rows of Mc→n.

Since the mapping consists of a polynomial interpolation followed by a poly-
nomial evaluation, one can use the fast Fourier transform (FFT) to compute the
mapping in time ˜O(c) + ˜O(n) = ˜O(n). In [3] it is shown that Mc→n is hyper-
invertible. A matrix M is hyper-invertible if the following holds: Let R be a subset
of the rows, and let MR denote the sub-matrix of M consisting of rows in R. Like-
wise, let C be a subset of columns and let MC denote the sub-matrix consisting
of columns in C. Then we require that MC

R is invertible whenever |R| = |C| > 0.
Note that from Mc→n being hyper-invertible and computable in ˜O(n) time, it fol-
lows that all Mc→r are hyper-invertible and computable in ˜O(n) time.

Protocol Share(D, d):
1. Input to dealer D: (s1, . . . , s�) ∈ F

�. Let M = M�+t→n, where t = d−�+1.
2. D: Sample r1, . . . , rt ∈R F, let (s1, . . . , sn) = M(s1, . . . , s�, r1, . . . , rt), and

send si to server Si, for i = 1, . . . , n.

The sharing protocol is given in Protocol Share(D, d). Note that (s1, . . . , sn)
is just a t-private packed Shamir secret sharing of the secret block (s1, . . . , s�)
using a polynomial of degree ≤ d. We therefore call (s1, . . . , sn) a d-sharing and
write [s]d = [s1, . . . , s�]d = (s1, . . . , sn). In general we call a vector (s1, . . . , sn) a
consistent d-sharing (over S ⊆ {S1, . . . , Sn}) if the shares (of the servers in S) are
consistent with some d-sharing. For a ∈ F we let a[s]d = (as1, . . . , asn) and for
[s]d = (s1, . . . , sn) and [t]d = (t1, . . . , tn) we let [s]d +[t]d = (s1 + t1, . . . , sn + tn).
Clearly, a[s]d+b[t]d is a d-sharing of as+bt; We write [as+bt]d = a[s]d+b[t]d. We
let [st]2d = (s1t1, . . . , sntn). This is a 2d-sharing of the block st = (s1t1, . . . , s�t�).

Below, when we instruct a server to check if y = (y1, . . . , yn) is d-consistent,
it interpolates the polynomial f(αi) = yi and checks that the degree is ≤ d. This
can be done in ˜O(n) time using FFT.

To be able to reconstruct a sharing [s]d1 given t faulty shares, we need that
n ≥ d1 + 1 + 2t. We will only need to handle up to d1 = 2d, and therefore need
n = 2d + 1 + 2t. Since d = � + t − 1 we need n ≥ 4t + 2� − 1 servers. To get the
efficiency we are after, we will need that �, n − 4t and t are Θ(n). Concretely we
could choose, for instance, t = n/8, � = n/4.

246 I. Damg̊ard et al.

Random Monochromatic Blocks. In the following, we will need a secure
protocol for the following functionality:

Functionality Monochrom:
Takes no input.
Output: a uniformly random sharing [b]d, where the block b is (0, . . . , 0) with
probability 1

2 and (1, . . . , 1) with probability 1
2 .

We only call the functionality k times in total, so the complexity of its imple-
mentation does not matter for the amortized complexity of our final protocol.
Semi-Robust VSS. To get a verifiable secret sharing protocol guaranteeing
that the shares are d-consistent we adapt to our setting a VSS from [3].2 Here
and in the following subprotocols, several non-trivial modifications have to be
made, however, due to our use of packed secret sharing, and also because directly
using the protocol from [3] would lead to a higher complexity than we can afford.

Protocol SemiRobustShare(d):
1. For each dealer D and each group of blocks (x1, . . . , xn−3t) ∈ (F�)n−3t to

be shared by D, the servers run the following in parallel:
(a) D: Pick t uniformly random blocks xn−3t+1, . . . , xn−2t and deal [xi]d

for i = 1, . . . , n − 2t, using Share(D, d).
(b) All servers: Compute ([y1]d, . . . , [yn]d) = M([x1]d, . . . , [xn−2t]d) by lo-

cally applying M to the shares.
(c) Each Sj : Send the share yj

i of [yi]d to Si.
(d) D: send the shares yj

i of [yi]d to Si.
2. Now conflicts between the sent shares are reported. Let C be a set of

subsets of S , initialized to C : = ∅. Each Si runs the following in parallel:
(a) If Si sees that D for some group sent shares which are not d-consistent,

then Si broadcasts (J’accuse, D), and all servers add {D, Si} to C.
(b) Otherwise, if Si sees that there is some group dealt by D and some Sj

which for this group sent yj
i and D sent yj

i
′ �= yj

i , then Si broadcasts
(J’accuse, D, Sj , g, yj

i
′, yj

i) for all such Sj , where g identifies the group
for which a conflict is claimed. At most one conflict is reported for each
pair (D, Sj).

(c) If D sees that yj
i

′ is not the share it sent to Sj for group g, then D
broadcasts (J’accuse, Sj), and all servers add {D, Sj} to C.

(d) At the same time, if Si sees that yj
i is not the share it sent to Sj

for group g, then Si broadcasts (J’accuse, Sj), and all servers add
{Si, Sj} to C.

(e) If neither D nor Si broadcast (J’accuse, Sj), they acknowledge to
have sent different shares to Sj for group g, so one of them is corrupted.
In this case all servers add {D, Si} to C.

3. Now the conflicts are removed by eliminating some players:
(a) As long as there exists {S1, S2} ∈ C such that {S1, S2} ⊆ S ′, let

S ′ : = S ′ \ {S1, S2}.
(b) The protocol outputs the [xi]d created by non-eliminated dealers.

2 This protocol has an advantage over previous subprotocols with similar efficiency,
e.g. from [12], in that it has perfect (rather than statistical) security. This makes it
simpler to analyze its security in the presence of adaptive corruptions.

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 247

The protocol uses M = Mn−2t→n to check consistency of sharings. For ef-
ficiency, all players that are to act as dealers will deal at the same time. The
protocol can be run with all servers acting as dealers. Each dealer D shares
a group of n − 3t = Θ(n) blocks, and in fact, D handles a number of such
groups in parallel. Details are given in Protocol SemiRobustShare. Note that
SemiRobustShare(d) may not allow all dealers to successfully share their
blocks, since some can be eliminated during the protocol. We handle this issue
later in Protocol RobustShare.

At any point in our protocol, S′ will be the set of servers that still participate.
We set n′ = |S′| and t′ = t − e will be the maximal number of corrupted servers
in S′, where e is the number of pairs eliminated so far.

To argue correctness of the protocol, consider any surviving dealer D ∈ S′.
Clearly D has no conflict with any surviving server, i.e., there is no {D, Si} ∈ C
with {D, Si} ⊂ S′. In particular, all Si ∈ S′ saw D send only d-consistent
sharings. Furthermore, each such Si saw each Sj ∈ S′ send the same share as D
during the test, or one of {D, Sj}, {Si, Sj} or {D, Si} would be in C, contradicting
that they are all subsets of S′.

Since each elimination step S′ : = S′ \ {S1, S2} removes at least one new cor-
rupted server, it follows that at most t honest servers were removed from S′.
Therefore there exists H ⊂ S′ of n − 2t honest servers. Let ([yi]d)Si∈H =
MH([x1]d, . . . , [xn−2t]d). By the way conflicts are removed, all [yi]d, Si ∈ H are
d-consistent on S′. Since MH is invertible, it follows that all ([x1]d, . . . , [xn−t]d) =
M−1

H ([yi]d)Si∈H are d-consistent on S′.
The efficiency follows from n − 3t = Θ(n), which implies a complexity of

˜O(βn)+poly(n) for sharing β blocks (here poly(n) covers the O(n3) broadcasts).
Since each block contains Θ(n) field elements, we get a complexity of ˜O(φ) for
sharing φ field elements.

As for privacy, let I = {1, . . . , n − 3t} be the indices of the data blocks
and let R = {n − 3t + 1, . . . , n − 2t} be the indices of the random blocks.
Let C ⊂ {1, . . . , n}, |C| = t denote the corrupted servers. Then ([yi]d)i∈C =
MC([x1]d, . . . , [xn−2t]d) = M I

C([xi]d)i∈I +MR
C ([xi]d)i∈R. Since |C| =|R|, MR

C is in-
vertible. So, for each ([xi]d)i∈D, exactly one choice of random blocks ([xi]d)i∈R =
(MR

C)−1(([yi]d)i∈C − M I
C([xi]d)i∈I) are consistent with this data, which implies

perfect privacy.

Double Degree VSS. We also use a variant SemiRobustShare(d1, d2), where
each block xi is shared both as [xi]d1 and [xi]d2 (for d1, d2 ≤ 2d). The protocol
executes SemiRobustShare(d1) and SemiRobustShare(d2), in parallel, and
in Step 2a in SemiRobustShare the servers also accuse D if the d1-sharing
and the d2-sharing is not of the same value. It is easy to see that this guarantees
that all D ∈ S′ shared the same xi in all [xi]d1 and [xi]d2 .

Reconstruction. We use the following procedure for reconstruction towards a
server R.

248 I. Damg̊ard et al.

Protocol Reco(R, d1):
1. The servers hold a sharing [s]d1 which is d1-consistent over S ′ (and d1 ≤

2d). The server R holds a set Ci of servers it knows are corrupted. Initially
Ci = ∅.

2. Each Si ∈ S ′: Send the share si to R.
3. R: If the shares si are d1-consistent over S ′ \ Ci, then compute s by inter-

polation. Otherwise, use error correction to compute the nearest sharing
[s′]d1 which is d1-consistent on S ′ \ Ci, and compute s from this sharing
using interpolation. Furthermore, add all Sj for which s′

j �= sj to Ci.

Computing the secret by interpolation can be done in time ˜O(n). For each in-
vocation of the poly(n)-time error correction, at least one corrupted server is
removed from Ci, bounding the number of invocations by t. Therefore the com-
plexity for reconstructing β blocks is ˜O(βn) + poly(n) = ˜O(φ), where φ is the
number of field elements reconstructed.

At the time of reconstruction, some e eliminations have been performed to
reach S′. For the error correction to be possible, we need that n′ ≥ d1 + 1 + 2t′.
In the worst case one honest party is removed per elimination. So we can assume
that n′ = n − 2e and t′ = t − e. So, it is sufficient that n ≥ d1 + 1 + 2t, which
follows from n ≥ 2d + 1 + 2t and d1 ≤ 2d.

Robust VSS. Protocol RobustShare guarantees that all dealers can secret
share their blocks, and can be used by input clients to share their inputs. Privacy
follows as for SemiRobustShare. Correctness is immediate. Efficiency follows
directly from n − 4t = O(n), which guarantees a complexity of ˜O(φ) for sharing
φ field elements.

Protocol RobustShare(d):
1. Each dealer D shares groups of n − 4t blocks x1, . . . , xn−4t. For each

group it picks t random blocks xn−4t+1, . . . , xn−3t, computes n blocks
(y1, . . . , yn) = M(x1, . . . , xn−3t) and sends yi to Si. Here M = Mn−4t→n.

2. The parties run SemiRobustShare(d), and each Si shares yi.a This gives
a reduced server set S ′ and a d-consistent sharing [y′

i]d for each Si ∈ S ′.
3. The parties run Reco(D, d) on [y′

i]d for Si ∈ S ′ to let D learn y′
i for

Si ∈ S ′.
4. D picks H ⊂ S ′ for which |H | = n − 3t and y′

i = yi for Si ∈ H , and
broadcasts H , the indices of these parties.b

5. All parties compute ([x1]d, . . . , [xn−3t]d) = M−1
H ([yi]d)i∈H . Output is

[x1]d, . . . , [xn−4t]d.

a In the main protocol, many copies of RobustShare will be run in parallel,
and Si can handle the yi’s from all copies in parallel, putting them in groups
of size n − 3t.

b S ′ has size at least n−2t, and at most the t corrupted parties did not share
the right value. When many copies of RobustShare(d) are run in parallel,
only one subset H is broadcast, which works for all copies.

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 249

Sharing Bits. We also use a variant RobustShareBits(d), where the parties
are required to input bits, and where this is checked. First RobustShare(d)
is run to do the actual sharing. Then for each shared block [x1, . . . , x�] the
parties compute [y1, . . . , y�]2d = ([1, . . . , 1]d − [x1, . . . , x�])[x1, . . . , x�] = [(1 −
x1)x1, . . . , (1 − x�)x�]. They generate [1, . . . , 1]d by all picking the share 1. Note
that [y]2d = [0, . . . , 0]2d if and only if all xi were in {0, 1}.

For each dealer D all [y]2d are checked in parallel, in groups of n′ − 2t′. For
each group [y1]2d, . . . , [yn′−2t′]2d, D makes sharings [yn′−2t′+1]2d, . . . , [yn′−t′]2d

of yi = (0, . . . , 0), using RobustShare(2d). Then all parties compute ([x1]2d,
. . . , [xn′]2d) = M([y1]2d, . . . , [yn′−t′]2d), where M = Mn′−t′→n. Then each [xi]2d

is reconstructed towards Si. If all xi = (0, . . . , 0), then Si broadcasts ok. Other-
wise Si for each cheating D broadcasts (J’accuse, D, g), where D identifies the
dealer and g identifies a group ([x1]2d, . . . , [xn′]2d) in which it is claimed that
xi �= (0, . . . , 0). Then the servers publicly reconstruct [xi]d (i.e., reconstruct it
towards each server using Reco(2d, ·)). If xi = (0, . . . , 0), then Si is removed
from S′; otherwise, D is removed from S′, and the honest servers output the
all-zero set of shares.

Let H denote the indices of n′ − t′ honest servers. Then ([xi]2d)i∈H =
MH([y1]2d, . . . , [yn′−t′]2d). So, if xi = (0, . . . , 0) for i ∈ H , it follows from
([y1]2d, . . . , [yn′−t′]2d) = M−1

H ([xi]2d)i∈H that all yi = (0, . . . , 0). Therefore D
will pass the test if and only if it shared only bits. The privacy follows using the
same argument as in the privacy analysis of Protocol SemiRobustShare. The
efficiency follows from Θ(n) blocks being handled in each group, and the num-
ber of broadcasts and public reconstructions being independent of the number
of blocks being checked.

Resharing with a Different Degree. We need a protocol which given a d1-
consistent sharing [x]d1 produces a d2-consistent sharing [x]d2 (here d1, d2 ≤ 2d).
For efficiency all servers R act as resharer, each handling a number of groups of
n′ − 2t′ = Θ(n) blocks. The protocol is not required to keep the blocks x secret.
We first present a version in which some R might fail.

Protocol SemiRobustReshare(d1, d2):
– For each R ∈ S ′ and each group [x1]d1 , . . . , [xn′−2t′]d1 (all sharings are

d1-consistent on S ′) to be reshared by R, the servers proceed as follows:
– Run Reco(R, d1) on [x1]d1 , . . . , [xn′−2t′]d1 to let R learn x1, . . . , xn′−2t′ .
– Run SemiRobustShare(d2), where each R inputs x1, . . . , xn′−2t′ to pro-

duce [x1]d2 , . . . , [xn′−2t′]d2 (step 1a is omitted as we do not need privacy).
At the same time, check that R reshared the same blocks, namely in Step
1b we also apply M to the [x1]d1 , . . . , [xn′−2t′]d1 , in Step 2a open the
results to the servers and check for equality. Conflicts are removed by
elimination as in SemiRobustShare.

Now all groups handled by R ∈ S′ were correctly reshared with degree d2. To
deal with the fact that some blocks might not be reshared, we use the same idea
as when we turned SemiRobustShare into RobustShare, namely the servers
first apply Mn′−2t′→n′ to each group of blocks to reshare, each of the resulting n′

250 I. Damg̊ard et al.

sharings are assigned to a server. Then each server does SemiRobustReshare

on all his assigned sharings. Since a sufficient number of servers will complete this
successfully, we can reconstruct d2-sharings of the xi’s. This protocol is called
RobustReshare.

Random Double Sharings. We use the following protocol to produce double
sharings of blocks which are uniformly random in the view of the adversary.

Protocol RanDouSha(d):
1. Each server Si: Pick a uniformly random block Ri ∈R F

� and use
SemiRobustShare(d, 2d) to deal [Ri]d and [Ri]2d.

2. Let M = Mn′→n′−t′ and let ([r1]d, . . . , [rn′−t′]d) = M([Ri]d)Si∈S′

and ([r1]2d, . . . , [rn′−t′]2d) = M([Ri]2d)Si∈S′ . The output is the pairs
([ri]d, [ri]2d), i = 1, . . . , n′ − t′.

Security follows by observing that when M = Mn′→n′−t′ , then MH : F
n′−t′ →

F
n′−t′

is invertible when |H | = n′−t′. In particular, the sharings of the (at least)
n′ − t′ honest servers fully randomize the n′ − t′ generated sharings in Step 2.

In the following, RanDouSha(d) is only run once, where a large number, β,
of pairs ([r]d, [r]2d) are generated in parallel. This gives a complexity of ˜O(βn)+
poly(n) = ˜O(φ), where φ is the number of field elements in the blocks.

Functionality FCP (A)
The functionality initially chooses a random bitstring K1, .., Kk where k is the
security parameter. It uses gm blocks of input bits z1

1 , . . . , z1
m, ..., zg

1 , . . . zg
m.

Each block zv
u can be:

– owned by an input client. The client can send the bits in zv
u to FCP ,

but may instead send “refuse”, in which case the functionality sets zj
i =

(0, ...0).
– Random, of type w, 1 ≤ w ≤ k, then the functionality sets zv

u =
(Kw, ..., Kw).

– Public, in which case some arbitrary (binary string) value for zw
u is hard-

wired into the functionality.

The functionality works as follows:

1. After all input clients have provided values for the blocks they own, com-
pute A(zv

1 , ..., zv
m) for v = 1..g.

2. On input “open v to server Sa” from all honest servers, send A(zv
1 , ..., zv

m)
to server Sa.

Parallel Circuit Evaluation. Let A : F
m → F be an arithmetic circuit

over F. For m blocks containing binary values z1 = (z1,1, . . . , z1,�), . . . , zm =
(zm,1, . . . , zm,�) we let A(z1, . . . , zm) = (A(z1,1, . . . , zm,1), . . . , A(z1,�, . . . , zm,�)).
We define an ideal functionality FCP which on input that consists of such a
group of input blocks will compute A(z1, ..., zm). To get an efficient implementa-
tion, we will handle g groups of input blocks, denoted z1

1 , . . . , z1
m, ..., zg

1 , . . . zg
m in

parallel. Some of these bits will be chosen by input clients, some will be random,

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 251

and some are public values, hardwired into the functionality. See the figure for
details. The subsequent protocol CompPar securely implements FCP . As for its
efficiency, let γ denote the number of gates in A, and let M denote the multi-
plicative depth of the circuit (the number of times Step 2b is executed). Assume
that M = poly(k), as will be the case later. Then the complexity is easily seen to
be ˜O(γgn) + Mpoly(n) = ˜O(γgn). Let μ denote the number of inputs on which
A is being evaluated. Clearly μ = g� = Θ(gn), giving a complexity of ˜O(γμ). If
we assume that γ = poly(k), as will be the case later, we get a complexity of
˜O(γμ) = ˜O(μ), and this also covers the cost of sharing the inputs initially.

Protocol CompPar(A):
1. The servers run RanDouSha(d) to generate a pair ([r]d, [r]2d) for each

multiplication to be performed in the following.
2. Input: for each input client D, run RobustShareBits(d) in parallel for

all blocks owned by D. Run Monochrom k times to get [Kt, . . . , Kt]d,
for t = 1...k, and let [zv

u]d = [Kw , . . . , Kw]d if zv
u is random of type w.

Finally, for all public zv
u, we assume that default sharings of these blocks

are hardwired into the programs of the servers.
The servers now hold packed sharings [zv

u]d, all of which are d-consistent
on S ′. Now do the following, for each of the g groups, in parallel:
(a) For all addition gates in A, where sharings [x]d and [y]d of the operands

are ready, the servers compute [x + y]d = [x]d + [y]d by locally adding
shares. This yields a d-consistent sharing on S ′.

(b) Then for all multiplication gates in A, where sharings [x]d and [y]d of
the operands are ready, the servers execute:

i. Compute [xy + r]2d = [a]d[b]d + [r]2d, by local multiplication and
addition of shares. This is a 2d-consistent sharing of xy + r on S ′.

ii. Call RobustReshare(2d, d) to compute [xy+r]d from [xy+r]2d.
This is a d-consistent sharing of xy + r on the reduced server
set S ′. Note that all resharings are handled by one invocation of
RobustReshare. Finally compute [xy]d = [xy + r]d − [r]d.

(c) If there are still gates which were not handled, go to Step 2a.
3. Output: When all gates have been handled, the servers hold for each group

a packed sharing [A(zv
1 , . . . , zv

m)]d which is d-consistent over the current
reduced server set S ′. To open group v to server Sa, run Reco(Sa, d).

Lemma 1. Protocol CompPar securely implements FCP .

Sketch of proof: The simulator will use standard techniques for protocols based
on secret sharing, namely whenever an honest player secret-shares a new block,
the simulator will hand random shares to the corrupt servers. When a corrupted
player secret-shares a value, the simulator gets all shares intended for honest
servers, and follows the honest servers’ algorithm to compute their reaction to
this. In some cases, a value is reconstructed towards a corrupted player as part
of a subprotocol. Such values are always uniformly random and this is therefore
trivial to simulate. The simulator keeps track of all messages exchanged with
corrupt players in this way. The perfect correctness of all subprotocols guarantees

252 I. Damg̊ard et al.

that the simulator can compute, from its view of RobustShareBits, the bits
shared by all corrupt input clients, it will send these to FCP . When an input
client or a server is corrupted, the simulator will get the actual inputs of the
client, respectively the outputs received by the server. It will then construct a
random, complete view of the corrupted player, consistent with the values it just
learned, and whatever messages the new corrupted player has exchanged with
already corrupted players. This is possible since all subprotocols have perfect
privacy. Furthermore the construction can be done efficiently by solving a system
of linear equations, since the secret sharing scheme is linear. Finally, to simulate
an opening of an output towards a corrupted server, we get the correct value
from the functionality, form a complete random set of shares consistent with the
shares the adversary has already and the output value, and send the shares to the
adversary. This matches what happens in a real execution: since all subprotocols
have perfect correctness, a corrupted server would also in real life get consistent
shares of the correct output value from all honest servers. It is straightforward
but tedious to argue that this simulation is perfect. 	

4 Combining Yao Garbled Circuits and Authentication

To compute a circuit C securely, we will use a variant of Yao’s garbled circuit
construction [34, 35]. It can be viewed as building from an arbitrary circuit C
together with a pseudorandom generator a new (randomized) circuit CYao whose
depth is only poly(k) and whose size is |C| · poly(k). The output of C(x) is
equivalent to the output of CYao(x, r), in the sense that given CYao(x, r) one can
efficiently compute C(x), and given C(x) one can efficiently sample from the
output distribution CYao(x, r) induced by a uniform choice of r (up to compu-
tational indistinguishability). Thus, the task of securely computing C(x) can be
reduced to the task of securely computing CYao(x, r), where the randomness r
should be picked by the functionality and remain secret from the adversary.

In more detail, CYao(x, r) uses for each wire w in C two random encryption keys
Kw

0 , Kw
1 and a random wire mask γw. We let EK() denote an encryption function

using key K, based on the pseudorandom generator used. The construction works
with an encrypted representation of bits, concretely garblew(y) = (Kw

y , γw ⊕ y)
is called a garbling of y. Clearly, if no side information on keys or wire masks is
known, garblew(y) gives no information on y.

The circuit CYao(x, r) outputs for each gate in C a table with 4 entries, indexed
by two bits (b0, b1). We can assume that each gate has two input wires l, r and
output wire out. If we consider a circuit C made out of only NAND gates, ∧̇, a
single entry in the table looks as follows:

(b0, b1) : EKl
b0⊕γl

(

EKr
b1⊕γr

(garbleout ([b0 ⊕ γl]∧̇[b1 ⊕ γr]))
)

.

The tables for the output gates contain encryptions of the output bits without
garbling, i.e., [b0 ⊕ γl]∧̇[b1 ⊕ γr] is encrypted. Finally, for each input wire wi,
carrying input bit xi, the output of CYao(x, r) includes garblewi

(xi).

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 253

It is straightforward to see that the tables are designed such that given
garblel(bl), garbler(br), one can compute garbleout(bl∧̇br). One can therefore
start from the garbled inputs, work through the circuit in the order one would
normally visit the gates, and eventually learn (only) the bits in the output C(x).
We will refer to this as decoding the Yao garbled circuit.

In the following, we will need to share the work of decoding a Yao garbling
among the servers, such that one server only handles a few gates and then passes
the garbled bits it found to other servers. In order to prevent corrupt servers
from passing incorrect information, we will augment the Yao construction with
digital signatures in the following way.

The authenticated circuit CAutYao(x, r) uses a random input string r and will
first generate a key pair (sk, pk) = gen(r′), for a digital signature scheme, from
some part r′ of r. It makes pk part of the output. Signing of message m is
denoted Ssk(m). It will then construct tables and encrypted inputs exactly as
before, except that a table entry will now look as follows:

G(b0, b1) = EKl
b0⊕γl

(

EKr
b1⊕γr

(garbleout([b0 ⊕ γl]∧̇[b1 ⊕ γr]), Ssk(e, b0, b1, L))
)

,

where e = garbleout [b0 ⊕ γl]∧̇[b1 ⊕ γr] and L is a unique identifier of the gate.
In other words, we sign exactly what was encrypted in the original construction,
plus a unique label (b0, b1, L).

For each input wire wi, it also signs garblewi
(xi) along with some unique

label, and makes garblewi
(xi) and the signature σi part of the output. Since the

gates in the Yao circuit are allowed to have fan-out,3 we can assume that each
input bit xi to C appears on just one input wire wi. Then the single occurrence
of (garblewi

(xi), σi) is the only part of the output of CAutYao(x, r) which depends
on xi. We use this below.

5 Combining Authenticated Yao Garbling and a PRF

Towards using CompPar for generating CAutYao(x, r) we need to slightly modify
it to make it more uniform.

The first step is to compute not CAutYao(x, r), but CAutYao(x, prg(K)), where
prg : {0, 1}k → {0, 1}|r| is a PRG and K ∈ {0, 1}k a uniformly random seed.
The output distributions CAutYao(x, r) and CAutYao(x, prg(K)) are of course com-
putationally indistinguishable, so nothing is lost by this change. In fact, we use
a very specific PRG: Let φ be a PRF with k-bit key and 1-bit output. We let
prg(K) = (φK(1), . . . , φK(|r|)), which is well known to be a PRG. Below we use
CAutYao(x, K) as a short hand for CAutYao(x, prg(K)) with this specific PRG.

The j’s bit of CAutYao(x, K) depends on at most one input bit xi(j), where
we choose i(j) arbitrarily if the j’th bit does not depend on x. The uniform
structure we obtain for the computation of CAutYao(x, K) is as follows.

3 For technical reasons, explained below, we assume that no gate has fan-out higher
than 3, which can be accomplished by at most a constant blow-up in circuit size.

254 I. Damg̊ard et al.

Lemma 2. There exists a circuit A of size poly(k, log |C|) such that the j’th bit
of CAutYao(x, K) is A(j, xi(j) , K).

This follows easily from the fact that Yao garbling treats all gates in C the same
way and that gates can be handled in parallel. The proof can be found in [16].

It is now straightforward to see that we can set the parameters of the func-
tionality FCP defined earlier so that it will compute the values A(j, xi(j) , K) for
all j. We will call FCP with A as the circuit and we order the bits output by
CAutYao(x, K) into blocks of size �. The number of such blocks will be the param-
eter g used in FCP , and m will be the number of input bits to A. Blocks will be
arranged such that the following holds for for any block given by its bit positions
(j1, ..., j�): either this block does nor depend on x or all input bits contributing
to this output block, namely (xi(j1), . . . , xi(j�)), are given by one input client.
This is possible as any input bit affects the same number of output bits, namely
the bits in garblewi

(xi) and the corresponding signature σi.
We then just need to define how the functionality should treat each of the

input blocks zv
u that we need to define. Now, zv

u corresponds to the v’th output
block and to position u in the input to A. Suppose that the v’th output block has
the bit positions (j1, .., j�). Then if u points to a position in the representation
of j, we set zv

u to be the public value (ju
1 , . . . , ju

�), namely the u’th bit in the
binary representations of j1, ..., j�. If u points to the position where xi(j) is placed
and block v depends on x, we define zv

u to be owned by the client supplying
(xi(j1), . . . , xi(j�)) as defined above. And finally if u points to position w in the
key K, we define zv

u to be random of type w.
This concrete instantiation of FCP is called FCompYao, a secure implementation

follows immediately from Lemma 1. From the discussion on CompPar, it follows
that the complexity of the implementation is ˜O(|C|).

6 Delivering Outputs

Using FCompYao, we can have the string CAutYao(x, K) output to the servers (� bits
at a time). We now need to use this to get the the results to the output clients
efficiently. To this end, we divide the garbled inputs and encrypted gates into
(small) subsets G1, . . . , GG and ask each server to handle only a fair share of the
decoding of these.

We pick G = n + (n − 2t) and pick the subsets such that no gate in Gg has
an input wire w which is an output wire of a gate in Gg′ for g′ > g. We pick
the subsets such that |Gg| = ˜O(|C|/G), where |Gg| is the number of gates in Gg.
We further ensure that only the last n− 2t subsets contain output wire carrying
values that are to be sent to output clients. Furthermore, we ensure that all the
L bits in the garbled inputs and encrypted gates for gates in Gg can be found in
˜O(L/�) blocks of CAutYao(x, K). This is trivially achieved by ordering the bits in
CAutYao(x, K) appropriately during the run of CompPar.

We call a wire (name) w an input wire to Gg if there is a gate in Gg which has
w as input wire, and the gate with output wire w (or the garbled input xi for

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 255

wire w) is not in Gg. We call w an output wire from Gg if it is an output wire
from a gate in Gg and is an input wire to another set Gg′ . We let the weight of
Gg, denoted ‖Gg‖, be the number of input wires to Gg plus the number of gates
in Gg plus the number of output wires from Gg. By the assumption that all gates
have fan-out at most 3, ‖Gg‖ ≤ 5|Gg|, where |Gg| is the number of gates in Gg.

Protocol CompOutput:
1. All servers (in S ′): mark all Gg as unevaluated and let ci : = 0 for all Si.a

2. All servers: let Gg be the lowest indexed set still marked as unevaluated,
let c = minSi∈S′ ci and let Si ∈ S ′ be the lowest indexed server for which
ci = c.

3. All servers: execute open commands of FCompYao such that Si receives Gg

and pk.
4. Each Sj ∈ S ′: for each input wire to Gg, if it comes from a gate in a set

handled by Sj , send the garbled wire value to Si along with the signature.
5. Si: If some Sj did not send the required values, then broadcast

(J’accuse, Sj) for one such Sj . Otherwise, broadcast ok and compute
from the garbled wire values and the encrypted gates for Gg the garbled
wire values for all output wires from Gg.

6. All servers: if Si broadcasts (J’accuse, Sj), then mark all sets Gg′ previ-
ously handled by Si or Sj as unevaluated and remove Si and Sj from S ′.
Otherwise, mark Gg as evaluated and let ci : = ci + 1.

7. If there are Gg still marked as unevaluated, then go to Step 2.
8. Now the ungarbled, authenticated wire values for all output wires from C

are held by at least one server. All servers send pk to all output clients,
which adopt the majority value pk. In addition all servers send the au-
thenticated output wire values that they hold to the appropriate output
clients, which authenticate them using pk.

a ci is a count of how many Gg were handled by Si.

The details are given in Protocol CompOutput. We call a run from Step 2
through Step 6 successful if Gg became marked as evaluated. Otherwise we call
it unsuccessful. For each successful run one set is marked as evaluated. Initially G
sets are marked as unevaluated, and for each unsuccessful run, at most 2�G/n′�
sets are marked as unevaluated, where n′ = |S′|. Each unsuccessful run removes
at least one corrupted party from S′. So, it happens at most G + t2�G/n′�
times that a set is marked as evaluated, and since n′ ≥ n − 2t ≥ 2t, there
are at most 2G + 2t successful runs. There are clearly at most t unsuccessful
runs, for a total of at most 2G + 4t ≤ 2G + n ≤ 3G runs. It is clear that the
complexity of one run from Step 2 through Step 6 is ‖Gg‖·poly(k)+poly(n, k) =
˜O(‖Gg‖) = ˜O(|Gg |) = ˜O(|C|/G). From this it is clear that the communication
and computational complexities of CompOutput are ˜O(|C|).

The CompOutput protocol has the problem that t corrupted servers might
not send the output values they hold. We handle this in a natural way by adding
robustness to these output values, replacing the circuit C by a circuit C′ derived
from C as follows. For each output client, the output bits from C intended for
this client are grouped into blocks, of size allowing a block to be represented

256 I. Damg̊ard et al.

as n − 3t field elements (x1, . . . , xn−3t). For each block, C′ then computes
(y1, . . . , yn−2t) = M(x1, . . . , xn−3t) for M = Mn−3t→n−2t, and outputs the y-
values instead of the x-values. The bits of (y1, . . . , yn−2t) are still considered
as output intended for the client in question. The output wires for the bits of
y1, . . . , yn−2t are then added to the sets Gn+1, . . . , Gn+n−2t, respectively. Since
|S′| ≥ n − 2t each of these Gg will be held by different servers at the end of
CompOutput. So the output client will receive yi-values from at least n − 3t
servers, say in set H , and can then compute (x1, . . . , xn−3t) = M−1

H (yi)Si∈H .
Since |C′| = ˜O(|C|) and the interpolation can be done in time ˜O(n) we maintain
the required efficiency.

Our overall protocol πout now consists of running (the implementation of)
FCompYao using C′ as the underlying circuit, and then CompOutput. We already
argued the complexity of these protocols.

A sketch of the proof of security: we want to show that πout securely imple-
ments a functionality FC that gets inputs for C from the input clients, leaks
C(x) to the adversary, and sends to each output client its part of C(x).

We already argued that we have a secure implementation of FCompYao, so it
is enough to argue that we implement FC securely by running FCompYao and
then CompOutput. First, by security of the PRG, we can replace FCompYao

by a functionality that computes an authenticated Yao-garbling CAutYao(x, r)
using genuinely random bits, and otherwise behaves like FCompYao. This will be
indistinguishable from FCompYao to any environment.

Now, based on C(x) that we get from FC , a simulator can construct a simu-
lation of CAutYao(x, r) that will decode to C′(x), by choosing some arbitrary x′

and computing CAutYao(x′, r), with the only exception that the correct bits of
C′(x) are encrypted in those entries of output-gate tables that will eventually
be be decrypted. By security of the encryption used for the garbling, this is
indistinguishable from CAutYao(x, r).

The simulator then executes CompOutput with the corrupted servers and
clients, playing the role of both the honest servers and FCompYao (sending ap-
propriate �-bit blocks of the simulated CAutYao(x, r) when required). By security
of the signature scheme, this simulated run of CompOutput will produce the
correct values of C′(x) and hence C(x) as output for the clients, consistent with
FC sending C(x) to the clients in the ideal process. Thus we have the following:

Lemma 3 (Outer Protocol). Suppose one-way functions exist. Then there is
a constant 0 < δ < 1/2 such that for any circuit C there is an n-server δn-secure
protocol πout for C which requires only poly(k, log n, log |C|)·|C|+poly(k, n) total
computation (let alone communication) with security parameter k.

We note that, assuming the existence of a PRG in NC1, one can obtain a
constant-round version of Lemma 3 for the case where there is only a con-
stant number of output clients. The main relevant observation is that in such
a case we can afford to directly deliver the outputs of CYao to the output
clients, avoiding use of CompOutput. The round complexity of the resulting

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 257

protocol is proportional to the depth of CYao(x, K), which is poly(k).4 To make
the round complexity constant, we use the fact that a PRG in NC1 allows to
replace CYao(x, K) by a similar randomized circuit C′

Yao(x, K; ρ) whose depth is
constant [1]. Applying CompPar to C′

Yao and delivering the outputs directly to
the output clients yields the desired constant-round protocol. If one is content
with a weaker form of security, namely “security with abort”, then we can ac-
commodate an arbitrary number of output clients by delivering all outputs to a
single client, where the output of client i is encrypted and authenticated using
a key only known to this client. The selected client then delivers the outputs
to the remaining output clients, who broadcast an abort message if they detect
tampering with their output.

7 Improving the Security Threshold Using Committees

In this section, we bootstrap the security of the protocol developed in the pre-
vious sections to resist coalitions of near-optimal size (1

2 − ε)n, for constant ε.

Theorem 1 (Main Result). Suppose one-way functions exist. Then for every
constant ε > 0 and every circuit C there is an n-server (1

2 − ε)n-secure protocol
Π for C, such that Π requires at most poly(k, log n, log |C|) · |C| + poly(k, n)
total computation (and, hence, communication) with security parameter k.

Moreover, if there exists a pseudorandom generator in NC1 and the outputs
of C are delivered to a constant number of clients, the round complexity of Π
can be made constant with the same asymptotic complexity.

The main idea is to use player virtualization [5] to emulate a run of the previous
sections’ protocol among a group of n “virtual servers”. Each virtual server is
emulated by a committee of d real participants, for a constant d depending on
ε, using a relatively inefficient SFE subprotocol that tolerates d−1

2 cheaters. The
n (overlapping) committees are chosen so that an adversary corrupting (1

2 − ε)n
real players can control at most δn committees, where “controlling” a committee
means corrupting at least d/2 of its members (and thus controlling the emulated
server). As mentioned earlier (and by analogy which concatenated codes) we
call the subprotocol used to emulate the servers the “inner” protocol, and the
emulated protocol of the previous sections the “outer” protocol. For the inner
protocol, we can use the protocol of Cramer, Damg̊ard, Dziembowski, Hirt and
Rabin [10] or a constant-round variant due to Damg̊ard and Ishai [13].

The player virtualization technique was introduced by Bracha [5] in the con-
text of Byzantine agreement to boost resiliency of a particular Byzantine agree-
ment protocol to (1

3 − ε)n. It was subsequently used in several other contexts of
distributed computing and cryptography, e.g. [17, 23, 25]. The construction of
the committee sets below is explicit and implies an improvement on the param-
eters of the psmt protocol of Fitzi et al. [17] for short messages.

4 Note that CYao(x,K) cannot have constant depth, as it requires the computation of
a PRF to turn K into randomness for CYao.

258 I. Damg̊ard et al.

We use three tools: the outer protocol from Lemma 3, the inner protocol and
the construction of committee sets. The last two are encapsulated in the two
lemmas below. The inner protocol will emulate an ideal, reactive functionality
F which itself interacts with other entities in the protocol. For the general state-
ment, we restrict F to be “adaptively well-formed” in the sense of Canetti et al.
[8] (see Lindell [31, Sec. 4.4.3], for a definition). All the functionalities discussed
in this paper are well-formed.

Lemma 4 (Inner Protocol, [10, 13]). If one-way functions exist then, for
every well-formed functionality F , there exists a UC-secure protocol πin among
d players that tolerates any t ≤ d−1

2 adaptive corruptions. For an interactive
functionality F , emulating a given round of F requires poly(compF , d, k) total
computation, where compF is the computational complexity of F at that round,
and a constant number of rounds.

Strictly speaking, the protocols from [10, 13] are only for general secure function
evaluation. To get from this the result above, we use a standard technique that
represents the internal state of F as values that are shared among the players
using verifiable secret sharing (VSS) Details can be found in [16].

Definition 1. A collection S of subsets of [n] = {1, ..., n} is a (d, ε, δ)-secure
committee collection if all the sets in S (henceforth “committees”) have size d
and, for every set B ⊆ [n] of size at most (1

2 − ε)n, at most a δ fraction of the
committees overlap with B in d/2 or more points.

Lemma 5 (Committees Construction). For any 0 < ε, δ < 1, there exists
an efficient construction of a (d, ε, δ)-secure committee collection consisting of n
subsets of [n] of size d = O(1

δε2). Given an index i, one can compute the members
of the i-th committee in time poly(log(n)).

The basic idea is to choose a sufficiently good expander graph on n nodes and
let the members of the ith committee be the neighbors of vertex i in the graph.
The lemma is proved in [16].

We note that the same construction improves the parameters of the perfectly
secure message transmission protocol of Fitzi et al. [17] for short messages. To
send a message of L bits over n wires while tolerating t = (1

2 − ε)n corrupted
wires, their protocol requires O(L)+nΘ(1/ε2) bits of communication. Plugging the
committees construction above into their protocol reduces the communication
to O(L + n/ε2). A similar construction to that of Lemma 5 was suggested to
the authors of [17] by one of their reviewers ([17, Sec. 5]). This paper is, to our
knowledge, the first work in which the construction appears explicitly.

The final, composed protocol Π will have the same input and output clients
as πout and n virtual servers, each emulated by a committee chosen from the n
real servers. These virtual servers execute πout. This is done in two steps:

First, we build a protocol Π ′ where we assume an ideal functionality Fi used
by the i’th committee. Fi follows the algorithm of the i’th server in πout. When
πout sends a message from server i to server j, Fi acts as dealer in the VSS

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 259

to have members of the jth committee obtain shares of the message, members
then give these as input to Fj . See [16] for details on the VSS to be used.
Clients exchange messages directly with the Fi’s according to πout. Fi follows
its prescribed algorithm, unless a majority of the servers in the i’th committee
are corrupted, in which case all its actions are controlled by the adversary, and
it shows the adversary all messages it receives.

The second step is to obtain Π by using Lemma 4 to replace the Fi’s by
implementations via πin.

The proof of security for Π ′ is a delicate hybrid argument, and we defer it
to [16]. Assuming Π ′ is secure, the lemma below follows from Lemma 4 and the
UC composition theorem:

Lemma 6. The composed protocol Π is a computationally-secure SFE protocol
that tolerates t = (1

2 − ε)n adaptive corruptions.

As for the computational and communication complexities of Π , we recall that
these are both ˜O(|C|) for πout. It is straightforward to see that the overhead
of emulating players in πout via committees amounts to a multiplicative factor
of O(poly(k, d)), where d is the committee size, which is constant. This follows
from the fact that the complexity of πin is poly(S, k, d) where S is the size
of the computation done by the functionality emulated by πin. Therefore the
complexity of Π is also ˜O(|C|). This completes the proof of the main theorem.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: Proc. CCC 2005, pp. 260–274 (2005)

2. Beerliova-Trubiniova, Z., Hirt, M.: Efficient Multi-Party Computation with Dispute
Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

3. Beerliova-Trubiniova, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communi-
cation Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, Springer,
Heidelberg (to appear, 2008)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10
(1988)

5. Bracha, G.: An O(log n) expected rounds randomized byzantine generals protocol.
Journal of the ACM 34(4), 910–920 (1987)

6. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: Proc. FOCS 2001, pp. 136–145 (2001)

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively Secure Multiparty
Computation. In: Proc. STOC 1996, pp. 639–648 (1996)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: Proc. STOC 2002, pp. 494–503 (2002)

9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proc. STOC 1988, pp. 11–19 (1988)

10. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Mul-
tiparty Computations Secure Against an Adaptive Adversary. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

260 I. Damg̊ard et al.

11. Cramer, R., Damg̊ard, I., Nielsen, J.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

12. Damg̊ard, I., Ishai, Y.: Scalable Secure Multiparty Computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

13. Damg̊ard, I., Ishai, Y.: Constant-Round Multiparty Computation Using a Black-
Box Pseudorandom Generator. In: Shoup, V. (ed.) CRYPTO 2005, vol. 3621, pp.
378–394. Springer, Heidelberg (2005)

14. Damg̊ard, I., Nielsen, J.: Universally Composable Efficient Multiparty Computa-
tion from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

15. Damg̊ard, I., Nielsen, J.: Robust multiparty computation with linear communica-
tion complexity. In: Proc. Crypto 2007, pp. 572–590 (2007)

16. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J., Smith, A.: Scalable Multiparty
Computation with Nearly Optimal Work and Resilience (full version of this paper)

17. Fitzi, M., Franklin, M., Garay, J., Vardhan, H.: Towards optimal and efficient
perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 311–322. Springer, Heidelberg (2007)

18. Fitzi, M., Hirt, M.: Optimally Efficient Multi-Valued Byzantine Agreement. In:
Proc. PODC 2006, pp. 163–168 (2006)

19. Franklin, M.K., Haber, S.: Joint Encryption and Message-Efficient Secure Com-
putation. In: Proc. Crypto 1993, pp. 266–277 (1993); Full version in Journal of
Cyptoglogy 9(4), 217–232 (1996)

20. Franklin, M.K., Yung, M.: Communication Complexity of Secure Computation. In:
Proc. STOC 1992, pp. 699–710 (1992)

21. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proc. 17th PODC,
pp. 101–111 (1998)

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game (extended
abstract). In: Proc. STOC 1987, pp. 218–229 (1987)

23. Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed
for secure multiparty computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 284–302. Springer, Heidelberg (2007)

24. Hirt, M., Maurer, U.M.: Robustness for Free in Unconditional Multi-party Compu-
tation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer,
Heidelberg (2001)

25. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect
multiparty computation. Journal of Cryptology 13(1), 31–60 (2000)

26. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient Secure Multi-party Computation.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000)

27. Hirt, M., Nielsen, J.B.: Upper Bounds on the Communication Complexity of Op-
timally Resilient Cryptographic Multiparty Computation. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 79–99. Springer, Heidelberg (2005)

28. Hirt, M., Nielsen, J.B.: Robust Multiparty Computation with Linear Communi-
cation Complexity. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007)

29. Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via Cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

Scalable Multiparty Computation with Nearly Optimal Work and Resilience 261

30. Kushilevitz, E., Lindell, Y., Rabin, T.: Information theoretically secure protocols
and security under composition. In: Proc. STOC 2006, pp. 109–118 (2006)

31. Lindell, Y.: Composition of Secure Multi-Party Protocols, A Comprehensive Study.
Springer, Heidelberg (2003)

32. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3),
261–277 (1988)

33. Shamir, A.: How to share a secret. Commun. ACM 22(6), 612–613 (1979)
34. Yao, A.C.: Theory and Applications of Trapdoor Functions (Extended Abstract).

In: Proc. FOCS 1982, pp. 80–91 (1982)
35. Yao, A.C.: How to generate and exchange secrets. In: Proc. FOCS 1986, pp. 162–

167 (1986)

	Scalable Multiparty Computation withNearly Optimal Work and Resilience
	Introduction
	Preliminaries
	Building Blocks
	Combining Yao Garbled Circuits and Authentication
	Combining Authenticated Yao Garbling and a PRF
	Delivering Outputs
	Improving the Security Threshold Using Committees

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

